

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52774 | Page 1

A Literature Review on AI-Powered Smart Code Base Navigator

Radhika S K1, Rashmitha R2, Sanjana N2, Shanthala M N2, Sukanya G2

1Assistant Professor, Department of Computer Science and Engineering, JNNCE, Shivamogga, Karnataka, India
2UG Students, Department of Computer Science and Engineering, JNNCE, Shivamogga, Karnataka, India

---***---

Abstract - In contemporary software development, the

vast size of codebases poses challenges in locating,

comprehending, and reusing code. Traditional search

tools that rely on keywords often fall short in capturing a

developer's true intent, thus impeding efficiency. This

initiative introduces an AI-Powered Smart Code Base

Navigator, a system designed to facilitate semantic code

search, context-aware code completion, and streamlined

navigation within extensive Python codebases. By utilizing

pre-trained models such as CodeBERT and retrieval-

augmented methods, the system can interpret natural

language queries and deliver pertinent code. Additionally,

it offers features like jump-to-definition and intelligent

suggestions, boosting developer productivity. As a web-

based tool, the navigator exemplifies how AI can

effectively connect natural language with programming

code, greatly enhancing software engineering

methodologies.

Key Words: AI, Code Navigation, Semantic Search,

Retrieval- Augmented Generation, Large Language

Models.

INTRODUCTION

In recent times, software development has grown more

intricate, with developers often dealing with extensive, multi-

layered codebases. Tasks such as code navigation,

understanding dependencies, and reusing existing code can be

quite time-consuming when using traditional keyword-based

searches, which lack semantic comprehension. The advent of

AI and natural language processing has paved the way for

smarter software tools. Drawing inspiration from

advancements in pre-trained code models like CodeBERT,

this project presents the AI-Powered Smart Code Base

Navigator. This system aims to enhance developer efficiency

by offering semantic code search, intelligent auto-completion,

and context- aware navigation. Unlike conventional methods,

our tool comprehends natural language queries, retrieves

pertinent code snippets, and suggests code based on usage

patterns. Developed as a web-based application, it ensures

easy access and smooth integration into a developer's

workflow. By integrating semantic embeddings, transformer

models, and efficient indexing, the navigator facilitates quick

and accurate navigation for large-scale projects. This tool

ultimately demonstrates how AI-driven solutions can

revolutionize software development, making coding more

efficient.

Literature Survey

In this section, various authors have presented various Emotion

detection techniques.

A. Code Generation using Transformer Models

J. R. Mahajan and K. Geetanjali [1] proposed transformer-

based models have revolutionized AI-assisted programming

by applying self-attention to code and natural language. They

are trained on massive code repositories (e.g., GitHub,

CodeSearchNet), learning patterns that improve code

completion, language translation, and automated bug fixing.

By deeply modeling syntax and semantics, transformers can

produce highly accurate, human-like code snippets. In

practice this yields significant productivity gains in tasks like

predictive code completion. However, these models

sometimes generate flawed or insecure code and may

inadvertently reproduce copyrighted or irrelevant patterns

from their training data. Researchers are now working on data

curation and architectural improvements to reduce

hallucinations and ensure that generated code is correct and

safe.

B. Meta-RAG on Large Codebases Using Code Summarization

Tawosi et al. [2] proposed Meta-RAG, a multi-agent retrieval-

augmented generation framework for debugging large codebases.

It first uses an LLM to summarize or condense the codebase

(shrinking it by ≈80%), then applies information retrieval and an

LLM reasoning agent to pinpoint bug locations. This drastically

reduces the search space: on the SWE-bench Lite dataset Meta-

RAG achieved about 84.7% accuracy at locating the buggy file

and 53.0% at the function level, state-of-the-art results. By

combining summarization and retrieval, Meta-RAG efficiently

handles very large code repositories. Its performance depends on

the quality of those summaries and requires substantial

computation for summarization upfront. In future work,

optimizing this trade-off is key, as poor summaries or limited

compute could undermine the method’s effectiveness.

C. Position: Intelligent Coding Systems Should Write Programs

with Justifications

Xu et al. [3] argue that AI coding assistants ought to generate

not only code but also human-understandable justifications for

their outputs. They introduce two properties of good

explanations: cognitive alignment (the rationale matches how a

user thinks about the task) and semantic faithfulness (the

explanation accurately reflects the code’s true behavior).

Traditional approaches often fail these criteria. Instead, they

advocate a neuro-symbolic approach where symbolic rules guide

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52774 | Page 2

the model during training and neural components capture

semantics. In this framework, the system automatically

checks that its explanation is consistent with the generated

code. While conceptual and not yet implemented at scale, this

vision aims to build trust by ensuring AI-generated code

comes with clear, verifiable reasoning about how and why it

works.

D. Conversational AI as a Coding Assistant: Understanding

Programmers' Interactions with LLMs

Akhoroz and Yildirim [4] surveyed 143 student

developers to understand how they use LLM-based chatbots

for coding. Students found LLMs helpful for accelerating

tasks and clarifying concepts, but also reported issues: the

AI’s answers were sometimes inaccurate, lacked awareness

of the entire project, and could encourage over-reliance. A

notable fraction of students avoided using LLMs altogether

to force themselves to learn independently or due to distrust

and ethical concerns over AI code. The authors conclude

that while LLM assistants have educational value (e.g.,

interactive debugging or explanations), they need better

context retention and transparency. They suggest design

improvements such as stronger context awareness and

clearer citations of information. This study highlights both

the potential and the pitfalls of conversational coding

assistants in real programming education.

E. A Deep Dive into Retrieval-Augmented Generation for

Code Completion: Experience on WeChat

Yang et al. [5] examines retrieval-augmented generation

(RAG) for C++ code completion within WeChat’s large

closed-source codebase. They compare identifier-based and

similarity-based RAG, testing lexical (keyword) and

semantic retrieval approaches across many LLMs. The

study found that RAG consistently boosts completion

accuracy: in particular, similarity-based retrieval (e.g.,

semantic search) outperformed simple identifier matching,

and the best results came from combining both lexical and

semantic retrieval methods. Developer feedback confirmed

these improvements in practice. However, the authors

caution that these empirical gains depend on the codebase’s

characteristics (WeChat’s code and libraries) and note that

standard automatic metrics may not fully capture real

developer satisfaction. Nonetheless, this work demonstrates

that integrating smart retrieval can greatly enhance code

suggestion systems.

F. Deep Semantics-Enhanced Neural Code Search

Yin et al. [6] introduce SENCS, a neural code search model

that fuses structural and semantic information. SENCS first

serializes a code’s dependency graph to capture its structure,

then uses a two-stage attention network to emphasize

meaningful code tokens. This joint encoding aligns a

developer’s query with relevant code snippets by deeply

understanding the code’s intent. On benchmarks (e.g.,

CodeSearchNet and JavaNet), SENCS notably outperformed

previous code search methods: for instance, it increased metrics

like MRR and SR@1 by double-digit percentages over the prior

best models. These gains show that modeling rich semantic and

structural patterns helps. A trade-off is that SENCS requires large

amounts of training data to capture these features, and its

complexity could hinder scalability or generalization to smaller

or very different code corpora.

G. Intelligent Python Code Analyzer (IPCA)

Thottam et al. [7] present IPCA, an AI-driven static analyzer

designed for learning Python programmers. Unlike simple linters,

IPCA uses advanced syntax and semantic analysis (e.g., AST

parsing, API usage checks) to provide context-aware feedback. It

inspects code structure to flag errors or inefficiencies and

suggests improvements beyond mere grammar fixes. IPCA

integrates with common Python IDEs to offer interactive,

educational hints – effectively teaching coding concepts as it

checks code. Its strength lies in tailoring feedback to novice

programmers and explaining why something is wrong. However,

IPCA’s evaluation has so far focused on classroom or student

settings, and quantitative comparisons to commercial linters are

lacking. Thus, while promising for education, its overall

robustness and effectiveness in diverse real-world scenarios

remain to be validated.

H. EVOR: Evolving Retrieval for Code Generation

Su et al. [8] propose EVOR, a retrieval-augmented code

generation pipeline that dynamically updates both the query and

the external knowledge base. Traditional pipelines use fixed,

static documents; EVOR continuously evolves search queries and

aggregates diverse sources (e.g., updated libraries, online code)

to adapt to changing contexts. They created new benchmarks

focusing on frequently-updated APIs and rare languages and

show EVOR dramatically improves execution accuracy: it

achieved roughly 2–4× higher correct code generation rates than

recent baselines like Reflexion or DocPrompting. This indicates

that EVOR’s strategy of synchronous query and corpus

expansion is effective. On the downside, maintaining evolving

corpora is costly: EVOR requires high latency and computational

effort to continually fetch and process new information. There is

also a risk that noisy or biased retrieved data could lead to

incorrect outputs. Balancing accuracy gains against efficiency

and bias risks is thus crucial for EVOR’s practical deployment.

I. REINFOREST: Reinforcing Semantic Code Similarity for

Cross-Lingual Code Search Models

Saieva et al. [9] introduce REINFOREST, a method to boost

cross-language code search by embedding dynamic runtime

information into static code representations. REINFOREST

incorporates execution-derived features into the training phase

(without needing to run code at query time) and trains on both

similar (positive) and dissimilar (negative) code-example pairs.

This enriches the model’s notion of code similarity. Evaluations

show REINFOREST substantially outperforms previous cross-

language search tools – in some cases by up to 44.7% on accuracy

metrics. They also find that even including a single well-chosen

positive/negative example during training yields large gains,

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52774 | Page 3

underlining the importance of contrastive learning in code

search. While powerful, REINFOREST requires gathering

aligned code examples across languages, which may be

difficult for under-resourced languages. Its effectiveness also

depends on the availability of quality static and dynamic

features for each codebase.

J. A Comprehensive Survey of AI-Driven Advancements and

Techniques in Automated Program Repair and Code

Generation

Anand et al. [10] systematically review 27 recent works on

AI-assisted bug fixing and code synthesis. They categorize

approaches into groups like search-based or semantic repair,

and ML/LLM-based code generation. For APR, they

highlight methods that use LLMs for context-aware patching

of semantic errors and vulnerabilities. For code generation,

they contrast general LLM solutions with task-specific

models, noting techniques like identifier-based fine-tuning

and instruction- level tuning to improve output. The survey

discusses strengths (e.g., iterative feedback loops boosting

accuracy) and weaknesses of each approach. They note

common challenges: many methods rely on limited

datasets/benchmarks, making it hard to generalize across

languages or domains. The authors stress gaps such as

ensuring correctness and integrating domain knowledge.

Overall, this work provides a structured overview of current

techniques and suggests that future research focus on robust

evaluation and cross-domain applicability.

K. Code Search Is All You Need: Improving Code

Suggestions with Code Search

Chen et al. [11] demonstrate that code suggestion models

can be greatly enhanced by integrating code search. Their

retrieval- augmented framework first searches a large

codebase for snippets similar to the developer’s query, then

uses these examples to guide a language model’s suggestions.

Testing multiple language models, they found that this

approach yields very large gains: code completion BLEU

scores improved by up to ~53.8% and code generation by

~130.8% compared to no retrieval. In essence, a practical

retrieval step can compensate for some of the weaknesses of

generative models. This also suggests a lightweight strategy

(using a pre-built code index) as an alternative to fine-tuning

massive models. A limitation is that quality hinges on the

retrieval corpus: if the codebase has limited relevant

examples, performance will suffer. Additionally, this method

may not handle novel queries well, since it relies on existing

code.

L. A Transformer-Based Approach for Smart Invocation of

Automatic Code Completion

De Moor et al. [12] address when an IDE should invoke

code completion to avoid interrupting the developer. They

collected 200k real developer interactions and trained a small

transformer classifier to predict optimal invocation points

based on code context and editor telemetry. Their model

significantly outperformed a naive baseline while maintaining

low latency.

In deployment with 34 developers (≈74k invocations), it

effectively filtered out irrelevant suggestion prompts. This work

shows that context-aware invocation policies – not just the

content of suggestions – are important

for developer productivity. However, the approach depends on

representative telemetry data: different languages, coding styles,

or IDE setups might require retraining. Also, adding such a layer

increases system complexity and requires accurate modeling of

developer intent signals, which may not transfer easily between

development environments.

M. LLMs: Understanding Code Syntax and Semantics for Code

Analysis

Ma et al. [13] examine how well state-of-the-art LLMs

(GPT-4, GPT-3.5, StarCoder, CodeLlama) understand code at

syntax vs. semantic levels. They design tasks to test parsing of

abstract syntax trees and control-flow, as well as

comprehension of dynamic behavior across languages. The

results are clear: all tested LLMs can handle syntax tasks

relatively well, acting like a parser, but they often fail to fully

grasp semantics and runtime logic. In fact, the models

frequently hallucinate or infer incorrect behaviors when

reasoning about code. This suggests that while LLM-generated

code is usually syntactically correct, its deeper correctness is

brittle. The authors conclude that relying on LLMs for code

analysis or verification is risky; external checks or hybrid

methods (e.g., symbolic analysis) are needed to ensure

reliability

N. Joint Embedding of Semantic and Statistical Features for

Effective Code Search

Kong et al. [14] propose JessCS, a code search system that

jointly embeds semantic meanings with statistical code features.

The idea is to capture both what the code does (semantics from

comments/descriptions) and how often patterns appear (statistics

like token frequency or API usage). JessCS learns a unified vector

space incorporating both types of features. Evaluated on a large

dataset (≈1M code snippets), JessCS outperformed a uniform

embedding baseline by about 13% on search accuracy metrics.

This shows that combining semantic context with structural

statistics can better match queries to code. The downside is added

complexity: extracting multiple feature types increases the

model’s size and preprocessing time, making it heavier to deploy

at large scale or on-the-fly for huge code repositories.

O. Explainable AI for Pre-Trained Code Models: What Do

They Learn? When They Do Not Work?

Mohammadkhani et al. [15] apply explainable AI (attention

analysis) to interpret pretrained models like CodeBERT and

GraphCodeBERT on tasks such as code documentation, code

refinement, and translation. By examining which tokens the

models attend to, they identify patterns of what the models

consider important when they succeed, and discover why they

fail on seemingly easy examples. For instance, they observe

cases where the attention focuses on irrelevant code tokens,

leading to mistakes. Their analysis yields insights into the

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52774 | Page 4

models’ blind spots and guides recommendations (e.g.

modifying training data or attention mechanisms) to

mitigate these issues. While this study does not directly

improve model accuracy, it provides valuable transparency.

The conclusions are mostly qualitative, helping researchers

understand and trust code models rather than creating a new

model.

P. Search4Code: Code Search Intent Classification Using

Weak Supervision

Rao et al. [16] address the problem of understanding what

programmers mean when they write natural language search

queries. They collected over 1 million real C# and Java

queries from Bing and used weak supervision to label each

query’s intent (e.g., seeking code snippet, documentation, or

debugging help). They then trained a CNN classifier on this

data, achieving about 76–77% accuracy in predicting the intent

class. They also released this large dataset to the community.

By classifying intent, a code search engine could route

queries more effectively (for instance, prioritizing code

examples vs. theoretical explanations). A potential drawback

is that weak labels can be noisy, and 77% accuracy means

some queries will be misclassified, which might lead the

search to misunderstand the user’s actual goal.

Q. PSCS: A Path-based Neural Model for Semantic Code

Search

Sun et al. [17] propose PSCS, a neural model that embeds

both the semantics and structure of code by leveraging AST

(abstract syntax tree) paths. PSCS trains on hundreds of

thousands of queries–code pairs, walking along AST paths to

capture relationships between code tokens and constructs. In

large-scale experiments (330k training pairs), PSCS achieved

a 47.6% success rate (Top-10 accuracy) and 30.4% MRR,

significantly beating earlier deep learning baselines (like

DeepCS and CARLCS). Importantly, an ablation study

showed that including the structural AST path information

markedly improved results, confirming the value of code

structure. The complexity lies in parsing and encoding ASTs:

for massive codebases, constructing these paths can be

resource-intensive, and performance depends on the parser’s

accuracy. Nevertheless, PSCS demonstrates that modeling

syntax paths is a powerful way to improve semantic code

search.

R. CodeBERT: A Pre-Trained Model for Programming and

Natural Languages

Feng et al. [18] introduced CodeBERT, a bimodal

transformer pre-trained on both code (from six languages)

and natural language pairs. By learning joint NL–code

representations, CodeBERT can be fine-tuned for tasks like

code search or summarization. The hybrid pre-training

objective (including a “replaced token detection” task) lets it

leverage unlabeled code and paired doc–code data together.

In benchmarks, CodeBERT set new state-of-the-art results on

code search and documentation generation after fine-tuning.

This work established large-scale NL–PL pre-training in the

software domain. The trade-offs are familiar for large models:

CodeBERT requires heavy computation to train, and it must be

fine-tuned per task. It also has a fixed context window, limiting

how much code it can process at once. Without further adaptation,

it may struggle with very long code inputs or highly specialized

programming languages.

S. Adaptive Deep Code Search

Ling et al. [19] present AdaCS, an adaptive code search model

designed to transfer across codebases. AdaCS is first trained on a

large public corpus (e.g., GitHub code) and then adapted to a

specific target repository. It decouples the learning of general

syntactic matching (via neural networks) from domain-specific

word meanings. When applied to a new codebase, AdaCS learns

the meanings of project-specific terms and constructs new

matching matrices, while reusing the previously learned syntactic

model. In experiments on industrial Java projects, this approach

boosted the top-5 search hit rate from 65.9% (baseline) to 88.2%.

Thus, AdaCS can be trained once and reused across projects. The

limitation is that it still requires substantial initial training data

and effort to adapt to each new codebase. Rare domains with very

different vocabulary may require additional labeled examples to

reach optimal performance.

T. When Deep Learning Met Code Search

Cambronero et al. [20] conduct a systematic comparison of

neural code search architectures. They introduce UNIF, a simple

supervised model using bag-of-words embeddings with attention,

and compare it to more complex RNN-based models (CODEnn,

SCS). Counterintuitively, UNIF outperforms CODEnn and SCS

on their benchmarks: for example, on two test sets (Java-50 and

Android-287) UNIF retrieved more correct results in the top-10

than the others. They find that minimal supervision (tuning

embedding weights) significantly helps, but adding sophisticated

sequential architectures offers little extra gain. Their results

suggest that neural code search can be effective even with simpler

models, though they note that supervised learning must still

carefully match queries and code. This work serves as a reminder

that model complexity does not always translate to better real-

world performance.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52774 | Page 5

TABLE: LITERATURE SURVEY SUMMARY

Authors Title Methodology Remarks

J. R. Mahajan and K.

Geetanjali
2025

Code Generation using

Transformer Models

Reviews transformer-based

code generation.

Pros: Strong

syntax/semantics.
Cons: Can

produce invalid or insecure

code; ethical issues.

V. Tawosi, S. Alamir, X. Liu,

and M. Veloso

2025

Meta-RAG on Large

Codebases

Multi-agent framework for

bug localization and patch

generation.

Pros: Reduces code size by

80%; SOTA performance.

Cons: Resource-heavy;
quality depends on LLM

summaries.

X. Xu, S. Feng, Z. Su, C.

Wang, and X. Zhang

2025

Intelligent Coding Systems

Should Write Programs with

Justifications

Advocates for neuro-

symbolic systems with

justifications.

Pros: Builds user trust with

explainable outputs.
Cons: Conceptual framework
only; not yet implemented.

M. Akhoroz and C. Yildirim

2025

Conversational AI as a

Coding Assistant

Survey of students' use of AI

for coding.

Pros: Valuable for debugging

and learning.

Cons: Limited to student
views; concerns over
accuracy and over-reliance.

Z. Yang, C. Wang, T. Peng,

H. Huang, Y. Deng, and C.

Gao

2025

A Deep Dive into RAG for

Code Completion

Empirical study of RAG for

C++ code completion.

Pros: Improved completion
with combined retrieval.
Cons: Results may not
generalize; automated metrics
are limited.

Y. Yin, L. Ma, Y. Gong, Y.

Shi, F. Wahab, and Y. Zhao

2024

Deep Semantics-Enhanced

Neural Code Search 2024

Neural model for code search

using deep semantic

embeddings.

Pros: Improves search
accuracy; better captures
semantic intent. Cons:
Requires large training data;
may not generalize well.

C. Thottam, N. Fernandes, R.

Joseph, and I. Mirza

2024

Intelligent Python Code

Analyzer (IPCA)

AI-based static analysis tool

for Python.

Pros: Provides interactive,

educational feedback.

Cons: Focused on education;
lacks quantitative
comparison.

H. Su, S. Jiang, Y. Lai, H.

Wu, B. Shi, C. Liu, Q. Liu,

and T. Yu
2024

EVOR: Evolving Retrieval

for Code Generation

Retrieval-augmented code

generation using evolving

queries.

Pros: Higher execution

accuracy; adaptable.

Cons: High latency and
energy use; risk of bias.

A. Saievat, S. Chakraborty,

and G. Kaiser
2024

REINFOREST: Reinforcing

Semantic Code Similarity

Enhances cross-language

code search with a Semantic

Similarity Score.

Pros: Outperforms SOTA;
robust with limited data.
Cons: Relies on suitable SSS
inputs; less practical for large
codebases.

A. Anand, N. Yadav, A.

Gupta, and S. Bajaj

2024

A Comprehensive Survey of

AI-Driven Advancements and

Techniques in Automated

Program Repair and Code

Generation

Systematic literature review

of AI-driven techniques in

program repair and code

generation.

Pros: Provides a structured

categorization; valuable

resource for researchers.

Cons: Dependent on the

quality of datasets; limited
integration of domain-specific
knowledge.

J. Chen, X. Hu, Z. Li, C. Gao,

X. Xia, and D. Lo

2024

Code Search Is All You

Need: Improving Code

Suggestions with Code

Search

Demonstrates that code

search itself can drive

effective code completion and

suggestions

Pros: Lightweight compared

to large language models.

Cons: Limited by the quality

and size of the indexed
codebase.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52774 | Page 6

A. de Moor, A. van Deursen,
and M. Izadi

2024

A Transformer-Based

Approach for Smart

Invocation of Automatic

Code Completion

Leverages transformer
models to provide context-

aware auto-completion.

Pros: High accuracy in
suggesting context-specific

completions.
Cons: Requires significant
computational resources.

W. Ma, W. Wang, S. Liu, Y.

Liu, Q. Hu, L. Li, Z. Lin, C.
Zhang, and L. Nie

2024

LLMs: Understanding Code

Syntax and Semantics for

Code Analysis

Evaluates GPT-4, GPT-3.5,
StarCoder, and CodeLlama
across tasks involving syntax,
static behavior.

Pros: Strong syntax

understanding.

Cons: Weak in semantic and

dynamic analysis.

X. Kong, S. Kong, M. Yu,

and C. Du

2022

Joint Embedding of Semantic

and Statistical Features for

Effective Code Search

Combines semantic

embeddings with statistical

features into a joint vector

space.

Pros: Balances semantic

understanding,higher

precision.

Cons: Feature engineering

increases complexity.

A. H. Mohammadkhani, C.

Tantithamthavorn, and H.

Hemmati
2022

Explainable AI for Pre-

Trained Code Models: What

Do They Learn? When They

Do Not Work?

Investigates pre-trained code
models (like CodeBERT)
using explainable AI
techniques to understand their
decision-making and failure
points.

Pros: Provides transparency

and insights into model

behavior.

Cons: Explanations may be

shallow.

N. Rao, C. Bansal, and J.

Guan
2021

Search4Code: Code Search

Intent Classification Using

Weak Supervision

Introduces an intent

classification system for code

search queries using weak

supervision.

Pros: Improves relevance by

aligning queries with search

intent.

Cons: Weak supervision

labels may be noisy.

Z. Sun, Y. Liu, C. Yang, and

Y. Qian

2020

PSCS: A Path-based Neural

Model for Semantic Code

Search

Uses abstract syntax tree

(AST) paths with neural

networks to represent code

semantics.

Pros: Effectively captures

syntactic and semantic code

patterns.
Cons: Parsing large
codebases into ASTs is
resource-heavy.

Z. Feng et al.

2020

CodeBERT: A Pre-Trained

Model for Programming and

Natural Languages

Pre-trained transformer model

trained on massive code and

natural language corpora.

Pros: Strong baseline for

code search, summarization,

and completion.
Cons: Requires fine-tuning.

C. Ling, Z. Lin, Y. Zou, and

B. Xie

2020

Adaptive Deep Code Search Proposes an adaptive
framework that dynamically
adjusts embeddings and
retrieval strategies.

Pros: Flexible and

generalizable.
Cons: Adaptation process can

be complex.

S. Kim, J. Cambronero, H. Li,

and K. Sen

2019

When Deep Learning Met

Code Search

Compares multiple neural

code search models (NCS,

CODEnn, SCS) with a

simpler baseline called UNIF

on common datasets.

Pros: UNIF outperforms

more complex models;

supervision improves results

significantly.

Cons: Complex networks
may overfit; evaluation
depends on manually set
thresholds.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52774 | Page 7

CONCLUSIONS

The AI-Powered Smart Code Base Navigator showcases the

potential of incorporating AI methods like semantic search,

intelligent recommendations, and natural language queries to

boost developer efficiency. By utilizing sophisticated models

and retrieval techniques, this initiative tackles significant

obstacles in navigating extensive and intricate codebases. The

system improves code comprehension, offers context-

sensitive support, and shortens the time developers need to

find and understand pertinent sections of the code.

The work also highlights future opportunities, such as

incorporating domain-specific knowledge, expanding support

across diverse programming languages, and improving

scalability for industrial-scale software systems. Overall, this

project contributes towards advancing intelligent software

engineering tools, bridging the gap between human

developers and complex code ecosystems.

REFERENCES
[1] J. R. Mahajan and K. Geetanjali, “Code generation using

transformer models,” Int. J. Adv. Res. Sci., Commun.

Technol., vol. 5, no. 3, pp. 90–96, May 2025.

[2] V. Tawosi, S. Alamir, X. Liu, and M. Veloso, “Meta-

RAG on large codebases using code summarization,” arXiv

preprint arXiv:2508.02611, 2025.

[3] X. Xu, S. Feng, Z. Su, C. Wang, and X. Zhang, “Position:

Intelligent coding systems should write programs with

justifications,” arXiv preprint arXiv:2508.06017, 2025.

[4] M. Akhoroz and C. Yildirim, “Conversational AI as a

coding assistant: Understanding programmers’ interactions

with and expectations from large language models for

coding,” arXiv preprint arXiv:2503.16508, 2025.

[5] Z. Yang, C. Wang, T. Peng, H. Huang, Y. Deng, and C.

Gao, “A deep dive into retrieval-augmented generation for

code completion: Experience on WeChat,” arXiv preprint

arXiv:2507.18515, 2025.

[6] Y. Yin, L. Ma, Y. Gong, Y. Shi, F. Wahab, and Y. Zhao,

“Deep Semantics-Enhanced Neural Code Search,”

Electronics, vol. 13, no. 23, p. 4704, Nov. 2024.

[7] C. Thottam, N. Fernandes, R. Joseph, and I. Mirza,

“Intelligent Python code analyzer (IPCA),” Int. J. Creative

Res. Thoughts (IJCRT), vol. 12, no. 3, pp. 1987–1997, Mar.

2024.

[8] H. Su, S. Jiang, Y. Lai, H. Wu, B. Shi, C. Liu, Q. Liu, and

T. Yu, “EVOR: Evolving retrieval for code generation,”

arXiv preprint arXiv:2402.12317, 2024.

[9] A. Saievat, S. Chakraborty, and G. Kaiser,

“REINFOREST: Reinforcing Semantic Code Similarity for

Cross-Lingual Code Search Models,” arXiv preprint

arXiv:2305.03843, 2024.

[10] A. Anand, N. Yadav, A. Gupta, and S. Bajaj, “A

comprehensive survey of AI-driven advancements and

techniques in automated program repair and code

generation,” arXiv preprint arXiv:2411.07586, 2024.

[11] J. Chen, X. Hu, Z. Li, C. Gao, X. Xia, and D. Lo, “Code

Search Is All You Need? Improving Code Suggestions with

Code Search,” in Proc. 46th Int. Conf. on Software Engineering

(ICSE ’24), Lisbon, Portugal, Apr. 14–20, 2024,

[12] A. de Moor, A. van Deursen, and M. Izadi, “A

Transformer-Based Approach for Smart Invocation of

Automatic Code Completion,” in Proc. 1st ACM Int’l Conf. on

AI-Powered Software (AIware ’24), Porto de Galinhas, Brazil,

Jul. 2024.

[13] W. Ma, W. Wang, S. Liu, Y. Liu, Q. Hu, L. Li, Z. Lin, C.

Zhang, and L. Nie, “LLMs: Understanding code syntax and

semantics for code analysis,” arXiv preprint arXiv:2305.12138,

2024.

[14] X. Kong, S. Kong, M. Yu, and C. Du, “Joint Embedding

of Semantic and Statistical Features for Effective Code

Search,” Applied Sciences, vol. 12, no. 19, art. 10002, Oct.

2022.

[15] A. H. Mohammadkhani, C. Tantithamthavorn, and H.

Hemmati, "Explainable AI for Pre-Trained Code Models: What

Do They Learn? When They Do Not Work?" arXiv preprint

arXiv:2211.12821, 2022.

[16] N. Rao, C. Bansal, and J. Guan, "Search4Code: Code

Search Intent Classification Using Weak Supervision," in Proc.

18th Int. Conf. on Mining Software Repositories (MSR), pp.

575–579, 2021.

[17] Z. Sun, Y. Liu, C. Yang, and Y. Qian, “PSCS: A path-

based neural model for semantic code search,” arXiv preprint

arXiv:2008.03042, 2020.

[18] Z. Feng et al., “CodeBERT: A pre-trained model for

programming and natural languages,” in Findings of the

Association for Computational Linguistics: EMNLP 2020, pp.

1536–1547.

[19] C. Ling, Z. Lin, Y. Zou, and B. Xie, “Adaptive deep code

search,” in Proceedings of the 28th International Conference

on Program Comprehension (ICPC ’20), Seoul, Republic of

Korea, Oct. 2020.

[20] S. Kim, J. Cambronero, H. Li, and K. Sen, “When deep

learning met code search,” in Proc. 27th ACM Joint Eur. Softw.

Eng. Conf. Symp. Found. Softw. Eng. (ESEC/FSE ’19), 2019,

pp. 964–974.

https://ijsrem.com/

