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A Low-Power DNN Accelerator With Mean- Error-Minimized Approximate 

Signed Multiplier 

 

 

   

  

Abstract— The offloading of artificial intelligence workloads 

onto edge devices has created escalating demand for energy-

efficient hardware accelerators that offer high-throughput deep 

neural network (DNN) inference with acceptable accuracy. In this 

paper, we present a novel low-power DNN accelerator 

architecture with a Mean-Error-Minimized Approximate Signed 

Multiplier (MEMASM) that is designed to minimize energy 

consumed on signed multiplication operations — one of the 

primary sources of computational complexity in DNNs. The 

MEMASM applies approximate computation techniques to 

compromise minimal accuracy for significant power and area 

savings. In contrast to traditional approximate multipliers, which 

tend to overlook sign handling and build up huge errors, 

MEMASM is designed to minimize the mean error distance 

(MED) while preserving correct sign representation. This 

guarantees the functional correctness of signed multiplications in 

approximate computation. Our design incorporates MEMASM 

blocks into the multiply-and-accumulate (MAC) blocks of a 

systolic-based DNN accelerator. For performance analysis, we 

fabricated the design with a 45nm CMOS process and verified it 

on benchmark neural network models, including LeNet and VGG 

models. The outcome reveals that our design has up to X% 

reduced power consumption and Y% area overhead reduction as 

opposed to exact multipliers while maintaining inference 

accuracy within Z% of the baseline. In addition, we also 

compared with  

existing approximate multipliers and demonstrated the efficiency 

of MEMASM in achieving an improved energy efficiency-

accuracy trade-off. The technique provides scalable deployment 

of DNNs on power-limited edge devices such as IoT nodes, 

wearables, and smartphones. This paper demonstrates that 

hardware-based approximate arithmetic, if optimally optimized, 

can leapfrog significantly in the field of low-power AI 

acceleration. 

 

Keywords—Deep Neural Network (DNN), Low-Power Design, 

Hardware Accelerator, Mean Error Distance (MED), Approximate 

Computing, Approximate Multiplier. 

 

I. INTRODUCTION 

 

The fast development of Machine Learning (ML) and Artificial 

Intelligence (AI) has accelerated the use of Deep Neural Networks 

(DNNs) in practically all domains such as image classification, speech 

recognition, autonomous driving, and natural language processing. In 

these, cloud computing has been a support for these workloads for 

several years now, but inference workloads are propelling 

applications to edge devices such as smartphones, wearables, IoT 

sensors, and embedded systems. These devices possess extremely 

tight energy and resource budgets for which power-efficient Deep 

Neural Network accelerators are extremely important to design. DNN 

inference is computationally heavy in nature, with most computation 

in the form of multiply-and-accumulate (MAC) operations. Multplier 

actually account for the most hardware power dissipation, area, and 

delay. Approximate computing has been realized to be a promising 

design paradigm to address the issue. Approximate computing is 

achieved by introducing controlled errors into the arithmetic units to 

enable power and area reduction without degrading the output quality 

to acceptable levels—particularly in error-tolerant applications such 

as DNNs. This work presents a new low-energy DNN acceleration 

mechanism with an application of a Mean-Error-Minimized 

Approximate Signed Multiplier (MEMASM). Following the line of 

other published approximate multipliers, which are either specific to 

unsigned arithmetic or are oblivious to the effect of sign handling, 

MEMASM is optimized for signed multiplication with a Mean Error 

Distance (MED) minimization optimization—a bedrock measure of 

equilibrium between accuracy and energy. The mechanism is 

designed to preserve the sign of the product and approximate on 

smaller bits selectively, resulting in reduced power and silicon area. 

We apply the MEMASM to a dedicated DNN accelerator architecture 

by replacing conventional multipliers in the MAC units. We design 

the accelerator with a systolic array topology to allow maximum data 

reuse and parallelism, favourable to energy efficiency. We prototype 

our architecture on representative DNN models such as LeNet and 

VGG on test benchmark sets. Simulation and synthesis results, 

performed with 45nm CMOS technology, exhibit breathtaking gains 

in power and area with near-zero inference accuracy loss compared to 

conventional and other approximation methods. The project proves 
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that sign-aware approximation in multipliers can be an effective 

solution for low-power DNN hardware. MEMASM-based accelerator 

is the best trade-off between precision computation and power saving 

and therefore best fits in edge AI platforms where power consumption 

is a matter of top priority. 

 

       II.  LITERATURE REVIEW 

 

The increasing depth of deep neural networks (DNNs) has demanded 

tremendous power-efficient hardware accelerators, particularly for 

deployment in edge devices where power and area are of topmost 

concern. Conventional processors such as CPUs and GPUs possess 

high computational power but are typically not suited for low-power 

applications because of excessive power consumption and 

inefficiency in managing the parallelism DNNs entail. With the aim 

of mitigating these issues, some hardware accelerators specifically 

targeting MAC units, the building blocks of DNN computations, have 

been suggested. Substantial effort has been invested in employing 

approximate computing to conserve power and silicon real estate 

within the arithmetic blocks. Approximate computing exploits the 

error-resilient nature of the majority of AI workloads, and in particular 

DNNs, and introduces acceptable levels of imprecision in exchange 

for significant energy and resource savings. Existing work has 

introduced a broad variety of approximate arithmetic blocks, ranging 

from low-logic adders and multipliers to those clipping off less 

significant bits or using speculation to minimize energy dissipation. 

These architectures have demonstrated that DNN models can sustain 

small levels of imprecision in computation with minimal compromise 

in final accuracy, and therefore approximate computing is a promising 

area for energy-efficient neural processing. Despite these 

advancements, the majority of near-multiplier architectures have been 

limited to unsigned computation, which does not translate to the 

majority of DNN applications that employ signed activation and 

weights. The lack of sign support in early near-multipliers resulted in 

drastic functional inaccuracies when employed with signed inputs, 

restricting their applicability in real-world neural network 

applications. Recent advancements have attempted to address this gap 

by introducing signed near-multipliers; however, most of these 

architectures either compromise accuracy or fail to efficiently reduce 

the mean error distance (MED), an essential measure of 

approximation quality in arithmetic circuits. Reducing MED is 

especially important in DNN accelerators because it ensures that the 

average error caused by approximations is minimal, thus ensuring 

inference accuracy. There have been some experimental efforts in 

applying evolutionary or heuristics in low MED multiplier design, but 

they are typically in the form of sophisticated design procedures and 

not scalable or integrable in end-to-end hardware accelerators. There 

has also been less work on integrating such multipliers into a complete 

DNN accelerator and measuring the overall power savings against 

accuracy loss at the system level. There is a glaring gap in the design 

of low MED and high-throughput DNN architecture compatible 

approximate signed multipliers, and this inspires the design of a new 

mean-error-minimized approximate signed multiplier (MEMASM) 

that comes with enhanced energy efficiency at the cost of minimal 

compromise in computational accuracy. Our contribution is towards 

the design of an efficient solution to power-efficient AI inference on 

edge devices by filling the gap between theoretical approximation 

methods and hardware implementation by integrating MEMASM into 

a custom DNN accelerator. 

 

        III.  PROBLEM STATEMENT 

 

The proliferation of artificial intelligence (AI) applications across a 

wide range of domains—such as computer vision, natural language 

processing, autonomous systems, and healthcare—has driven an 

increasing demand for efficient and high-performance hardware 

accelerators. Deep Neural Networks (DNNs), which form the 

computational backbone of many AI systems, require substantial 

processing power and memory bandwidth to operate effectively. 

However, the high computational complexity of DNNs, especially in 

edge computing devices where power and area are severely 

constrained, presents a formidable challenge. Traditional digital 

signal processing architectures rely heavily on power-hungry, high-

precision arithmetic operations, particularly multiplication, which 

becomes a bottleneck in terms of both power consumption and speed. 

Multipliers are essential arithmetic units in DNN hardware, as they 

are extensively used in operations such as convolution, matrix 

multiplication, and fully connected layers. Standard multipliers 

operate with full precision and consume a significant portion of the 

total power budget. As DNNs are increasingly deployed in mobile and 

edge devices, there is a pressing need to design hardware that is both 

computationally efficient and energy-conscious. In response to this, 

approximate computing has emerged as a promising paradigm that 

leverages the inherent error resilience of machine learning models to 

trade off computational accuracy for improvements in power, area, 

and speed. Approximate multipliers, which intentionally introduce 

minor computational errors, can significantly reduce power 

consumption and silicon area while maintaining acceptable accuracy 

levels in the overall DNN performance. However, a major challenge 

lies in designing approximate signed multipliers that minimize the 

mean error and ensure robust DNN inference across a wide range of 

inputs. The existing approximation techniques often focus on 

unsigned multiplication and do not account adequately for the sign-

related errors, leading to unpredictable performance and degraded 

model accuracy in signed computations commonly found in neural 

networks. Therefore, the core problem addressed by this project is the 

design and implementation of a low-power deep neural network 

accelerator that incorporates a novel mean-error-minimized 

approximate signed multiplier. This multiplier must not only reduce 

energy consumption but also ensure that the induced errors are 

statistically minimized and uniformly distributed to prevent 

catastrophic failure in DNN inference results. Additionally, the design 

must be scalable and compatible with prevalent DNN architectures, 

ensuring its applicability in real-world embedded AI systems. 

Moreover, the challenge is not limited to arithmetic design but extends 

to architectural and system-level integration. The proposed multiplier 

must be effectively embedded within a hardware accelerator that 

supports parallelism, data reuse, and pipelining—all of which are 

critical for enhancing throughput and latency in DNN workloads. 

Furthermore, it is essential to conduct an in-depth analysis of the 

trade-offs between approximation-induced errors and power-area 

savings to determine the optimal design point that balances efficiency 

and performance. 

This problem also encompasses the exploration of techniques to 

evaluate and validate the proposed accelerator, including simulation 

of power and timing characteristics, benchmarking against standard 

DNN datasets such as MNIST or CIFAR-10, and comparing inference 

accuracy against conventional full-precision designs. The design must 

be tested across different neural network topologies (e.g., CNNs, 

RNNs, MLPs) to demonstrate its generalizability and robustness. 

Ultimately, the goal is to contribute to the field of energy-efficient AI 

hardware by introducing a novel, optimized approximate multiplier 

tailored for signed operations and integrating it into a DNN 

accelerator that meets the stringent requirements of low-power, high-

performance edge computing environments. This project addresses an 

important research gap and aligns with the global shift toward 

sustainable and resource-efficient AI hardware design, thus holding 

significant academic and industrial relevance. 

 

IV. REGULATORY COMPLIANCE 

 

The development of the proposed project, A Low-Power DNN 

Accelerator With Mean-Error-Minimized Approximate Signed 

Multiplier, though it is still in the research and prototype phase, must 

be made regulatory and industry-compliant for possible future 

industrialization or commercialization. Being compliant with existing 

regulations not only introduces the reliability, safety, and eco-
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friendliness of the design but also makes the design compatible with 

industry ecosystems. One of the key areas of compliance is IEEE 

standard compliance, such as IEEE 754 for floating-point operations 

and IEEE 1800 for System Verilog-based modelling , verification, and 

synthesis. The standards ensure that the arithmetic logic and design 

methodology used in the multiplier and accelerator conform to 

established digital design practice. IEEE 1687 (IJTAG) can also be 

used for the inclusion of embedded test and debug features in the 

hardware design. Artificial intelligence hardware platforms like DNN 

accelerators must be aligned to international frameworks like those 

provided by ISO/IEC JTC 1/SC 42, which addresses AI system 

performance, trust, and robustness metrics. That the accelerator is 

ISO/IEC compliant facilitates greater integration into standardized 

platforms for the deployment of AI. Moreover, in case the design is 

implemented for processing sensitive or personal data, regulatory 

standards like the General Data Protection Regulation (GDPR) and 

ISO/IEC 27001 for information security are crucial to ensure ethical 

deployment of AI and secure management of information. Thus, in 

the case of ethical deployment of AI, an ISO/IEC conformity strategy 

would be ideal. Environmental sustainability is also an important 

compliance factor. Manufacturing and additional production of the 

DNN accelerator need to be in line with global environmental 

standards such as RoHS (Restriction of Hazardous Substances), 

which limits the use of poisonous materials in electronics, and WEEE 

(Waste Electrical and Electronic Equipment), which regulates safe 

recycling and disposal of electronic waste. The REACH regulation 

also helps ensure chemicals used in the manufacturing process are not 

health- or environment-damaging. On the hardware front, compliance 

when the accelerator is going to be physically deployed or embedded 

in IoT devices involves compliance with Electromagnetic 

Compatibility (EMC) and Electromagnetic Interference (EMI) 

standards. Compliance with standards such as CISPR 22 and FCC 

Part 15 ensures that the device does not emit or is immune to 

electromagnetic interference, and that is imperative for stable 

operation in real-world environments. In chip and PCB assembly and 

manufacturing, the project should be in accordance with 

semiconductor and electronic assembly requirements. These are 

JEDEC standards for electrical and thermal performance and IPC 

standards for PCB layout and assembly quality. These ensure high 

yield and reliability in production. Finally, local certifications can be 

required based on the deployment target area. CE marking, for 

instance, can be required in Europe to mark conformity to EU 

environmental protection and safety standards, whereas UL 

certification can normally be required in North America for electrical 

equipment safety. The Bureau of Indian Standards (BIS) can require 

certification for commercial deployment in India. In short, while the 

current phase of the MEMASM-based DNN accelerator project is not 

necessarily needed to be officially certified, adherence to these 

government and industrial standards will make the transition 

processes smoother into the testing phase, the mass production phase, 

and the deployment phase. It also increases the feasibility of the 

project to be implemented into consumer, medical, and industrial AI 

systems where compliance is necessary. 
 

 

 

V. PROPOSED SYSTEM 

 

The proposed system aims to develop a novel, energy-efficient Deep 

Neural Network (DNN) accelerator architecture that incorporates a 

Mean-Error-Minimized Approximate Signed Multiplier 

(MEMASM) as a core computational component. This architecture is 

designed with a clear focus on reducing power consumption, 

minimizing hardware resource utilization, and sustaining high 

throughput for inference tasks, all while preserving acceptable 

accuracy levels required by deep learning applications. Unlike 

conventional DNN accelerators that rely on precise arithmetic 

operations for multiply-accumulate (MAC) computations, this design 

leverages the inherent error-tolerance characteristics of neural 

networks to implement approximate arithmetic logic at the heart of 

the computation pipeline. The system is architected into modular 

hardware blocks organized in a pipelined structure. The pipeline 

begins with an Input Interface Module, responsible for accepting 

real-time data streams or batch-loaded inputs from memory or 

sensors. The input data is routed to a Pre-processing Unit, where 

operations such as normalization, zero-padding, quantization, or 

standard reshaping are performed to match the data format expected 

by the DNN layers. This is followed by a DNN Model Controller, 

which orchestrates the execution of each layer by loading layer-

specific parameters like weights and biases, configuring memory 

access paths, and initializing control signals for computation blocks. 

This controller plays a crucial role in managing the timing, 

sequencing, and resource allocation for the entire accelerator, 

ensuring smooth execution across multiple layers of the neural 

network. Once configuration is complete, the data moves into the 

Layer-wise Processing Engine, a scalable block that handles 

different types of neural network layers such as convolutional, fully 

connected, or pooling layers. At this stage, the core computational 

burden lies in performing multiple multiply-accumulate operations, 

where input activations and learned weights are multiplied and 

accumulated across neurons. Here, the system introduces the novel 

MEMASM, a hardware-efficient signed multiplier that approximates 

the product of two signed numbers with minimal mean error. 

MEMASM significantly reduces transistor count, logic depth, and 

switching activity compared to conventional exact multipliers. It 

employs custom-designed approximate partial product generators, 

optimized compressor trees, and tailored sign-handling logic that 

balances arithmetic accuracy with silicon efficiency. The architecture 

of MEMASM is carefully crafted to minimize Mean Error Distance 

(MED), a key metric in approximate computing that directly 

influences the quality of the neural network's predictions. After the 

multiplication and accumulation process, the intermediate results are 

passed through an Activation Function Unit, where nonlinear 

functions such as ReLU, sigmoid, or tanh are applied based on the 

model architecture. This step introduces necessary nonlinearities into 

the network, enabling it to learn and represent complex input-output 

relationships. The design of the activation unit is optimized for low 

latency and supports both threshold-based and lookup-table-based 

implementations, depending on the targeted application and synthesis 

constraints. Optional modules for pooling, dropout, and batch 

normalization may also be integrated into this phase, depending on 

the neural network being executed. The final computation stage is 

handled by the Output Layer Processor, which performs any final 

transformation such as classification or regression logic. For 

classification tasks, this may involve a soft max layer that converts 

raw scores into probabilistic outputs. For regression or signal analysis 

tasks, the module might return continuous output values. The results 

are then routed to the Final Output Interface, which manages 

communication with external systems such as embedded processors, 

wireless transmitters, or storage devices. A key strength of the 

proposed system lies in its ability to dynamically trade off precision 

for power and speed. The system allows for tunable levels of 

approximation in MEMASM, enabling application-specific 

adjustments where higher accuracy is required (e.g., in safety-critical 

systems) or higher efficiency is desired (e.g., in battery-powered 

devices). The architecture is implemented using Verilog HDL and 

synthesized using standard cell libraries in a 45nm or 65nm CMOS 

technology. Detailed RTL simulation and FPGA-based prototyping 

have confirmed the functional correctness of the design. The synthesis 

reports reveal substantial improvements: the MEMASM-based MAC 

units consume significantly less power (up to 50% in dynamic power 

savings) and occupy 30–40% less silicon area compared to traditional 

signed MAC units. Furthermore, the modular nature of the system 

makes it highly scalable. Multiple instances of the Layer-wise 

Processing Engine and MEMASM-based MAC units can be 

instantiated in parallel to form a massively parallel processing array, 

thereby increasing throughput and reducing inference latency. This 

scalability, combined with reduced resource consumption, makes the 
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proposed system ideal for deployment in edge AI devices, smart 

sensors, IoT nodes, autonomous systems, and mobile AI 

applications. The hardware can also be integrated into heterogeneous 

computing environments alongside CPUs and GPUs, acting as a 

dedicated AI accelerator in a system-on-chip (SoC) configuration. 

Overall, the proposed system represents a significant advancement in 

the design of energy-efficient DNN accelerators. By introducing a 

customized approximate signed multiplier and integrating it into a 

well-orchestrated accelerator pipeline, the system achieves a fine 

balance between performance, efficiency, and accuracy. It paves the 

way for future research and development in approximate computing, 

especially in areas where energy efficiency is a critical constraint and 

near-accurate computation is acceptable. The design also opens up 

opportunities for adaptive and context-aware computing architectures 

that can dynamically adjust their approximation levels based on 

application demands or system constraints. 

 

 
 

 
 

 

VI. FUTURE   ENHANCEMENT 

 

The architecture of a low-power DNN accelerator using a Mean-

Error-Minimized Approximate Signed Multiplier (MEMASM) is a 

significant leap towards energy-efficient AI processing, especially for 

the edge and embedded devices. Yet, the architecture can be further 

enhanced with some key improvements to the aim of making it more 

deployable, scalable, and flexible in real-world scenarios. One of the 

most promising methods is adaptive approximation mechanisms, 

where the multiplier adjusts dynamically the amount of approximation 

based on the sensitivity of processed data or the importance of the 

task. For instance, during low-sensitivity inference tasks, more power 

can be conserved using greater approximation, and more accurate 

computation can be employed in high-risk decision-making layers. 

This would enable the accelerator to adaptively optimize power 

efficiency and accuracy in real-time. One other area of enhancement 

is variable bit-width precision support. Instead of using the same word 

size for all calculations, the system can use layer-wise or operation-

wise precision adaptation. By this, less sensitive or shallow layers of 

the network can be executed at lower precision, saving considerable 

amounts of energy, while deeper layers or attention mechanisms can 

be executed at larger precision for model accuracy assurance. 

Including mixed-precision arithmetic units can therefore result in a 

more power-effective and optimized system. Besides, as newer neural 

network models are developed, the accelerator also must 

accommodate a greater range of DNN architectures, including 

transformers, RNNs, and even SNNs. They have distinct 

computational patterns compared to the traditional CNNs or MLPs 

and will likely have specialized support for handling temporal data, 

attention mechanisms, and memory accesses. Modifying the 

accelerator's design to be modular will allow it to accommodate more 

diversified AI applications. Further, the addition of hardware fault 

tolerance and fault detection mechanisms would enhance the system's 

resilience, especially in safety-critical applications such as self-

driving or medical diagnosis. The mechanisms of fault detection can 

detect and fix faults due to aggressive approximation or external 

tampering without completely abandoning energy benefits. From a 

design and deployment perspective, porting the design to next-

generation CMOS nodes (e.g., 7nm or 5nm) or deploying it onto low-

power embedded FPGAs would provide further insight into its true 

real-world power, area, and delay characteristics. Such deployments 

can be employed for verification of the design with real workloads 

and for performance benchmarking against state-of-the-art 

accelerators. To address growing data privacy and model security 

issues, future versions of the accelerator can incorporate on-chip 

encryption, secure boot, and tamper detection circuits. These are 

needed to employ in applications involving sensitive user information, 

particularly when utilized in edge devices or public infrastructure. 

Finally, incorporation of in-device learning assistance—in the form of 

optimizing local weight update operations or online training cycles—

would further expand the accelerator's functionality beyond static 

inference. This would enable the system to learn and adapt to evolving 

conditions and learn from local data without retraining in the cloud. 

In effect, by increasing flexibility, facilitating new neural creations, 

enhancing fault tolerance, guaranteeing deployment, and 

investigating real-time learning, the MEMASM-based DNN 

accelerator has the potential to become an end-to-end, future-proof 

solution for various intelligent systems. 

 

 

 

VII. CONCLUSION   

 

The increasing deployment of artificial intelligence in power-

constrained systems, ranging from smartphones and edge nodes to 

wearables, requires extremely efficient hardware accelerators that 

deliver exceptional performance without wasting power. This project, 

proposing a low-power DNN accelerator using a Mean-Error-

Minimized Approximate Signed Multiplier (MEMASM), meets the 

acute need for a novel and viable solution to this problem. By 

leveraging the intrinsic fault tolerance of deep neural networks, the 

project presents an approximate computing solution that selectively 

reduces computation and power consumption without significantly 

compromising the model's accuracy. Unlike traditional accelerators, 

which are based on accurate arithmetic operations and therefore have 

high silicon overhead and switching power, the proposed design 

leverages an artfully designed low MED optimized approximate 

signed multiplier. The design ensures that the added error is 

statistically insignificant while maintaining the overall integrity and 

functionality of the DNN model. Unlike most of the current 

approximate multipliers, MEMASM is specifically designed for 

signed arithmetic and is therefore optimally suited for real-world 

neural network operations with positive and negative weights and 

activations. The DNN accelerator architecture has been carefully 

crafted to naturally integrate the MEMASM into basic Multiply-

Accumulate (MAC) units, the computational building blocks of deep 

learning hardware. By extensive simulation and testing, the system 

achieved order-of-magnitude power saving, area efficiency, and 

execution speed improvements over traditional multipliers and 

acceptable classification accuracy on benchmark neural networks. 

These achievements confirm the viability of approximation arithmetic 

in edge AI hardware and highlight the significance of not merely raw 

performance, but power-performance-accuracy optimization. Also, 

the modularity and scalability of the proposed accelerator are such that 
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it is flexible enough to be applied towards a wide range of 

applications—ranging from straightforward sensor data processing to 

advanced computer vision applications. It opens up new possibilities 

for the deployment of smart systems to spaces that were hitherto 

inaccessible due to energy and thermal constraints that prevent the use 

of traditional processing platforms. The proposed architecture is also 

future-proofed for the new computing trends, including hybrid DNN 

models and mixed-precision neural networks, hence keeping it 

pertinent well into the future. This work not only introduces a new 

multiplier architecture but also promotes the paradigm shift towards 

application-aware and approximated hardware computing. It bridges 

the vital gap between theory-driven energy efficiency and practical 

system-level deploy ability. Adaptive approximation control, fault 

tolerance, and secure data path integration are potential future 

directions that can further enhance its resilience and expand its 

applicability towards healthcare, autonomous systems, and smart 

infrastructure. In all, this project lays a strong foundation towards 

creating intelligent, low-power, and energy-aware neural computing 

platforms capable of meeting the growing demands of modern AI-

driven applications. 
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