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ABSTRACT: With the high frequency roll out of 

electric vehicles, simultaneous charging may pose a 

challenge in the near future, especially in peak hours. 

Hence it is mandatory to analyze previous data 

pertaining to charging demand for electric vehicles to 

meet the charging and infrastructure demands in the 

future. This will allow both the utility providers as 

well as the consumers to plan for peak charging times 

and associated congestion at EV charging stations. 

Several researchers have explored data driven 

machine learning models to predict EV charging 

demands as machine learning models can analyze 

complex patterns and relationships within the data to 

generate accurate predictions. This paper presents a 

Particle Swarm Optimization (PSO)-Neural network 

model for EV charging demand prediction. Contrary 

to conventional neural network models, the PSO is 

used to adaptively update the network weights. The 

results clearly indicate that the proposed approach 

outperforms existing baseline approaches in terms of 

prediction MAPE. 
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I. Introduction 

The supply-demand dynamics in automobile production 

is witnessing a paradigm shift with the rapid influx and 

phase in of electric vehicles, not only in developed 

countries but also in developing countries. Few areas in 

the world of clean energy are as dynamic as the electric 

car market [1]. Recent years have seen exponential 

growth in sales together with improved range, wider 

model availability and increased performance. Electric 

vehicles are the key technology to de-carbonise road 

transport, a sector that accounts for over 15% of global 

energy-related emissions. Recent years have seen 

exponential growth in the sale of electric vehicles 

together with improved range, wider model availability 

and increased performance. Passenger electric cars are 

surging in popularity – we estimate that 18% of new cars 

sold in 2023 will be electric.  If the growth experienced 

in the past two years is sustained, CO2 emissions from 

cars can by 2030 be put on a pathway aligned with the 

Net Zero Emissions by 2050 (NZE) Scenario. However, 

electric vehicles are not yet a global phenomenon. Sales 

in developing and emerging economies have been slow 

due to the relatively high purchase price of an electric 

vehicle and a lack of charging infrastructure availability. 

Still an exponential growth in the rise in sales of electric 

vehicles worldwide can be seen [2].  

 

Fig.1 Rise in Electric Vehicle Sales 

(Source: https://www.iea.org/energy-

system/transport/electric-vehicles) 

 

Figure 1 depicts the rise in the sales of EVs globally. 

With this, a challenge in terms of EV charging would be 

imminent.  

One of the primary challenges in the future of electric 

vehicle (EV) charging lies in the expansion of charging 

infrastructure [3]. As more individuals transition to EVs, 

the demand for charging stations will increase 

significantly. This necessitates substantial investments in 

installing charging points in public spaces, residential 

areas, and along highways to ensure convenient access 

for EV owners [4]. The cost and logistics involved in this 

expansion pose a significant challenge, especially in less 

populated or rural areas where the density of EVs might 

be lower. The charging station requirement for 

increasing EV sales is a challenge to be addressed as 

several countries lack the needed optimal charging 

infrastructure [5]. 
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Fig.2 Ratio of EVs to public charging points across 

different countries  

(Source: https://www.statista.com/chart/26325/ratio-

electric-vehicles-to-public-charging-points/) 

 

Figure 2 depicts the ratio of number of EVs rolled out to 

the number of charging stations across various countries 

[6].  

 

II. Challenges Associated with EV Charging 

 

Some of the major challenges associated with the EV 

charging infrastructure are presented next: 

 

Grid Capacity and Stability: The widespread adoption 

of EVs places additional strain on the electricity grid. 

Charging numerous vehicles simultaneously, 

particularly during peak hours, could overload local 

grids and lead to stability issues . Integrating smart 

charging solutions and advanced grid management 

technologies becomes crucial to distribute the load 

evenly and optimize charging schedules. Additionally, 

upgrading grid infrastructure to accommodate higher 

demand and incorporating renewable energy sources to 

power EV charging can help mitigate these challenges 

[7]. 

 

Charging Speed and Standards: Another challenge 

lies in improving charging speeds and establishing 

universal standards. While current EV charging 

technology has made significant advancements, fast-

charging solutions are still not as widespread or as quick 

as refueling a conventional vehicle. Standardization of 

charging connectors and protocols is essential to ensure 

interoperability and convenience for EV users, 

regardless of their vehicle make or model. Moreover, 

advancements in battery technology and charging 

infrastructure are necessary to reduce charging times and 

enhance the overall EV ownership experience [8]. 

 

Range Anxiety: Range anxiety, the fear of running out 

of battery charge before reaching a destination, remains 

a concern for many prospective EV buyers. Despite 

improvements in battery technology, achieving longer 

driving ranges on a single charge is crucial to alleviate 

this anxiety and increase consumer confidence in EVs. 

Enhancing battery energy density, optimizing vehicle 

efficiency, and expanding the availability of fast-

charging stations along major travel routes are essential 

strategies to address this challenge. Additionally, 

educating consumers about the practicality and benefits 

of EVs can help dispel misconceptions and alleviate 

range anxiety [9]. 

 

Cost and Affordability: The upfront cost of purchasing 

an EV, as well as the cost of installing home charging 

infrastructure, can be prohibitive for some consumers. 

While the total cost of ownership for EVs is often lower 

due to lower fuel and maintenance expenses, the initial 

investment remains a barrier for many potential buyers. 

Government incentives, subsidies, and tax breaks can 

help offset these costs and encourage more widespread 

adoption of EVs. Additionally, advancements in battery 

technology and economies of scale in manufacturing are 

expected to drive down the cost of EVs in the future, 

making them more accessible to a broader range of 

consumers [10]. 

 

Thus, the transition to electric vehicles offers numerous 

environmental and economic benefits, several challenges 

must be addressed to facilitate their widespread adoption 

[11]. These challenges include expanding charging 

infrastructure, ensuring grid capacity and stability, 

improving charging speed and standards, alleviating 

range anxiety, and addressing cost and affordability 

concerns. Collaboration between governments, industry 

stakeholders, and technology innovators will be crucial 

in overcoming these challenges and accelerating the 

transition to a sustainable transportation ecosystem 

powered by electric vehicles [12]. 

 

III. EV Charging Demand Prediction. 

 

The need for EV charging demand prediction is 

paramount for optimizing infrastructure investment, 

managing grid stability, enhancing user experience, 

promoting energy efficiency, and supporting policy and 

planning initiatives. By leveraging predictive analytics 

and data-driven insights, stakeholders can address the 

challenges and opportunities associated with the 

widespread adoption of electric vehicles, ultimately 

advancing towards a more sustainable and resilient 

transportation ecosystem [13]. 

Accurate EV charging demand prediction is crucial for 

optimizing infrastructure investment. By forecasting 

future demand, stakeholders can strategically plan the 

placement and capacity of charging stations to meet the 

needs of EV owners efficiently. This helps prevent 

overbuilding or underbuilding of charging infrastructure, 

ensuring that resources are allocated effectively and 

cost-effectively. Additionally, it allows for the 

identification of high-demand areas where additional 
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charging stations may be required to alleviate congestion 

and enhance accessibility. Moreover, EV charging 

demand prediction plays a vital role in grid management 

and stability. By anticipating when and where charging 

will occur, grid operators can better manage electricity 

distribution, prevent overloads, and minimize 

disruptions. This is particularly important during peak 

periods when a surge in charging activity could strain the 

grid and lead to voltage fluctuations or blackouts. 

Accurate predictions enable grid operators to implement 

demand response strategies, such as incentivizing off-

peak charging or adjusting electricity prices 

dynamically, to balance supply and demand effectively 

[14]. 

Predicting EV charging demand contributes to 

enhancing the overall user experience for EV owners. By 

providing real-time information about charging 

availability and wait times, drivers can plan their trips 

more efficiently and avoid unnecessary delays. This 

improves convenience and satisfaction, encouraging 

more individuals to switch to electric vehicles. 

Additionally, predictive algorithms can suggest optimal 

charging locations based on factors such as proximity, 

availability, and charging speed, further streamlining the 

charging experience for users [15]. Effective EV 

charging demand prediction facilitates energy 

management and efficiency. By aligning charging 

schedules with periods of low electricity demand or high 

renewable energy generation, stakeholders can 

maximize the utilization of clean energy sources and 

minimize reliance on fossil fuels. This not only reduces 

carbon emissions associated with EV charging but also 

contributes to overall grid decarbonization efforts. 

Moreover, predictive analytics can help identify 

opportunities for load balancing and demand-side 

management, enabling more efficient use of resources 

and infrastructure [16]. 

Additionally, EV charging demand prediction supports 

policy development and urban planning initiatives aimed 

at promoting sustainable transportation. By providing 

insights into future charging patterns and trends, 

policymakers can design incentive programs, zoning 

regulations, and transportation policies that encourage 

EV adoption and support the deployment of charging 

infrastructure [17]. Furthermore, accurate demand 

forecasts inform long-term planning efforts, such as 

urban development projects and transportation 

infrastructure investments, ensuring that cities are 

equipped to accommodate the growing population of 

EVs and address associated challenges effectively [18]. 

Machine learning models are indispensable from EV 

charging demand prediction due to its ability to handle 

the complexity, dynamics, scalability, flexibility, feature 

engineering, model complexity, real-time decision-

making, and adaptability to uncertainty inherent in 

charging data. By leveraging machine learning 

algorithms, stakeholders can develop accurate, scalable, 

and adaptive prediction models that support effective 

management of charging infrastructure, grid integration, 

and sustainable transportation planning in the era of 

electric mobility [19]. 

 

IV. Proposed Methodology 

 

The method developed in this work combines the particle 

swarm optimization (PSO) and Artificial Neural 

Networks (ANN) for EV charging demand forecasting 

for the EV charging supply chain. The proposed 

methodology presents an amalgamation of the following 

two approaches: 

 

1. Particle Swarm Optimization (PSO) 

2. Artificial Neural Networks (ANN) 

 

Each of the approaches are explained next [20]. 

 

The PSO: 

The PSO algorithm is an evolutionary computing 

technique, modeled after the social behavior of a flock of 

birds. In the context of PSO, a swarm refers to a number 

of potential solutions to the optimization problem, where 

each potential solution is referred to as a particle. The 

aim of the PSO is to find the particle position that results 

in the best evaluation of a given fitness function. In the 

initialization process of PSO, each particle is given initial 

parameters randomly and is ‘flown’ through the multi-

dimensional search space. During each generation, each 

particle uses the information about its previous best 

individual position and global best position to maximize 

the probability of moving towards a better solution space 

that will result in a better fitness. When a fitness better 

than the individual best fitness is found, it will be used to 

replace the individual best fitness and update its 

candidate solution according to the following equations 

[21]: 

𝐯𝐢𝐝(𝐭) = 𝐰 × 𝐯𝐢𝐝(𝐭 − 𝟏) + 𝐜𝟏Ø𝟏(𝐩𝐢𝐝-𝐱𝐢𝐝(t-

1))+ 𝐜𝟐Ø2(pgd-𝐱𝐢𝐝(t-1))                           (1) 

 𝐱𝐢𝐝(𝐭) = 𝐱𝐢𝐝(𝐭 − 𝟏) + 𝐯𝐢𝐝(𝐭)                (2) 

 

Table. 1 List of variables used in PSO equations. 

v  The particle velocity 

x  The particle position 

t  Time 

c1,c2 Learning factors 

Φ1 ,Φ2  Random numbers between 0 and 

1 

pid Particle’s best position 

pgd Global best position 

w  Inertia weight 
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The PSO is used to adaptively update the weights of the 

neural network based on the minimization of the 

performance function.  

 

 
Fig.3 Visualization of PSO 

 

While, traditional optimization focuses on a single 

objective function to be minimized or maximized. 

However, many real-world problems involve multiple 

conflicting objectives that cannot be optimized 

simultaneously without making trade-offs. Multi-

objective optimization aims to find a set of solutions that 

represent the best trade-offs among these conflicting 

objectives, known as the Pareto front. PSO can be 

adapted to handle multi-objective optimization by 

incorporating mechanisms to guide the search towards 

discovering Pareto-optimal solutions efficiently. Several 

adaptations have been proposed to extend PSO for multi-

objective optimization. One common approach is to 

modify the fitness evaluation mechanism to assess the 

quality of solutions based on their dominance 

relationship with respect to other solutions. This involves 

comparing solutions in terms of Pareto dominance, 

where one solution is considered better if it improves at 

least one objective without worsening any other. 

Additionally, strategies for maintaining diversity in the 

population are crucial to ensure thorough exploration of 

the Pareto front. 

 

The ANN Model: 

The ANN model is one of the most powerful regression 

models which has been used multiple times for traffic 

speed forecasting [22]. While,  

 

The mathematical model of the ANN is depicted in 

figure 3. 

 

 
Fig.4 Mathematical Model of Neural Network 

 

The output of the neural network is given by: 

 

    𝑦 = 𝑓(∑ 𝐗𝐢𝐖𝐢  +    Ɵ)𝐧
𝐢=𝟏          (4) 

Where, 

 Xi represents the signals arriving through various paths,  

Wi represents the weight corresponding to the various 

paths and  

Ɵ is the bias.  

 

In this approach, the back propagation based neural 

network model has been used with weight updating 

mechanism through the PSO [23].  

 

The training rule for the approach is given by the BFGS 

algo: 

𝒘𝒊+𝟏 = 𝒘𝒊 − 𝝁[𝑯]−𝟏 𝝏𝒆

𝝏𝒘
               (5) 

Here, 

𝑤 represents the weights. 

𝑖 represents the iterations. 

𝜇 represents the learning rate. 

𝐻 represents the Hessian Matrix. 

𝑒 represents the forecasting error. 

 

The training is stopped based on the mean square error 

or mse given by: 

𝒎𝒔𝒆 =
∑ 𝒆𝒊

𝟐𝒏
𝒊=𝟏

𝒏
                      (6) 

 

The final computation of the performance metric is the 

mean absolute percentage error given by: 

 

𝑴𝑨𝑷𝑬 =
𝟏𝟎𝟎

𝑴
∑

𝑬−𝑬𝒊|

𝒊
𝑵
𝒊=𝟏              (7) 

 

The accuracy of prediction is computed as: 

 

𝑨𝒄 = 𝟏𝟎𝟎 − 
𝟏𝟎𝟎

𝑴
∑

𝑬−𝑬𝒊|

𝒊
𝑵
𝒊=𝟏  %             (8)            

Here, 

n is the number of errors 

i is the iteration number 

E is the actual value 

http://www.ijsrem.com/
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𝐸𝑖 is the predicted value 

 

 

IV. RESULTS AND DISCUSSIONS 

 

The proposed model is implemented on MATLAB due 

to the availability of in built mathematical functions for 

EV charging demand. The data parameters used are: 

1. Day 

2. Start Time 

3. End Time 

4. Charging Time  

5. Total Charging Energy Consumption 

(kWh). 

While other parameters such as ambient temperature, 

weather conditions etc. may also be taken into account, 

but due to the complexity in collecting data specific to a 

geographical location is tedious, the most important 

parameters which are applicable to global EV scenarios 

are considered.  

 

 
Fig.5. Raw Data 

 

Figure 5 depicts the raw demand in kWh as a function 

of time (days). 

 

 
 

Fig.6 Statistical Data Parameters. 

 

Figure 6 depicts the statistical markers of the raw data. 

The statistical parameters are presented in table 1. 

 

Table.1 Statistical Parameters of Data 

S.No. Parameter  Value 

1 Minimum 0 

2 Maximum 23.68 

3 Mean 5.81 

4 Standard 

Deviation 

2.893 

 

 
 

Fig.7 Model Design Parameters 

 

The details of the training are depicted in the figure 

above, which clearly shows the designed neural network, 

the training function, the data division and the iterations. 

 

http://www.ijsrem.com/
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Fig.8 Regression 

 

The figure above depicts the regression obtained in the 

proposed approach which is a sort of similarity among 

two random variables. The maximum allowable 

regression is unity depicting complete similarity. 

  

 
Fig.9 Performance Function 

 

The performance function that decides the culmination 

of training is the mean squared error or mse. 

 

 
Fig.10 Training States 

 

The training state parameters such as gradient, 

validations checks and resets are depicted in the figure 

above. 

 

 

 
 

Fig.11 Actual and Modelled values 

 

The above figure shows the MAPE of the proposed 

system which comes out to be  2.30%. 

 

Table. 2 Summary of Results 

S.No PARAMETER VALUE 

1. Samples 3395 

http://www.ijsrem.com/
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2. Proposed Model PSO-ANN 

3. Iterations 52 

4. Regression 0.99958 

5. MAPE 

(Proposed Work) 

2.30% 

6. MAPE 

(Previous Work) 

5.9% 

7. Approach  

(Previous Work, 

[1]) 

Multi Task 

Learning (MTL) 

8. MAPE  

(Previous Work [6] 

6.83 (LSTM) 

 

The summary of results is presented in table 2. The 

performance of the proposed approach (MAPE of 2.3%) 

is found better compared to previously existing 

technique [1] which attains a MAPE of 5.9% using the 

multi task learning model, and also other benchmark 

models such as the LSTM [6]. 

 

V. CONCLUSION 

It can be concluded that it is critically important to 

predict EV demand accurately especially in peak 

hours to avoid congestion and maintain grid stability. 

As the data is extremely sporadic in nature, pattern 

recognition has been explored through machine 

learning models. Machine learning facilitates 

advanced feature engineering and model complexity, 

enabling the incorporation of diverse input variables 

and the development of sophisticated prediction 

models. Additionally, machine learning algorithms, 

such as neural networks and ensemble methods, can 

capture complex relationships between features and 

output variables, resulting in more nuanced and 

accurate predictions. 

The proposed work is a combination of the ANN-PSO 

algorithm and attains an MAPE of only 2.30% and 

outperforms previously existing approach (multi task 

learning or MTL) in terms of forecasting accuracy 

and MAPE, which is 5.9%. Thus, the model can be 

utilized to accurately forecast EV charging demand 

over both short and long periods of time with 

accuracy.  
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