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ABSTRACT: With the high frequency roll out of
electric vehicles, simultaneous charging may pose a
challenge in the near future, especially in peak hours.
Hence it is mandatory to analyze previous data
pertaining to charging demand for electric vehicles to
meet the charging and infrastructure demands in the
future. This will allow both the utility providers as
well as the consumers to plan for peak charging times
and associated congestion at EV charging stations.
Several researchers have explored data driven
machine learning models to predict EV charging
demands as machine learning models can analyze
complex patterns and relationships within the data to
generate accurate predictions. This paper presents a
Particle Swarm Optimization (PSO)-Neural network
model for EV charging demand prediction. Contrary
to conventional neural network models, the PSO is
used to adaptively update the network weights. The
results clearly indicate that the proposed approach
outperforms existing baseline approaches in terms of
prediction MAPE.

Keywords: Electric Vehicles, EV Charging Demand,
Demand Forecasting, Particle Swarm Optimization
(PSO), Deep Neural Networks.

I. Introduction
The supply-demand dynamics in automobile production
is witnessing a paradigm shift with the rapid influx and
phase in of electric vehicles, not only in developed
countries but also in developing countries. Few areas in
the world of clean energy are as dynamic as the electric
car market [1]. Recent years have seen exponential
growth in sales together with improved range, wider
model availability and increased performance. Electric
vehicles are the key technology to de-carbonise road
transport, a sector that accounts for over 15% of global
energy-related emissions. Recent years have seen
exponential growth in the sale of electric vehicles
together with improved range, wider model availability
and increased performance. Passenger electric cars are
surging in popularity — we estimate that 18% of new cars
sold in 2023 will be electric. If the growth experienced
in the past two years is sustained, CO2 emissions from
cars can by 2030 be put on a pathway aligned with the
Net Zero Emissions by 2050 (NZE) Scenario. However,
electric vehicles are not yet a global phenomenon. Sales
in developing and emerging economies have been slow

due to the relatively high purchase price of an electric
vehicle and a lack of charging infrastructure availability.
Still an exponential growth in the rise in sales of electric
vehicles worldwide can be seen [2].

—

Fig.1 Rise in Electric Vehicle Sales
(Source: https://www.iea.org/energy-
system/transport/electric-vehicles)

Figure 1 depicts the rise in the sales of EVs globally.
With this, a challenge in terms of EV charging would be
imminent.

One of the primary challenges in the future of electric
vehicle (EV) charging lies in the expansion of charging
infrastructure [3]. As more individuals transition to EVs,
the demand for charging stations will increase
significantly. This necessitates substantial investments in
installing charging points in public spaces, residential
areas, and along highways to ensure convenient access
for EV owners [4]. The cost and logistics involved in this
expansion pose a significant challenge, especially in less
populated or rural areas where the density of EVs might
be lower. The charging station requirement for
increasing EV sales is a challenge to be addressed as
several countries lack the needed optimal charging
infrastructure [5].
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Fig.2 Ratio of EVs to public charging points across
different countries
(Source: https://www.statista.com/chart/26325/ratio-
electric-vehicles-to-public-charging-points/)

Figure 2 depicts the ratio of number of EVs rolled out to
the number of charging stations across various countries

[6].
I1. Challenges Associated with EV Charging

Some of the major challenges associated with the EV
charging infrastructure are presented next:

Grid Capacity and Stability: The widespread adoption
of EVs places additional strain on the electricity grid.
Charging  numerous  vehicles  simultaneously,
particularly during peak hours, could overload local
grids and lead to stability issues . Integrating smart
charging solutions and advanced grid management
technologies becomes crucial to distribute the load
evenly and optimize charging schedules. Additionally,
upgrading grid infrastructure to accommodate higher
demand and incorporating renewable energy sources to
power EV charging can help mitigate these challenges

[7].

Charging Speed and Standards: Another challenge
lies in improving charging speeds and establishing
universal standards. While current EV charging
technology has made significant advancements, fast-
charging solutions are still not as widespread or as quick
as refueling a conventional vehicle. Standardization of
charging connectors and protocols is essential to ensure
interoperability and convenience for EV users,
regardless of their vehicle make or model. Moreover,
advancements in battery technology and charging
infrastructure are necessary to reduce charging times and
enhance the overall EV ownership experience [8].

Range Anxiety: Range anxiety, the fear of running out
of battery charge before reaching a destination, remains
a concern for many prospective EV buyers. Despite
improvements in battery technology, achieving longer

driving ranges on a single charge is crucial to alleviate
this anxiety and increase consumer confidence in EVs.
Enhancing battery energy density, optimizing vehicle
efficiency, and expanding the availability of fast-
charging stations along major travel routes are essential
strategies to address this challenge. Additionally,
educating consumers about the practicality and benefits
of EVs can help dispel misconceptions and alleviate
range anxiety [9].

Cost and Affordability: The upfront cost of purchasing
an EV, as well as the cost of installing home charging
infrastructure, can be prohibitive for some consumers.
While the total cost of ownership for EVs is often lower
due to lower fuel and maintenance expenses, the initial
investment remains a barrier for many potential buyers.
Government incentives, subsidies, and tax breaks can
help offset these costs and encourage more widespread
adoption of EVs. Additionally, advancements in battery
technology and economies of scale in manufacturing are
expected to drive down the cost of EVs in the future,
making them more accessible to a broader range of
consumers [10].

Thus, the transition to electric vehicles offers numerous
environmental and economic benefits, several challenges
must be addressed to facilitate their widespread adoption
[11]. These challenges include expanding charging
infrastructure, ensuring grid capacity and stability,
improving charging speed and standards, alleviating
range anxiety, and addressing cost and affordability
concerns. Collaboration between governments, industry
stakeholders, and technology innovators will be crucial
in overcoming these challenges and accelerating the
transition to a sustainable transportation ecosystem
powered by electric vehicles [12].

II1. EV Charging Demand Prediction.

The need for EV charging demand prediction is
paramount for optimizing infrastructure investment,
managing grid stability, enhancing user experience,
promoting energy efficiency, and supporting policy and
planning initiatives. By leveraging predictive analytics
and data-driven insights, stakeholders can address the
challenges and opportunities associated with the
widespread adoption of electric vehicles, ultimately
advancing towards a more sustainable and resilient
transportation ecosystem [13].

Accurate EV charging demand prediction is crucial for
optimizing infrastructure investment. By forecasting
future demand, stakeholders can strategically plan the
placement and capacity of charging stations to meet the
needs of EV owners efficiently. This helps prevent
overbuilding or underbuilding of charging infrastructure,
ensuring that resources are allocated effectively and
cost-effectively. Additionally, it allows for the
identification of high-demand areas where additional
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charging stations may be required to alleviate congestion
and enhance accessibility. Moreover, EV charging
demand prediction plays a vital role in grid management
and stability. By anticipating when and where charging
will occur, grid operators can better manage electricity
distribution, prevent overloads, and minimize
disruptions. This is particularly important during peak
periods when a surge in charging activity could strain the
grid and lead to voltage fluctuations or blackouts.
Accurate predictions enable grid operators to implement
demand response strategies, such as incentivizing off-
peak charging or adjusting electricity prices
dynamically, to balance supply and demand effectively
[14].

Predicting EV charging demand contributes to
enhancing the overall user experience for EV owners. By
providing real-time information about charging
availability and wait times, drivers can plan their trips
more efficiently and avoid unnecessary delays. This
improves convenience and satisfaction, encouraging
more individuals to switch to electric vehicles.
Additionally, predictive algorithms can suggest optimal
charging locations based on factors such as proximity,
availability, and charging speed, further streamlining the
charging experience for users [15]. Effective EV
charging demand prediction facilitates energy
management and efficiency. By aligning charging
schedules with periods of low electricity demand or high
renewable energy generation, stakeholders can
maximize the utilization of clean energy sources and
minimize reliance on fossil fuels. This not only reduces
carbon emissions associated with EV charging but also
contributes to overall grid decarbonization efforts.
Moreover, predictive analytics can help identify
opportunities for load balancing and demand-side
management, enabling more efficient use of resources
and infrastructure [16].

Additionally, EV charging demand prediction supports
policy development and urban planning initiatives aimed
at promoting sustainable transportation. By providing
insights into future charging patterns and trends,
policymakers can design incentive programs, zoning
regulations, and transportation policies that encourage
EV adoption and support the deployment of charging
infrastructure [17]. Furthermore, accurate demand
forecasts inform long-term planning efforts, such as
urban development projects and transportation
infrastructure investments, ensuring that cities are
equipped to accommodate the growing population of
EVs and address associated challenges effectively [18].
Machine learning models are indispensable from EV
charging demand prediction due to its ability to handle
the complexity, dynamics, scalability, flexibility, feature
engineering, model complexity, real-time decision-
making, and adaptability to uncertainty inherent in
charging data. By leveraging machine learning
algorithms, stakeholders can develop accurate, scalable,
and adaptive prediction models that support effective

management of charging infrastructure, grid integration,
and sustainable transportation planning in the era of
electric mobility [19].

IV. Proposed Methodology

The method developed in this work combines the particle
swarm optimization (PSO) and Artificial Neural
Networks (ANN) for EV charging demand forecasting
for the EV charging supply chain. The proposed
methodology presents an amalgamation of the following
two approaches:

1. Particle Swarm Optimization (PSO)
2. Atrtificial Neural Networks (ANN)

Each of the approaches are explained next [20].

The PSO:
The PSO algorithm is an evolutionary computing

technique, modeled after the social behavior of a flock of
birds. In the context of PSO, a swarm refers to a number
of potential solutions to the optimization problem, where
each potential solution is referred to as a particle. The
aim of the PSO is to find the particle position that results
in the best evaluation of a given fitness function. In the
initialization process of PSO, each particle is given initial
parameters randomly and is ‘flown’ through the multi-
dimensional search space. During each generation, each
particle uses the information about its previous best
individual position and global best position to maximize
the probability of moving towards a better solution space
that will result in a better fitness. When a fitness better
than the individual best fitness is found, it will be used to
replace the individual best fitness and update its
candidate solution according to the following equations
[21]:
Via(D) = W X vjg(t — 1) + ¢191(pia-Xia(t-
D)+ C0x(PparXia(t-1)) (1)
Xja(t) = Xjq(t — 1) + vjg(D) (2

Table. 1 List of variables used in PSO equations.

v The particle velocity

X The particle position

t Time

C1,C2 Learning factors

D, ,0, Random numbers between 0 and
1

Pid Particle’s best position

Ped Global best position

w Inertia weight
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The PSO is used to adaptively update the weights of the
neural network based on the minimization of the
performance function.
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Fig.3 Visualization of PSO

While, traditional optimization focuses on a single
objective function to be minimized or maximized.
However, many real-world problems involve multiple
conflicting objectives that cannot be optimized
simultaneously without making trade-offs. Multi-
objective optimization aims to find a set of solutions that
represent the best trade-offs among these conflicting
objectives, known as the Pareto front. PSO can be
adapted to handle multi-objective optimization by
incorporating mechanisms to guide the search towards
discovering Pareto-optimal solutions efficiently. Several
adaptations have been proposed to extend PSO for multi-
objective optimization. One common approach is to
modify the fitness evaluation mechanism to assess the
quality of solutions based on their dominance
relationship with respect to other solutions. This involves
comparing solutions in terms of Pareto dominance,
where one solution is considered better if it improves at
least one objective without worsening any other.
Additionally, strategies for maintaining diversity in the
population are crucial to ensure thorough exploration of
the Pareto front.

The ANN Model:

The ANN model is one of the most powerful regression
models which has been used multiple times for traffic
speed forecasting [22]. While,

The mathematical model of the ANN is depicted in
figure 3.

Fig.4 Mathematical Model of Neural Network

The output of the neural network is given by:

y =fQi1 XiWi + 6) “@

Where,

Xi represents the signals arriving through various paths,
Wi represents the weight corresponding to the various
paths and
O is the bias.

In this approach, the back propagation based neural
network model has been used with weight updating
mechanism through the PSO [23].

The training rule for the approach is given by the BFGS
algo:

10
Wiy = w;— p[H] ' == ®)

Here,

w represents the weights.

i represents the iterations.

U represents the learning rate.

H represents the Hessian Matrix.
e represents the forecasting error.

The training is stopped based on the mean square error

or mse given by:
n 2
mse = —‘1: L (6)

The final computation of the performance metric is the
mean absolute percentage error given by:

E-E;

MAPE =2 e (7)
The accuracy of prediction is computed as:
Ac=100- 23N o, ®)

Here,

n is the number of errors
1 is the iteration number
E is the actual value
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E; is the predicted value

IV. RESULTS AND DISCUSSIONS

The proposed model is implemented on MATLAB due
to the availability of in built mathematical functions for
EV charging demand. The data parameters used are:

1. Day

2. Start Time

3. End Time

4. Charging Time

5. Total Charging Energy Consumption
(kWh).

While other parameters such as ambient temperature,
weather conditions etc. may also be taken into account,
but due to the complexity in collecting data specific to a
geographical location is tedious, the most important
parameters which are applicable to global EV scenarios
are considered.

Raw Data

bl

Fig.5. Raw Data

Figure 5 depicts the raw demand in kWh as a function
of time (days).

Raw Data

Fig.6 Statistical Data Parameters.

Figure 6 depicts the statistical markers of the raw data.
The statistical parameters are presented in table 1.

Table.1 Statistical Parameters of Data

S.No. Parameter Value
1 Minimum 0
2 Maximum 23.68
3 Mean 5.81
4 Standard 2.893
Deviation

52 iterations
00001
000455

0.00

Fig.7 Model Design Parameters

The details of the training are depicted in the figure
above, which clearly shows the designed neural network,
the training function, the data division and the iterations.
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The figure above depicts the regression obtained in the
proposed approach which is a sort of similarity among
two random variables. The maximum allowable
regression is unity depicting complete similarity.

Best Validation Performance is 0.022762 at epoch 46

Fig.10 Training States
The training state parameters such as gradient,

validations checks and resets are depicted in the figure
above.

EV Charging Demand Prediction

Mean Squared Error (mse)

A 52 Epochs
Fig.9 Performance Function

The performance function that decides the culmination
of training is the mean squared error or mse.

Fig.11 Actual and Modelled values

The above figure shows the MAPE of the proposed
system which comes out to be 2.30%.

Table. 2 Summary of Results
S.No | PARAMETER VALUE

1. Samples 3395
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2 Proposed Model PSO-ANN

3 Iterations 52

4, Regression 0.99958

5 MAPE 2.30%
(Proposed Work)

6. MAPE 5.9%
(Previous Work)

7. Approach Multi Task
(Previous Work, Learning (MTL)
[1])

8. MAPE 6.83 (LSTM)
(Previous Work [6]

The summary of results is presented in table 2. The
performance of the proposed approach (MAPE of 2.3%)
is found better compared to previously existing
technique [1] which attains a MAPE of 5.9% using the
multi task learning model, and also other benchmark
models such as the LSTM [6].

V. CONCLUSION

It can be concluded that it is critically important to
predict EV demand accurately especially in peak
hours to avoid congestion and maintain grid stability.
As the data is extremely sporadic in nature, pattern
recognition has been explored through machine
learning models. Machine learning facilitates
advanced feature engineering and model complexity,
enabling the incorporation of diverse input variables
and the development of sophisticated prediction
models. Additionally, machine learning algorithms,
such as neural networks and ensemble methods, can
capture complex relationships between features and
output variables, resulting in more nuanced and
accurate predictions.

The proposed work is a combination of the ANN-PSO
algorithm and attains an MAPE of only 2.30% and
outperforms previously existing approach (multi task
learning or MTL) in terms of forecasting accuracy
and MAPE, which is 5.9%. Thus, the model can be
utilized to accurately forecast EV charging demand
over both short and long periods of time with
accuracy.
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