
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50302 | Page 1

A Practical Evaluation of Self-Hosted n8n for Secure and Scalable Workflow

Automation

Mr. Saurabh Pawar1, Mr. Shrish Pattewar2, Ms. Mukta G. Shelke 3

1CSE Department, MGM’s College Of Engineering, Nanded.
2 CSE Department, MGM’s College Of Engineering, Nanded.
3 CSE Department, MGM’s College Of Engineering, Nanded.

---***---

Abstract - This study explores the implementation and

performance of the n8n automation tool in a self-hosted

environment. The primary objective is to determine whether

deploying n8n locally can offer operational benefits over cloud-

based CI/CD platforms. We hypothesize that local deployment of

n8n provides enhanced control, improved performance, and cost

savings, particularly for teams with strict data security or

infrastructure customization requirements. The evaluation was

conducted by setting up n8n on a virtual server using Docker,

integrating it with essential services, and running test workflows

on example projects. Results showed measurable gains in task

execution speed and reliability, along with predictable resource

usage and minimal external dependencies. These outcomes

suggest that self-hosting n8n is a viable strategy for teams aiming

to streamline development pipelines while maintaining full

ownership of their automation environment. The findings

contribute to the growing interest in open-source, self-managed

DevOps solutions for modern software teams.

Key Words: automation, AI workflow, n8n, open source

1. INTRODUCTION

Automation is a cornerstone of modern software engineering,
particularly in the realm of DevOps, where development and
operations converge to create streamlined and resilient software
delivery pipelines. The use of Continuous Integration and
Continuous Deployment (CI/CD) has become essential to support
agile methodologies and ensure that code changes are tested, built,
and deployed rapidly and reliably. Numerous cloud-based tools
have emerged to meet this demand— GitHub Actions, GitLab
CI/CD, Jenkins, and CircleCI being among the most widely used.
These platforms abstract much of the complexity involved in
building automation pipelines, offering integration, pre-
configured environments, and scalable execution infrastructure.

Despite their popularity, cloud-hosted automation platforms come
with inherent limitations. Concerns around data privacy, cost at
scale, and the inability to fully customize execution environments
often arise in enterprise or compliance-heavy contexts. For
instance, companies’ operating in sectors like finance, healthcare,
or defense may require more granular control over their data and
systems than public platforms can guarantee. Moreover, cloud
CI/CD tools typically impose limits on usage or restrict
functionality behind premium tiers, creating scalability issues for
growing teams or resource intensive projects. These challenges
highlight the need for lightweight, self-managed alternatives that
allow teams to maintain full ownership of their automation stack.

n8n is an emerging open-source automation tool designed to run
pipelines and orchestrate workflows in self-hosted environments.
Built with a container-first philosophy, n8n supports Docker
based deployments, RESTful APIs, and GitOps-style integration,
making it both flexible and easy to adopt. Unlike monolithic
solutions such as Jenkins, which require extensive configuration
and plugin management, n8n offers a simplified, modular
approach that caters to smaller teams or developers seeking an
efficient, minimal CI/CD engine. However, as it is relatively new
in the automation landscape, there has been limited empirical
research into its operational capabilities and comparative
advantages over established cloud CI/CD services.

This study seeks to evaluate the viability of using n8n as a self-
hosted automation solution for real world DevOps pipelines.
Specifically, the research addresses the question : Can self-
hosting the n8n tool provide an effective, secure, and resource-
efficient alternative to cloud-based CI/CD platforms? We
hypothesize that deploying n8n in a controlled server environment
enables faster task execution, reduced latency, and increased
configurability while maintaining reasonable system resource
usage. To investigate this, we set up n8n on a virtual server using
Docker, configured it with NGINX and PostgreSQL, and
executed representative build-test-deploy workflows. The results
of this research aim to guide practitioners and researchers in
choosing or designing CI/CD solutions that align with security,
performance, and cost objectives in modern software delivery
environments.

2. METHODOLOGY
1. Materials

The n8n automation tool (version 1.3.1) was obtained from its
official GitHub repository (https://github.com/n8n/n8n). The tool
is distributed under the MIT License and publicly available. A
virtual private server (VPS) with Ubuntu 22.04 LTS was
provisioned from DigitalOcean (https://www.digitalocean.com),
equipped with 2 vCPUs, 4 GB RAM, and 80 GB SSD storage.
Docker Engine (version 24.0) and Docker Compose (version
2.20) were installed to support container-based deployment.
PostgreSQL (version 15) was used for persistent job data storage,
installed as a Docker container from the official PostgreSQL
image. NGINX (version 1.24) was deployed as a reverse proxy
with SSL secured via Let’s Encrypt (https://letsencrypt.org).
GitHub was used as the version control system, and webhook
integration was configured to trigger workflows automatically.

2. Environment Setup and Deployment

All components were installed and configured manually through
shell scripting to ensure replicability. The n8n container was
launched using Docker Compose, with environment variables
defined in an external .env file. A volume was mounted to persist

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50302 | Page 2

logs and configurations. PostgreSQL was linked to the n8n service
to manage job states and workflow metadata. NGINX was
configured to route external HTTPS traffic to the internal n8n
service port, using TLS certificates issued by Certbot. The server
firewall was managed via UFW to restrict access to only
necessary ports (80, 443, and SSH).

3. Workflow Design and Execution

Two representative software projects were created: one in Python
(Flask-based web app) and one in Node.js (Express-based API).
For each project, a CI/CD pipeline was defined using n8n’s
declarative YAML syntax. The pipeline included build, test, and
deploy stages. Each step executed in isolated Docker containers
to ensure clean environments. Webhooks were configured to
trigger the pipeline upon push events on the main branch. Logging
was enabled for all jobs and stored in mounted volumes for
analysis.

Each workflow was executed 20 times to account for variability
in performance and to simulate real world usage. The start and end
times of each stage were recorded, along with the status
(success/failure), resource consumption (CPU/RAM), and any
errors encountered.

4. Experimental Design

This study adopted a comparative benchmarking approach.
Workflow latency, system load, and recovery time were measured
for n8n and compared against GitHub Actions, using identical
repositories and scripts. The primary goal was to assess the
effectiveness of n8n in terms of speed, reliability, and resource
usage in a self-hosted configuration. For GitHub Actions, the free
tier was used, with default runners located in the U.S. East region.

5. Statistical Analysis

Basic statistical analysis was applied to compare workflow
performance between n8n and GitHub Actions. Mean execution
times, standard deviations, and 95% confidence intervals were
calculated. Paired t-tests were used to assess the significance of
differences in task duration and resource usage across platforms.
Data was visualized using Python’s matplotlib and pandas
libraries to assist in interpretation.

All experiments were conducted within a controlled network
environment, and no background processes were allowed to
interfere with server performance during test runs.

3. RESULTS AND DISCUSSION

A total of 20 workflow executions (n = 20) were carried out for
both the self-hosted n8n environment and the GitHub Actions
platform. The collected metrics include average execution
latency, system resource usage, and failure recovery time.
Standard deviation (SD) and p-values from paired t-tests are
provided where comparisons were made.

1. Workflow Execution Latency

Table 1 presents the mean execution time (in seconds) for the
complete build-test-deploy pipeline. The self-hosted n8n setup
demonstrated a lower average latency (M = 9.3 s, SD = 0.61 s)
compared to GitHub Actions (M = 14.8 s, SD = 0.77 s). A paired
t-test revealed that this difference was statistically significant (p <
0.001).

Table -1: Mean Workflow Execution Time (n = 20)

Platform
Mean

Latency
SD SEM p-value

n8n (Self-hosted) 9.3 0.61 0.14 -

GitHub Actions 14.8 0.77 0.17 < 0.001

• System Resource Usage

CPU and memory consumption were tracked during all test runs
using Docker statistics. Table 2 summarizes the average CPU and
RAM utilization observed during pipeline execution in the self-
hosted environment. CPU usage averaged 41% (SD = 3.4%), and
memory usage averaged 520 MB (SD = 42 MB). No significant
resource spikes were recorded.

Table -2: Average System Resource Utilization(n8n Only)

Metric Mean Value SD SEM

CPU Usage (%) 41 3.4 0.76

RAM Usage
(MB)

520 42 9.4

• Failure Recovery Time

Recovery time was measured from the moment of failure to the
successful restart of a pipeline. The n8n environment
demonstrated a significantly faster recovery rate (M = 12.1 s, SD
= 1.5 s) in comparison to GitHub Actions (M = 28.2 s, SD = 2.1
s). As shown in Table 3, the difference in recovery times was also
statistically significant (p < 0.001).

Table -3: Pipeline Failure Recovery Time (n = 20)

Platform
Mean

Latency
SD SEM p-value

n8n (Self-hosted) 12.1 1.5 0.33 -

GitHub Actions 28.2 2.1 0.47 < 0.001

• Discussion

This study examined the performance, efficiency, and operational
characteristics of the n8n automation tool deployed in a self-
hosted environment. The objective was to determine whether a
privately managed instance of n8n could serve as a viable
alternative to popular cloud-based CI/CD services. The
hypothesis posited that self-hosting n8n would offer greater
control, reduced execution latency, and cost-effectiveness without
sacrificing reliability or scalability. The results presented in the
previous section support this hypothesis.

The first key objective was to evaluate the execution performance
of n8n compared to GitHub Actions. The data showed that
workflows executed in the self-hosted n8n environment
consistently ran faster, with an average latency reduction of over
37%. This improvement can be attributed to reduced network
overhead, absence of queueing delays, and full control over
pipeline concurrency. These results align with prior studies
suggesting that on-premise or local automation solutions can
outperform cloud-based options in controlled environments.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM50302 | Page 3

The second objective was to assess system resource utilization.
The n8n deployment maintained stable CPU and memory usage
during all workflow executions, averaging 41% CPU load and 520
MB RAM usage. This level of efficiency highlights the
lightweight nature of n8n and its suitability for smaller virtual
servers. In comparison, cloud-based systems abstract resource
consumption, making them harder to predict and optimize. The
predictability in n8n’s performance adds value for infrastructure-
conscious teams.

The third objective was to measure reliability and recovery
performance. Self-hosted n8n demonstrated faster failure
recovery, taking less than half the time required by GitHub
Actions. The ability to restart jobs locally without dependency on
remote job queues or usage limits contributes to this performance
advantage. These findings are particularly significant for teams
operating under strict uptime or compliance requirements, where
delays in recovery can affect critical services.

Despite its strengths, several limitations must be noted. First,
setting up and maintaining a self-hosted solution requires a
moderate level of system administration expertise.
Misconfigurations, outdated images, or weak security practices
may expose the system to vulnerabilities. Furthermore, the study
did not simulate distributed workload conditions (e.g., across
multiple nodes or containers), which could influence n8n’s
performance under scale.

In comparison to existing literature, few open-source CI/CD
systems are as modular and minimal as n8n. Tools like Jenkins,
while powerful, introduce complexity due to plugin management
and maintenance. Drone CI offers a similar containerized model,
but lacks the simplified declarative syntax that n8n provides. By
providing empirical performance data, this study contributes
practical insights into the operational advantages of self-hosted
automation, especially for DevOps teams seeking lean, reliable
systems.

4. CONCLUSIONS

This study explored the potential of self-hosting the n8n

automation tool as a lightweight, secure, and efficient solution

for managing CI/CD pipelines. By deploying the tool on a virtual

server and comparing it against GitHub Actions, the results

revealed significant improvements in workflow latency, resource

predictability, and recovery performance. The experimental

evidence supports the hypothesis that self-hosting n8n can serve

as a cost-effective and controllable alternative to cloud native

platforms, especially in contexts where security and

customization are priorities.

The major discussion points highlight n8n’s low system

overhead, quick recovery time, and deterministic performance.

While some operational effort is required for configuration and

maintenance, the trade-off in control and transparency is

considerable. Moreover, the ability to fully define and monitor

automation in isolated environments makes it well-suited for

research institutions, startups, and regulated industries.

This work contributes to the broader field of DevOps automation

by providing empirical benchmarks and deployment guidance for

an emerging open-source tool. It encourages further exploration

into self-hosted CI/CD models and fosters innovation beyond

traditional cloud services.

5. FUTURE SCOPE

Future research can extend this work by:

• Testing n8n under distributed and clustered

environments using Kubernetes.

• Integrating n8n with service meshes and observability

platforms (e.g., Prometheus, Grafana).

• Benchmarking against other self-hosted tools like

Drone CI, GoCD, and Jenkins-X.

• Exploring security hardening techniques for production-

level deployments.

• Evaluating the energy and cost efficiency of running

n8n in hybrid cloud environments.

REFERENCES

1. n8n GitHub Repository. (2024). n8n automation tool.

GitHub. https://github.com/n8n/n8n

2. Humble, J., & Farley, D. (2010). Continuous delivery:

Reliable software releases through build, test, and deployment

automation. Addison-Wesley.

3. Docker. (2024). Docker Engine and Docker Compose.

https://docs.docker.com

4. NGINX. (2023). NGINX reverse proxy configuration guide.

https://nginx.org/en/docs/

5. GitOps Working Group. (2022). GitOps principles and best

practices (CNCF Whitepaper). Cloud Native Computing Foundation.

6. Sharma, P., Rane, A., & Chavan, S. (2021). Evaluating

CI/CD performance in self-hosted environments. Journal of DevOps

Practices, 12(3), 45–52.

http://www.ijsrem.com/

