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Abstract— Transportation engineering is being 

transformed with the advent of data driven statistical 

models. Additionally, industry 4.0 has changed anomaly 

detection and predictive maintenance using data from 

sensors and monitoring systems. Urban metro systems form 

the backbone of public transportation in many cities, 

ensuring timely and safe movement of millions of 

passengers. Among the key infrastructural components of a 

metro network are turnouts, also known as railway 

switches, which allow trains to move from one track to 

another. The performance and reliability of turnouts 

directly affect the efficiency and safety of the rail system. 

However, due to their mechanical and electrical complexity, 

turnouts are prone to failures and malfunctions. Automated 

anomaly detection using metro turnout data has emerged as 

a critical approach to address these challenges, enabling 

proactive monitoring and predictive maintenance. This 

paper presents a combination of Principal Component 

Analysis (PCA) and Deep Neural Network based statistical 

model for automated anomaly detection using metro 

turnout data. It has been shown that the proposed work 

attains lower error percentage compared to existing 

research frameworks in the domain. 
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I. INTRODUCTION 

One of the most profound impacts of Industry 4.0 on 

transportation engineering is the digitalization of 

infrastructure and operations. Smart sensors, 

communication networks, and IoT devices allow for real-

time monitoring of roads, railways, airports, and shipping 

ports [1]. These connected systems can detect congestion, 

monitor wear and tear, and provide continuous feedback 

to operators [2]. Digital twins—virtual replicas of 

transportation infrastructure—enable engineers to 

simulate traffic scenarios, predict maintenance needs, and 

optimize resource allocation, leading to more efficient 

and reliable transport systems [3]. 

 

Fig.1 Concept of Industry 4.0 

 

Industry 4.0, often referred to as the fourth industrial 

revolution, represents the convergence of digital 

technologies with traditional industries through 

automation, connectivity, and intelligent systems [5]. 

While it was initially associated with manufacturing, its 

principles are increasingly being applied to transportation 

engineering. Transportation systems worldwide are under 

pressure to become more efficient, sustainable, and 

resilient [6] By leveraging technologies such as the 

Internet of Things (IoT), artificial intelligence (AI), big 

data analytics, and cyber-physical systems, Industry 4.0 is 

transforming transportation engineering into a smarter, 

safer, and more adaptive domain [7]. 

II. APPLI CATIONS OF INDUSTRY 4.0 

IN METRO TRANSPORT. 

Transportation infrastructure requires continuous upkeep, 

and Industry 4.0 offers powerful tools for predictive 

maintenance [8]. By analyzing sensor data from bridges, 

tracks, runways, and vehicles, engineers can detect early 

signs of wear, cracks, or mechanical failures [9]. 

Predictive maintenance reduces unexpected breakdowns, 

minimizes downtime, and lowers repair costs by 

addressing problems before they escalate. In addition, 

asset management systems powered by big data provide 

transportation agencies with comprehensive insights into 

the lifecycle of infrastructure components, enabling 

smarter investment and resource allocation. Despite its 

potential, implementing Industry 4.0 in transportation 

engineering comes with challenges [10]. High costs of 

infrastructure modernization, cybersecurity risks, and 

interoperability issues between legacy systems and new 
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technologies can hinder large-scale deployment. 

Moreover, workforce adaptation is essential—

transportation engineers must acquire new digital and 

data-driven skills. Ethical and legal concerns regarding 

autonomous vehicles and data privacy also pose 

significant barriers. Addressing these challenges requires 

collaborative efforts from governments, industries, and 

academia to create robust frameworks for safe and 

equitable adoption [11]. 

Metro railway systems have become an integral part of 

urban transportation networks, offering fast and efficient 

mobility for millions of passengers daily [12]. At the 

heart of these systems lie critical infrastructure 

components such as turnouts or switches, which enable 

trains to change tracks and navigate complex routes. 

Ensuring the reliability and safety of these turnouts is 

paramount . Traditionally, inspection and maintenance of 

turnouts have relied on manual methods or rule-based 

systems, which are not only labor-intensive but also prone 

to human error. With the increasing complexity and usage 

frequency of metro systems, there is a growing need for 

intelligent, automated, and scalable monitoring solutions 

[13] 

Metro Railway Turnouts refer to the critical components 

in urban rail transit (URT) systems that enable trains to 

switch tracks safely and efficiently. These are part of the 

Switch & Crossing (S&C) systems, which include rails, 

actuators, and switch machines [14]. 

III. STATISTI CAL MODELS FOR 

METRO TURNOUT MONITORING 

Metro turnouts, also known as railway switches, are critical 

components that guide trains from one track to another. Their 

reliable functioning directly impacts operational safety and 

service continuity in metro networks. Due to mechanical 

stresses, electrical wear, and environmental influences, turnouts 

are prone to anomalies that can lead to costly disruptions. To 

detect early signs of deterioration, engineers often rely on 

statistical models, which analyze operational data such as 

switching current, actuation time, vibration levels, and 

temperature. These models provide systematic methods to 

identify abnormal patterns, support decision-making, and 

reduce the risk of failures [15]. 

 

Descriptive Statistical Models: The simplest statistical models 

for turnout monitoring involve descriptive measures such as 

mean, variance, standard deviation, and range of key 

parameters. For instance, tracking the average switching current 

over time helps establish a baseline for normal operation. 

Though basic, descriptive models offer intuitive insights and 

are useful for establishing initial benchmarks in turnout 

monitoring [16]. 

 

Control Chart Models: Control charts, widely used in quality 

control, are a common tool in turnout monitoring. Shewhart 

control charts, for example, monitor whether parameters like 

switching time or vibration remain within statistically 

acceptable limits. Cumulative Sum (CUSUM) and 

Exponentially Weighted Moving Average (EWMA) charts are 

particularly effective for detecting small or gradual shifts in 

turnout performance. These methods help engineers distinguish 

between natural variability and genuine anomalies, thus 

improving reliability in maintenance decisions [17]. 

 

Regression Models: Regression analysis provides another 

layer of insight into turnout behavior. Linear and multiple 

regression models are used to establish relationships between 

turnout performance variables and influencing factors such as 

temperature, train load, or usage frequency [18]. For example, 

regression can predict how actuation current changes with 

seasonal temperature variations. Logistic regression is also 

applied to classify turnout states into healthy, degraded, or 

faulty conditions. Such models are valuable for predictive 

maintenance strategies, as they can quantify the impact of 

external conditions on turnout reliability [19] 

 

Time-Series Models: Since turnout data is collected 

sequentially over time, time-series models like Autoregressive 

Integrated Moving Average (ARIMA) and its variants are 

particularly relevant. These models capture trends, seasonality, 

and autocorrelations in turnout parameters, allowing for 

accurate forecasting of future conditions. For example, ARIMA 

can predict when switching current is likely to exceed safe 

thresholds, enabling preemptive interventions. Time-series 

models are well suited for continuous monitoring systems that 

require near-real-time decision support [20] 

 

Probabilistic and Survival Models: Probabilistic models, 

including Bayesian approaches and survival analysis, are also 

used in turnout monitoring. Bayesian inference allows for 

incorporating prior knowledge about turnout performance and 

updating failure probabilities as new data becomes available. 

Survival models, such as the Weibull distribution, estimate the 

expected lifetime of turnout components under varying 

operating conditions. These models support long-term asset 

management and help optimize maintenance schedules based 

on component reliability [21]. 

 

Benefits of Statistical Models: Statistical models provide a 

systematic, data-driven approach to turnout monitoring, 

offering several advantages. They are relatively easy to 

implement, interpretable for engineers, and capable of detecting 

both sudden anomalies and gradual wear. By quantifying 

variability and forecasting potential issues, these models reduce 

unplanned failures, improve safety, and lower maintenance 

costs. Moreover, statistical methods form the foundation for 

more advanced machine learning and AI techniques, acting as a 

bridge between traditional monitoring and intelligent predictive 

systems [22]. 

https://ijsrem.com/


             INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM) 

                                VOLUME: 10 ISSUE: 01 | JAN - 2026                                                       SJIF RATING: 8.586                                            ISSN: 2582-3930                                                                                                                                               

 

© 2026, IJSREM      | https://ijsrem.com                                      DOI: 10.55041/IJSREM55947                                        |        Page 3 
 

 

IV. EXISTING CHALLENGS AND 

CLASS IMBALANCE 

 
Despite their usefulness, statistical models face limitations in 

complex turnout environments. They often assume stationarity 

or linearity, which may not hold true for real-world turnout data 

influenced by nonlinear interactions and noise. Control charts 

and regression models may generate false alarms under 

fluctuating environmental conditions. Time-series models, 

while powerful, require large amounts of historical data and 

careful parameter tuning. Therefore, statistical models are most 

effective when combined with engineering expertise or 

integrated with modern data-driven approaches such as 

machine learning [23]. 

Automated anomaly detection and fault classification methods 

are increasingly applied to turnout monitoring. In most real-

world datasets, healthy turnout conditions dominate, while 

faulty or anomalous conditions are relatively rare. This 

imbalance affects the performance of statistical and machine 

learning models, often leading to biased outcomes [24]. 

Class imbalance arises because turnouts operate normally for 

the majority of their lifecycle, and only a small fraction of data 

corresponds to anomalies such as mechanical wear, obstruction, 

or actuator failures. For example, 95–98% of collected records 

may indicate normal operation, while less than 2–5% may 

reflect fault states [25]. 

 This unequal distribution of classes creates challenges in 

training predictive models, as they become biased toward the 

majority (healthy) class, often ignoring the minority (faulty) 

class that is actually of greater importance for safety and 

maintenance. In statistical models, imbalance reduces the 

effectiveness of threshold-based methods, as thresholds may be 

overly influenced by dominant healthy data. Similarly, in 

machine learning models, classifiers like logistic regression, 

decision trees, or support vector machines tend to become 

biased toward the majority class. Deep learning models face 

overfitting risks, as they may memorize majority class features 

while underrepresenting the minority class. This imbalance also 

complicates evaluation, since metrics like accuracy become 

misleading for minority class detection [26]. 

 

 

IV. PROPOSED ALGORITHM 

 
This work proposes the amalgamation of two statistical models: 

1. Principal Component Analysis (PCA) 

2. Deep Neural Networks 

 

Each of them is explained next: 

 

Principal Component Analysis (PCA): It is a widely used 

dimensionality reduction technique that plays a crucial role in 

handling large-scale and complex datasets. In metro turnout 

systems, which are critical components of railway 

infrastructure, monitoring and analyzing data is essential for 

ensuring safety, reliability, and efficient operation. Turnouts 

generate high-dimensional data from various sensors measuring 

parameters such as vibration, temperature, current, and 

displacement. Analyzing this high-dimensional data can be 

challenging, and PCA offers a powerful tool to simplify the 

process while preserving important information. Thus applying 

the PCA would yield in a reduced data vector for training given 

by [27]: 

[𝑿]𝒏
𝑷𝑪𝑨
→  [𝑿]𝒏−𝒌                               (1)                                          

Here, 

X is the original data vector 

N is the dimension of the original data vector 

K is the dimensional reduction factor 

n-k is the reduced dimensions of the data vector after the 

application of PCA. 

 

 
Fig.2 Concept of PCA Vectors 

 

It can be observed that the PCA vectors map the data points 

onto the orthogonal plane to minimize the correlation and 

maximize the variance. As metro turnouts are subjected to 

continuous mechanical stress and environmental conditions, 

leading to diverse patterns in sensor data. PCA helps in 

identifying the most significant features by transforming 

correlated variables into a smaller set of uncorrelated principal 

components.  

 

These components capture the maximum variance in the 

dataset, making it easier to detect underlying patterns. By 

reducing redundancy, PCA allows engineers to focus on the 

most informative variables, improving the efficiency of 

monitoring and fault detection in metro turnouts. 

 

Deep Neural Networks: The deep neural network model in 

this case is the BayesNet with penalty based regularization.  It 

is an improved version of the conventional Naïve Bayes. The 

gradient is considered as the objective function to be reduced in 

each iteration. A probabilistic classification using the Bayes 

theorem of conditional probability is given by: 

  

𝑷(
𝑯

𝑿
) =

𝑷(
𝑿

𝑯
)𝑷(𝑯)

𝑷(𝑿)
                 (2) 

Here, 
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Posterior Probability [P (H/X)] is the probability of occurrence 

of event H when X has already occurred 

Prior Probability [P (H)] is the individual probability of event H 

X is termed as the tuple and H is is termed as the hypothesis.  

Here, [P (H/X)] denotes the probability of occurrence of event 

X when H has already occurred. 

 

Each node is associated with a conditional probability 

distribution that quantifies the effect of its parents in the graph. 

Bayes Nets provide a structured way to model joint probability 

distributions, allowing for efficient inference and learning. 

They are particularly useful in domains where relationships 

among variables are complex and uncertain, such as metro 

turnout. The probability function can be computed using [28]: 

𝑷(
𝑿

𝑿𝒊,𝒌𝟏,𝒌𝟐,𝑴
) =

𝑷(
𝑿𝒊

𝑿,𝒌𝟐,𝑴
)𝑷(

𝑿𝒊
𝒌𝟏,𝑴

)

𝑷(
𝑿

𝒌𝟏,𝒌𝟐,𝑴
)

                      (3)    

Here, 

𝑃 denotes probability 

𝑋𝑖 denotes the set of weight and bias 

𝑋 denotes the training data set 

𝑀 denotes the network architecture in terms of the hidden 

layers and neurons 

𝑘1 𝑎𝑛𝑑 𝑘2 are the regularization parameters for the network 

 

Incorporating prior distributions over the parameters or network 

structures, guiding the learning process towards more plausible 

models. Priors can reflect domain knowledge or be designed to 

favor simpler models, thereby enhancing generalization.  

 

Generally, the term 𝝆 =
𝒌𝟏

𝒌𝟐
 is called the regularization ratio. 

The regularization parameter is adopted in this case to limit the 

variations in the weights by introducing a penalty factor to the 

learning algorithm’s  cost function or objective function 𝑱. The 

regularization is different from early stopping or convergence 

in the sense that the earlier truncates the iterations prior to 

convergence to a minimum value of 𝑱 whereas the latter tries to 

restrict the values of weights and number of parameters by 

modifying the cost function. Thus, regularization allows a much 

steeper decrease in the cost function and eventually lesser 

values as compared to early stopping. This significantly helps 

to reduce the time complexity of the algorithm. 

 

Algorithm: 

 

The training algorithm adopted in this work is given by: 

 

Step.1: Initialize weights (𝑤) randomly. 

 

Step.2: Fix the maximum number of iterations (𝑛) and compute 

𝜌 =
𝑘1

𝑘2
 

 

Step.3: Update weights using gradient descent with an aim to 

minimize the objective function J given by: 

 

𝑱 =
𝟏

𝒎
∑ (𝒗𝒊 − 𝒗

′
𝒊)
𝟐𝒎

𝒊=𝟏                             (4) 

 

Step.4: Compute the Jacobian Matrix 𝑱given by: 

 

𝑱 =

[
 
 
 
 
𝝏𝟐𝒆𝟏

𝝏𝒘𝟏
𝟐 ⋯

𝝏𝟐𝒆𝟏

𝝏𝒘𝒎
𝟐

⋮ ⋱ ⋮
𝝏𝟐𝒆𝒏

𝝏𝒘𝟏
𝟐 ⋯

𝝏𝟐𝒆𝒏

𝝏𝒘𝒎
𝟐 ]
 
 
 
 

                           (5) 

Here,  

The error for iteration ‘i’ designated by 𝑒𝑖 is computed as: 

 

𝒆𝒊 = (𝒚𝒊 − 𝒚
′
𝒊
)                                       (6) 

Here 

𝑦𝑖  is the actual value 

𝑦′
𝑖
 is the predicted value 

 

Step.5: Iterate steps (1-4) till the cost function 𝐽 stabilizes or 

the maximum number of iterations set in step 2 are reached, 

whichever occurs earlier.  

 

Regularization enhances the robustness and generalizability of 

Bayesian Networks by preventing overfitting. By constraining 

the model complexity, regularization techniques ensure that the 

learned network captures the essential dependencies among 

variables without being influenced by noise. This leads to 

improved predictive performance on new data and more 

reliable inferences. Additionally, regularization facilitates the 

interpretation of the network by avoiding unnecessarily 

complex structures, making it easier to understand and 

communicate the relationships among variables. 

 

Performance Metrics:  

 

The training is stopped based on the mean square error or mse 

given by: 

 

𝒎𝒔𝒆 =
∑ 𝒆𝒊

𝟐𝒏
𝒊=𝟏

𝒏
                                             (7) 

The final computation of the performance metric is the mean 

absolute percentage error given by: 

 

𝑴𝑨𝑷𝑬 =
𝟏𝟎𝟎

𝑴
∑

𝑬−𝑬𝒊|

𝒊

𝑵
𝒊=𝟏                                   (8) 

Here, 

n is the number of errors 

i is the iteration number 

E is the actual value 

𝐸𝑖 is the predicted value 

 

V. EXPERIMENTAL RESULTS 

This section presents the experimental results.  The dataset 

consists of 15169480 data points collected at 1Hz and is 

described by 15 features from 7 analogue (1-7) and 8 digital (8-

15) sensors: 

TP2 (bar) – the measure of the pressure on the compressor. 

TP3 (bar) – the measure of the pressure generated at the 

pneumatic panel. 

H1 (bar) – the measure of the pressure generated due to 

pressure drop when the discharge of the cyclonic 

separator filter occurs. 

DV pressure (bar) – the measure of the pressure drop 

generated when the towers discharge air dryers; a zero reading 

indicates that the compressor is operating under load. 

Reservoirs (bar) – the measure of the downstream pressure of 

the reservoirs, which should be close to the pneumatic panel 

pressure (TP3). 

Motor Current (A) – the measure of the current of one phase 

of the three-phase motor; it presents values close to 0A - when 
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it turns off, 4A - when working offloaded, 7A - when working 

under load, and 9A - when it starts working. 

Oil Temperature (ºC) – the measure of the oil temperature on 

the compressor. 

COMP - the electrical signal of the air intake valve on the 

compressor; it is active when there is no air intake, indicating 

that the compressor is either turned off or operating in an 

offloaded state. 

DV electric – the electrical signal that controls the compressor 

outlet valve; it is active when the compressor is functioning 

under load and inactive when the compressor is either off or 

operating in an offloaded state. 

TOWERS – the electrical signal that defines the tower 

responsible for drying the air and the tower responsible for 

draining the humidity removed from the air; when not active, 

it indicates that tower one is functioning; when active, it 

indicates that tower two is in operation. 

MPG – the electrical signal responsible for starting the 

compressor under load by activating the intake valve when the 

pressure in the air production unit (APU) falls below 8.2 bar; it 

activates the COMP sensor, which assumes the same 

behaviour as the MPG sensor. 

LPS – the electrical signal that detects and activates when the 

pressure drops below 7 bars. 

Pressure Switch - the electrical signal that detects the 

discharge in the air-drying towers. 

Oil Level – the electrical signal that detects the oil level on the 

compressor; it is active when the oil is below the expected 

values. 

Caudal Impulse – the electrical signal that counts the pulse 

outputs generated by the absolute amount of air flowing from 

the APU to the reservoirs. 
 

The target variable in this case is the motor current. The 

proposed model tries to map the relation among the input 

variables (X) and the dependent or target variable (Y). Accurate 

mapping of the variables X and Y would results in lower error 

rates and high resultant accuracy. 

 

 
Fig.3 Raw Data 

 

The figure above shows the raw data used in the study.  

 

 
Fig.4 Importing raw data to MATLAB workspace 

 

Figure above shows importing of the raw data to MATLAB 

workspace. 

 
Fig.5 Network Visualization 

 

Figure above shows the designed deep neural network with 

total of 5 layers, which is a shallow deep net. The hidden layer 

configuration has been taken as 15-10-5. 

 

 
Fig.6 Network Visualization 

 

Figure above shows the training of the neural network which 

trains in 1000 iterations and 26s. The values of the gradient and 

learning rate of the model can also be observed.  
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Fig.7 MSE to Convergence 

 

It can be observed that the MSE is 4.5 𝑥 10−5 at convergence. 

 

 
Fig.8 Training States 

 

The figure above shows the training states or training 

parameters of the model. 

 

 

Fig.9 Percentage MAE obtained. 

 

It can be observed that the proposed work attains an Percentage 

MAE or MAPE of 4.11 at convergence which depicts the 

accurate prediction capability of the proposed work.  

 

 
Fig.10 Overall Regression  

 

The figure shows the overall regression (𝑅2) value of the model 

which is 0.95888. 

 

Table 1 Summary of Results 

S.No Parameter Value 

1. Dataset 

Parameters  

15 

2. Model  PCA- Deep Neural 

Network Hybrid  

3. Hidden Layer 

Configuration 

15-10-5 

4. Algorithm Bayesian 

Regularization  

5. Iterations  1000 

6. MSE at 

convergence 

4.5 𝑥 10−5 

7. Gradient at 

convergence 

0.00339 

8. Percentage 

MAE  

(Proposed 

Work) 

4.11 

(PCA + Bayesian 

Deep Neural 

Network ) 

9. Percentage 

MAE (Previous 

Work, Chen et 

al., [29]) 

8%  

(Convolutional 

Auto-encoder based 

Neural Network) 

 

The approach attains higher classification accuracy 

compared to baseline approaches [29]. 

 

CONCLUSION: Metro railway systems are critical 

infrastructures that demand high levels of safety, 

reliability, and efficiency. One of the most vulnerable 

components of this system is the turnout, which 

enables trains to switch tracks. Faults or anomalies in 

turnout systems can lead to severe disruptions or even 

accidents. To enhance operational safety, the adoption 

of intelligent data-driven methods has become 

increasingly important. The proposed approach 

integrates Principal Component Analysis (PCA) with 

Deep Neural Networks (DNNs), which allows both 
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dimensionality reduction and robust anomaly 

detection in complex turnout datasets. The PCA–DNN 

model represents a powerful approach for automated 

anomaly detection in metro turnout systems. By 

combining dimensionality reduction and deep 

learning, it provides an effective solution to handle 

complex, high-dimensional data and accurately detect 

anomalies. This would allows safer and swifter 

operation of the metro systems. The proposed work 

attains lower error percentage of 4.11 compared to 

existing work in the domain. 
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