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Abstract—
transformed with the advent of data driven statistical

Transportation  engineering is  being
models. Additionally, industry 4.0 has changed anomaly
detection and predictive maintenance using data from
sensors and monitoring systems. Urban metro systems form
the backbone of public transportation in many cities,
ensuring timely and safe movement of millions of
passengers. Among the key infrastructural components of a
metro network are turnouts, also known as railway
switches, which allow trains to move from one track to
another. The performance and reliability of turnouts
directly affect the efficiency and safety of the rail system.
However, due to their mechanical and electrical complexity,
turnouts are prone to failures and malfunctions. Automated
anomaly detection using metro turnout data has emerged as
a critical approach to address these challenges, enabling
proactive monitoring and predictive maintenance. This
paper presents a combination of Principal Component
Analysis (PCA) and Deep Neural Network based statistical
model for automated anomaly detection using metro
turnout data. It has been shown that the proposed work
attains lower error percentage compared to existing
research frameworks in the domain.

Keywords— Transportation Engineering, Statistical
Modelling, Metro Turnout Imbalanced Datasets,
Principal Component Analysis (PCA), Deep Neural
Network, Error Percentage.

I. INTRODUCTION

One of the most profound impacts of Industry 4.0 on
transportation engineering is the digitalization of
Smart
communication networks, and IoT devices allow for real-
time monitoring of roads, railways, airports, and shipping

infrastructure  and  operations. Sensors,

ports [1]. These connected systems can detect congestion,
monitor wear and tear, and provide continuous feedback
to operators [2]. Digital twins—virtual replicas of
transportation  infrastructure—enable  engineers  to
simulate traffic scenarios, predict maintenance needs, and
optimize resource allocation, leading to more efficient
and reliable transport systems [3].

The Four Industrial Revolutions
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Fig.1 Concept of Industry 4.0

Industry 4.0, often referred to as the fourth industrial
represents the convergence of digital

with  traditional industries through
automation, connectivity, and intelligent systems [5].
While it was initially associated with manufacturing, its

revolution,
technologies

principles are increasingly being applied to transportation
engineering. Transportation systems worldwide are under
pressure to become more efficient, sustainable, and
resilient [6] By leveraging technologies such as the
Internet of Things (IoT), artificial intelligence (Al), big
data analytics, and cyber-physical systems, Industry 4.0 is
transforming transportation engineering into a smarter,
safer, and more adaptive domain [7].

II. APPLI CATIONS OF INDUSTRY 4.0
IN METRO TRANSPORT.

Transportation infrastructure requires continuous upkeep,
and Industry 4.0 offers powerful tools for predictive
maintenance [8]. By analyzing sensor data from bridges,
tracks, runways, and vehicles, engineers can detect early
signs of wear, cracks, or mechanical failures [9].
Predictive maintenance reduces unexpected breakdowns,
minimizes downtime, and lowers repair costs by
addressing problems before they escalate. In addition,
asset management systems powered by big data provide
transportation agencies with comprehensive insights into
the lifecycle of infrastructure components, enabling
smarter investment and resource allocation. Despite its
potential, implementing Industry 4.0 in transportation
engineering comes with challenges [10]. High costs of
infrastructure modernization, cybersecurity risks, and
interoperability issues between legacy systems and new
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technologies can hinder large-scale
Moreover, workforce adaptation is
transportation engineers must acquire new digital and
data-driven skills. Ethical and legal concerns regarding
autonomous vehicles and data privacy also pose
significant barriers. Addressing these challenges requires
collaborative efforts from governments, industries, and
academia to create robust frameworks for safe and
equitable adoption [11].

deployment.
essential—

Metro railway systems have become an integral part of
urban transportation networks, offering fast and efficient
mobility for millions of passengers daily [12]. At the
heart of these systems lie critical infrastructure
components such as turnouts or switches, which enable
trains to change tracks and navigate complex routes.
Ensuring the reliability and safety of these turnouts is
paramount . Traditionally, inspection and maintenance of
turnouts have relied on manual methods or rule-based
systems, which are not only labor-intensive but also prone
to human error. With the increasing complexity and usage
frequency of metro systems, there is a growing need for
intelligent, automated, and scalable monitoring solutions
[13]

Metro Railway Turnouts refer to the critical components
in urban rail transit (URT) systems that enable trains to
switch tracks safely and efficiently. These are part of the
Switch & Crossing (S&C) systems, which include rails,
actuators, and switch machines [14].

III. STATISTI CAL MODELS FOR
METRO TURNOUT MONITORING

Metro turnouts, also known as railway switches, are critical
components that guide trains from one track to another. Their
reliable functioning directly impacts operational safety and
service continuity in metro networks. Due to mechanical
stresses, electrical wear, and environmental influences, turnouts
are prone to anomalies that can lead to costly disruptions. To
detect early signs of deterioration, engineers often rely on
statistical models, which analyze operational data such as
switching current, actuation time, vibration levels, and
temperature. These models provide systematic methods to
identify abnormal patterns, support decision-making, and
reduce the risk of failures [15].

Descriptive Statistical Models: The simplest statistical models
for turnout monitoring involve descriptive measures such as
mean, standard deviation, and range of key
parameters. For instance, tracking the average switching current
over time helps establish a baseline for normal operation.
Though basic, descriptive models offer intuitive insights and
are useful for establishing initial benchmarks in turnout
monitoring [16].

variance,

Control Chart Models: Control charts, widely used in quality
control, are a common tool in turnout monitoring. Shewhart
control charts, for example, monitor whether parameters like
switching time or vibration remain within statistically
acceptable  limits. Cumulative Sum (CUSUM) and
Exponentially Weighted Moving Average (EWMA) charts are
particularly effective for detecting small or gradual shifts in
turnout performance. These methods help engineers distinguish
between natural variability and genuine anomalies, thus
improving reliability in maintenance decisions [17].

Regression Models: Regression analysis provides another
layer of insight into turnout behavior. Linear and multiple
regression models are used to establish relationships between
turnout performance variables and influencing factors such as
temperature, train load, or usage frequency [18]. For example,
regression can predict how actuation current changes with
seasonal temperature variations. Logistic regression is also
applied to classify turnout states into healthy, degraded, or
faulty conditions. Such models are valuable for predictive
maintenance strategies, as they can quantify the impact of
external conditions on turnout reliability [19]

Time-Series Models: Since turnout data is collected
sequentially over time, time-series models like Autoregressive
Integrated Moving Average (ARIMA) and its variants are
particularly relevant. These models capture trends, seasonality,
and autocorrelations in turnout parameters, allowing for
accurate forecasting of future conditions. For example, ARIMA
can predict when switching current is likely to exceed safe
thresholds, enabling preemptive interventions. Time-series
models are well suited for continuous monitoring systems that
require near-real-time decision support [20]

Probabilistic and Survival Models: Probabilistic models,
including Bayesian approaches and survival analysis, are also
used in turnout monitoring. Bayesian inference allows for
incorporating prior knowledge about turnout performance and
updating failure probabilities as new data becomes available.
Survival models, such as the Weibull distribution, estimate the
expected lifetime of turnout components under varying
operating conditions. These models support long-term asset
management and help optimize maintenance schedules based
on component reliability [21].

Benefits of Statistical Models: Statistical models provide a
systematic, data-driven approach to turnout monitoring,
offering several advantages. They are relatively easy to
implement, interpretable for engineers, and capable of detecting
both sudden anomalies and gradual wear. By quantifying
variability and forecasting potential issues, these models reduce
unplanned failures, improve safety, and lower maintenance
costs. Moreover, statistical methods form the foundation for
more advanced machine learning and Al techniques, acting as a
bridge between traditional monitoring and intelligent predictive
systems [22].
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IV. EXISTING CHALLENGS AND
CLASS IMBALANCE

Despite their usefulness, statistical models face limitations in
complex turnout environments. They often assume stationarity
or linearity, which may not hold true for real-world turnout data
influenced by nonlinear interactions and noise. Control charts
and regression models may generate false alarms under
fluctuating environmental conditions. Time-series models,
while powerful, require large amounts of historical data and
careful parameter tuning. Therefore, statistical models are most
effective when combined with engineering expertise or
integrated with modern data-driven approaches such as
machine learning [23].

Automated anomaly detection and fault classification methods
are increasingly applied to turnout monitoring. In most real-
world datasets, healthy turnout conditions dominate, while
faulty or anomalous conditions are relatively rare. This
imbalance affects the performance of statistical and machine
learning models, often leading to biased outcomes [24].

Class imbalance arises because turnouts operate normally for
the majority of their lifecycle, and only a small fraction of data
corresponds to anomalies such as mechanical wear, obstruction,
or actuator failures. For example, 95-98% of collected records
may indicate normal operation, while less than 2-5% may
reflect fault states [25].

This unequal distribution of classes creates challenges in
training predictive models, as they become biased toward the
majority (healthy) class, often ignoring the minority (faulty)
class that is actually of greater importance for safety and
maintenance. In statistical models, imbalance reduces the
effectiveness of threshold-based methods, as thresholds may be
overly influenced by dominant healthy data. Similarly, in
machine learning models, classifiers like logistic regression,
decision trees, or support vector machines tend to become
biased toward the majority class. Deep learning models face
overfitting risks, as they may memorize majority class features
while underrepresenting the minority class. This imbalance also
complicates evaluation, since metrics like accuracy become
misleading for minority class detection [26].

IV. PROPOSED ALGORITHM

This work proposes the amalgamation of two statistical models:
1. Principal Component Analysis (PCA)
2. Deep Neural Networks

Each of them is explained next:
Principal Component Analysis (PCA): It is a widely used

dimensionality reduction technique that plays a crucial role in
handling large-scale and complex datasets. In metro turnout

ensuring safety, reliability, and efficient operation. Turnouts
generate high-dimensional data from various sensors measuring
parameters such as vibration, temperature, current, and
displacement. Analyzing this high-dimensional data can be
challenging, and PCA offers a powerful tool to simplify the
process while preserving important information. Thus applying
the PCA would yield in a reduced data vector for training given
by [27]:

Xl X i M
Here,

X is the original data vector
N is the dimension of the original data vector
K is the dimensional reduction factor

n-k is the reduced dimensions of the data vector after the
application of PCA.

X5 A

X1
Fig.2 Concept of PCA Vectors

It can be observed that the PCA vectors map the data points
onto the orthogonal plane to minimize the correlation and
maximize the variance. As metro turnouts are subjected to
continuous mechanical stress and environmental conditions,
leading to diverse patterns in sensor data. PCA helps in
identifying the most significant features by transforming
correlated variables into a smaller set of uncorrelated principal
components.

These components capture the maximum variance in the
dataset, making it easier to detect underlying patterns. By
reducing redundancy, PCA allows engineers to focus on the
most informative variables, improving the efficiency of
monitoring and fault detection in metro turnouts.

Deep Neural Networks: The deep neural network model in
this case is the BayesNet with penalty based regularization. It
is an improved version of the conventional Naive Bayes. The
gradient is considered as the objective function to be reduced in
each iteration. A probabilistic classification using the Bayes
theorem of conditional probability is given by:

. . i wy _ P(3)Pu
systems, which are critical components of railway p(}) = ';(X) Q)
infrastructure, monitoring and analyzing data is essential for Here
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Posterior Probability [P (H/X)] is the probability of occurrence
of event H when X has already occurred

Prior Probability [P (H)] is the individual probability of event H
X is termed as the tuple and H is is termed as the hypothesis.
Here, [P (H/X)] denotes the probability of occurrence of event
X when H has already occurred.

Each node is associated with a conditional probability
distribution that quantifies the effect of its parents in the graph.
Bayes Nets provide a structured way to model joint probability
distributions, allowing for efficient inference and learning.
They are particularly useful in domains where relationships
among variables are complex and uncertain, such as metro
turnout. The probability function can be computed using [28]:

x Pl (i)
P (Xi,kl.kz.M) B P(Zﬁ)1 ®)

Here,

P denotes probability

X; denotes the set of weight and bias

X denotes the training data set

M denotes the network architecture in terms of the hidden
layers and neurons

k; and k, are the regularization parameters for the network

Incorporating prior distributions over the parameters or network
structures, guiding the learning process towards more plausible
models. Priors can reflect domain knowledge or be designed to
favor simpler models, thereby enhancing generalization.

Generally, the term p = % is called the regularization ratio.
2

The regularization parameter is adopted in this case to limit the
variations in the weights by introducing a penalty factor to the
learning algorithm’s cost function or objective function J. The
regularization is different from early stopping or convergence
in the sense that the earlier truncates the iterations prior to
convergence to a minimum value of J whereas the latter tries to
restrict the values of weights and number of parameters by
modifying the cost function. Thus, regularization allows a much
steeper decrease in the cost function and eventually lesser
values as compared to early stopping. This significantly helps
to reduce the time complexity of the algorithm.

Algorithm:
The training algorithm adopted in this work is given by:
Step.1: Initialize weights (w) randomly.

Step.2: Fix the maximum number of iterations (n) and compute
—k
=

Step.3: Update weights using gradient descent with an aim to
minimize the objective function J given by:

J =S - v')? @)

Step.4: Compute the Jacobian Matrix Jgiven by:

azel azel
aw% m
J=1: : )
azen azen
aw% m

Here,
The error for iteration ‘i’ designated by e; is computed as:

ei=0i—y) (©)
Here
y; is the actual value
y'; is the predicted value

Step.5: Iterate steps (1-4) till the cost function J stabilizes or
the maximum number of iterations set in step 2 are reached,
whichever occurs earlier.

Regularization enhances the robustness and generalizability of
Bayesian Networks by preventing overfitting. By constraining
the model complexity, regularization techniques ensure that the
learned network captures the essential dependencies among
variables without being influenced by noise. This leads to
improved predictive performance on new data and more
reliable inferences. Additionally, regularization facilitates the
interpretation of the network by avoiding unnecessarily
complex structures, making it easier to understand and
communicate the relationships among variables.

Performance Metrics:

The training is stopped based on the mean square error or mse
given by:

n 2
i=18i
A @)
The final computation of the performance metric is the mean
absolute percentage error given by:

mse =

100 E-E;
MAPE =123y EoH @®)
Here,
n is the number of errors
1 1s the iteration number
E is the actual value

E; is the predicted value

V. EXPERIMENTAL RESULTS

This section presents the experimental results. The dataset
consists of 15169480 data points collected at 1Hz and is
described by 15 features from 7 analogue (1-7) and 8 digital (8-
15) sensors:

TP2 (bar) — the measure of the pressure on the compressor.
TP3 (bar) — the measure of the pressure generated at the
pneumatic panel.

H1 (bar) — the measure of the pressure generated due to
pressure drop when the discharge of the cyclonic

separator filter occurs.

DV pressure (bar) — the measure of the pressure drop
generated when the towers discharge air dryers; a zero reading
indicates that the compressor is operating under load.
Reservoirs (bar) — the measure of the downstream pressure of
the reservoirs, which should be close to the pneumatic panel
pressure (TP3).

Motor Current (A) — the measure of the current of one phase
of the three-phase motor; it presents values close to 0A - when
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it turns off, 4A - when working offloaded, 7A - when working
under load, and 9A - when it starts working.

Oil Temperature (°C) — the measure of the oil temperature on
the compressor.

COMP - the electrical signal of the air intake valve on the
compressor; it is active when there is no air intake, indicating
that the compressor is either turned off or operating in an
offloaded state.

DYV electric — the electrical signal that controls the compressor
outlet valve; it is active when the compressor is functioning
under load and inactive when the compressor is either off or
operating in an offloaded state.

TOWERS - the electrical signal that defines the tower
responsible for drying the air and the tower responsible for
draining the humidity removed from the air; when not active,
it indicates that tower one is functioning; when active, it
indicates that tower two is in operation.

MPG - the electrical signal responsible for starting the
compressor under load by activating the intake valve when the
pressure in the air production unit (APU) falls below 8.2 bar; it
activates the COMP sensor, which assumes the same
behaviour as the MPG sensor.

LPS - the electrical signal that detects and activates when the
pressure drops below 7 bars.

Pressure Switch - the electrical signal that detects the
discharge in the air-drying towers.

Oil Level — the electrical signal that detects the oil level on the
compressor; it is active when the oil is below the expected
values.

Caudal Impulse — the electrical signal that counts the pulse
outputs generated by the absolute amount of air flowing from
the APU to the reservoirs.

The target variable in this case is the motor current. The
proposed model tries to map the relation among the input
variables (X) and the dependent or target variable (Y). Accurate
mapping of the variables X and Y would results in lower error
rates and high resultant accuracy.

Fig.3 Raw Data

The figure above shows the raw data used in the study.
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Fig.4 Imporﬁng raw data to MATLAB workspace

Figure above shows importing of the raw data to MATLAB

workspace.
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Fig.5 Network Visualization

Figure above shows the designed deep neural network with
total of 5 layers, which is a shallow deep net. The hidden layer
configuration has been taken as 15-10-5.
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Fig.6 Network Visualization

Figure above shows the training of the neural network which
trains in 1000 iterations and 26s. The values of the gradient and
learning rate of the model can also be observed.
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Best Training Performance is 4,64630-05 at epoch 1000
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Fig.7 MSE to Convergence

It can be observed that the MSE is 4.5 x 105 at convergence.
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Fig.8 Training States

The figure above shows the training states or training
parameters of the model.

Prediciton Percentage MAE = 4.11
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Fig.9 Percentage MAE obtained.

It can be observed that the proposed work attains an Percentage
MAE or MAPE of 4.11 at convergence which depicts the
accurate prediction capability of the proposed work.
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Fig.10 Overall Regression

The figure shows the overall regression (R?) value of the model
which is 0.95888.

Table 1 Summary of Results

S.No Parameter Value
1. Dataset 15
Parameters
2. Model PCA- Deep Neural
Network Hybrid
3. Hidden Layer 15-10-5
Configuration
4. Algorithm Bayesian
Regularization
5. Iterations 1000
6. MSE at 45x1075
convergence
7. Gradient at 0.00339
convergence
8. Percentage 4.11
MAE (PCA + Bayesian
(Proposed Deep Neural
Work) Network )
9. Percentage 8%
MAE (Previous (Convolutional
Work, Chen et | Auto-encoder based
al., [29]) Neural Network)

The approach attains higher classification accuracy
compared to baseline approaches [29].

CONCLUSION: Metro railway systems are critical
infrastructures that demand high levels of safety,
reliability, and efficiency. One of the most vulnerable
components of this system is the turnout, which
enables trains to switch tracks. Faults or anomalies in
turnout systems can lead to severe disruptions or even
accidents. To enhance operational safety, the adoption
of intelligent data-driven methods has become
increasingly important. The proposed approach
integrates Principal Component Analysis (PCA) with
Deep Neural Networks (DNNs), which allows both
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dimensionality reduction and robust anomaly
detection in complex turnout datasets. The PCA-DNN
model represents a powerful approach for automated
anomaly detection in metro turnout systems. By
combining dimensionality reduction and deep
learning, it provides an effective solution to handle
complex, high-dimensional data and accurately detect
anomalies. This would allows safer and swifter
operation of the metro systems. The proposed work
attains lower error percentage of 4.11 compared to
existing work in the domain.
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