© 2025, [JSREM

s
£ 1ISREM 3

e Jounal

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

A Real-Time Cloud-Native Architecture for Mobile Emergency Response in
Academic Campuses

Fawaz Ahmed
Department of Computing Technologies
SRM Institute of Science and Technology

Abstract— Rigid procedures, slow communication, and a lack
of real-time knowledge are common features of traditional
campus emergency systems, which can increase hazards during
crises. In order to fill in these gaps, the Campus Emergency
Response System (CERS) is presented as a mobile application
that makes use of Google's Firebase serverless architecture. It
offers real-time two-way communication, dynamic evacuation
routes via the Google Maps API, and geolocation-based SOS
alerts, guaranteeing quicker response, better coordination, and
increased campus safety. Firebase Cloud Messaging (FCM)
provides instant emergency notifications to the entire campus,
guaranteeing prompt communication in times of emergency.
With a 92% satisfaction rate and an 89% usability score
during organized campus drills, the system, which was
developed with the Flutter framework for cross-platform
efficiency, has demonstrated a noticeable decrease in response
delays and great user adoption. This approach provides a
scalable and economical model for bolstering institutional
emergency preparedness in addition to improving immediate
safety. By creating safer, more resilient, and digitally
empowered learning settings, it also directly supports the
Sustainable Development Goals of the UN, especially SDG 3
(Good Health and Well-Being) and SDG 11 (Sustainable Cities
and Communities).

Keywords—Emergency Response System, Real-Time
Communication, Mobile Application, Geolocation, Firebase,
Flutter, SDG 3, SDG 11, Campus Safety, Evacuation Routing.

I. INTRODUCTION

In the 21st century, people's safety and security in big
educational institutions have become extremely important.
Since campuses frequently serve as micro-cities, they are
susceptible to a variety of crises, including natural disasters,
medical crises, fires, and security concerns. Conventional
response methods in these settings usually depend on
antiquated infrastructure, such as inflexible phone-based
communication chains, static evacuation maps, and passive
alarm systems. These methods have several serious
drawbacks, including a lack of real-time interaction, an
inability to provide tailored advice, and information gaps
that cause unwarranted alarm, delayed reactions, and
wasteful resource utilization in emergency situations.

The critical need for safety and resilience technologies is
emphasized by the Sustainable Development Goals (SDGs),
which were established as a worldwide call to action by the
United Nations. SDG 11 aims to create inclusive, secure,
resilient, and sustainable cities and human settlements;
academic institutions are part of this ambition. Preventing
casualties and protecting people in times of emergency
are

| https://ijsrem.com

DOI: 10.55041/IJSREM54044 |

Madhumitha K
Department of Computing Technologies
SRM Institute of Science and Technology

closely related to SDG 3, which focuses on promoting well-being
and guaranteeing healthy lifestyles at all ages.

Therefore, creating accessible and intelligent emergency systems is
not only a technical endeavor but also a social duty that is closely
related to these global goals.

Recent developments in real-time databases, cloud computing, and
mobile technologies have opened up new avenues for
revolutionizing emergency management. Smartphones can serve as
individualized lifelines in emergency situations because of their
extensive availability, potent sensors, and continuous
communication. This study presents the Campus Emergency
Response System (CERS), an integrated mobile platform intended
to improve safety and cooperation in academic settings, in order to
overcome the shortcomings of conventional methods. The
following are this work's primary contributions:

L. The development and deployment of a
microservices-based, serverless cloud architecture for
emergency management that guarantees low operating
overhead, scalability, and dependability.

2. The creation of a location-aware, real-time SOS and
navigation system that offers dynamic evacuation routing
based on user context

3. A Firebase Realtime Database facilitates the
incorporation of a low-latency, secure communication route
between security personnel and end users.

4. Through organized campus drills, the system's
performance and usability are assessed both quantitatively
and qualitatively, proving its usefulness and user approval.

II.SYSTEM ARCHITECTURE

The client-server design of the Campus Emergency Response
System (CERS) uses contemporary cloud services to provide
scalability, resilience, and real-time performance. In order to
simplify development, lower infrastructure overhead, and
guarantee dependable system performance during crucial events,
its architecture places a strong emphasis on the decoupling of
services, stateless operations, and the utilization of

managed cloud feature

Page 1

https://ijsrem.com/

.", ‘zﬂ
U?ﬁ@ International Journal of Scientific Research in Engineering and Management (IJSREM)

w Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

A. Client-Side Architecture (Frontend)

The Flutter framework (v3.13.0), which was selected to
provide a uniform user experience across the iOS and
Android platforms from a single codebase, is used to
construct the client application. When compared to
maintaining independent native programs, this method saves
development and maintenance work by about 40%. The
frontend layer of CERS is in charge of facilitating real-time
interactions, offering an easy-to-use user interface, and
guaranteeing smooth access to the system's essential safety
functions, such as:
o User Interface (UI): Offers a simple, easy-
to-use dashboard that is tailored for high-stress
situations. The user interface, which was created in
accordance with Material Design 3 requirements, has a
strong emphasis on large touch targets, legible text, and
high contrast images. A central notification center, an
integrated chat interface, a live map view (with the
google maps_flutter plugin), and a conspicuous SOS
button are essential elements.

. Device API Interaction: To access native
device functions that are essential in emergency
situations, the application uses Flutter plugins.
Responders can be sure they know exactly where
assistance is needed by using the Geolocator plugin,
which tracks a user's location in real time (with
consent) with an accuracy of roughly five meters.
Simultaneously, the network interface of the device
facilitates quick and safe data transfer between the
application and the backend.

J State Management: To ensure timely and
seamless user interactions, the application manages its
local state wusing the Provider package. The
cloud firestore and firebase database plugins provide
real-time streams and listeners that keep data in sync
with the cloud backend. This ensures that any changes,
such as new alerts or location updates, are displayed
immediately on the user's screen.

B. Server-Side Architecture (Backend)

The backend uses a serverless microservices architecture and
is entirely driven by Google Firebase, a Backend-as-a-
Service (BaaS) platform. By eliminating the need to manage
virtual ~machines, physical servers, or container
orchestration, this approach frees developers to concentrate
solely on the features and logic of the application. A number
of essential Firebase services are required by the system,
including:

eFirebase Authentication:Manages user registration,

© 2025, IJSREM | https://ijsrem.com

and email/password. Additionally, it offers role-based access
control (RBAC), which guarantees that administrators,
teachers, security personnel, and students all have the
appropriate amount of access. Custom claims set up by Cloud
Functions are used to handle permissions, giving the system
flexibility and security.

login, and session administration using Google Sign-In

eCloud Firestore / Firebase Realtime Database: When
combined, Cloud Firestore and Firebase Realtime Database
act as the main repository for all dynamic data. While the
Firebase Realtime Database supports features that require
ultra-low latency, like live chat and real-time alert updates,
Cloud Firestore is used to store user profiles and other
comparatively static data. Any modification is immediately
pushed to all connected clients in milliseconds because of its
listener-based methodology. The chat system's structure, for
instance, is chats/{emergencyld}/{messageld}, which
facilitates the tracking and organization of talks in an
emergency.

eFirebase Cloud Functions:Serve as the microservices
engine of the system, executing serverless, lightweight
JavaScript functions (Node.js runtime) in response to
HTTPS, Firestore, or authentication events. These features
automate important processes:

A. onSOSTriggered: When a fresh SOS alert
is written to Firestore's /emergencies/{id}, the
onSOSTriggered feature is triggered. Following
input validation, a timestamp is added, user profile
information is added to the alert, the state is changed
to active, and Firebase Cloud Messaging (FCM) is
activated to broadcast notifications.

B. onMessageSent: Every time a new chat
message is entered into the Realtime Database, the
onMessageSent function is called. In addition to
sanitizing the message and logging it for auditing
purposes, it can be expanded to include threat
detection or even profanity filtering.

C. generateEvacuationPath: An HTTPS
callable function that uses the supplied origin and
destination to safely query the Google Maps API
(server-side to safeguard API keys) and then
provides the client with the optimized evacuation
route data.

eFirebase Cloud Messaging (FCM): Ensures that
emergency warnings are reliably and immediately sent by
handling push notifications at scale. Depending on the
circumstance, notifications may be sent to the entire campus or
to particular groups (such as "Building A occupants"). A data
field containing the related emergency ID is included in
every notification payload, allowing for deep linking straight
into the app's pertinent part.

¢ Google Maps Platform APIs: included to provide location
and navigation functions via HTTPS queries from Cloud
Functions and the client app. The Static Maps API offers
lightweight map snapshots that may even be included in
FCM notifications for easy access, the Directions API

DOI: 10.55041/IJ]SREM54044 | Page 2

https://ijsrem.com/

w Volume: 09 Issue: 11 | Nov - 2025

_. International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

creates evacuation routes, and the Geocoding API
transforms unprocessed coordinates into addresses that
humans can understand.

C. Data Model and Security

The architecture's security paradigm, which is upheld by
Firebase Security Rules, is one of its main advantages. By
acting as gatekeepers for all database operations, these rules
guarantee that users can only access data that is pertinent to
their roles. For instance, a security officer can monitor all
active SOS warnings, while a student can only read and
write in their own chat thread with security professionals.
Even in situations where the client application itself may be
hacked, the solution provides robust security against
unwanted access by directly implementing access control at
the database level.

This workflow diagram highlights the key interactions between
the system’s primary users and its core functionalities.

O » Seand SOS Alen
N
Studants
Rocewve
= Notifications
(.) Campus
Emergency
J/ Responsea
App Communicate
Faculty o
with Securnty
() \
g Viow
/7 * Evacuation Routes
Security

1. The Actors (Who uses the system):

o Students are the app's primary users,
depending on it to ask for assistance and get safety
advice in an emergency.

o Security Personnel:Secondary users who use
the system's admin interface to interact with students,
monitor issues, and get notifications, such as campus
security officers.

2.The Use Cases (What the system does):

These are oval shapes that are linked to the Campus
Emergency Response App and show the key functions of
the app:

o The most important feature is Send SOS
Alert, which allows a student to send out an
emergency alert that instantly notifies campus security

of their current position and other pertinent
information.
o View Evacuation Routes: Gives students

access to dynamic, real-time maps that indicate the
most secure way to evacuate from where they are right
now.

. Communicate with Security: Provides a
two-way line of contact, like live chat, so that security
and students may exchange information, provide
clarification, and provide comfort in an emergency.

. Receive Notifications: Both user groups are

© 2025, IJSREM | https://ijsrem.com

3.

covered. Security staff are immediately informed when new
SOS warnings are generated, and students receive alerts
regarding crises, exercises, or security messaging.

The System Boundary:

Students receive alerts about emergencies, drills, or security
messages, and security personnel are notified instantly when fresh
SOS warnings are created.

A.

1. CORE FUNCTIONALITIES &
IMPLEMENTATION

One-Tap SOS Alert with Geolocation

The SOS trigger, which is built for speed and dependability, is the
system's most important component. This is how its process works:

B.

l. Trigger: On the main screen of the app, user taps
the big red SOS button.

2. Data Capture: The application immediately logs
the GPS coordinates (latitude and longitude) of the device
and compares them with the user's profile information and
unique ID.

3. Cloud Function Trigger: Firestore's emergency
collection receives this SOS request.

4. Server-Side Processing: The onSOSTriggered
Cloud Function is triggered by the write action, which
verifies the information, adds a timestamp, and changes the
alert's state to active.

5. Notification & Broadcast: The function is used
with the Firebase Admin SDK.

o All security staff devices receive a
multicast notification through Firebase Cloud
Messaging (FCM), along with a deep link to the
incident on their dashboard.

o Keeps the processed alert in the
activeEmergencies collection, which is constantly
checked for real-time updates by the admin
dashboard.

o From the time a student touches the SOS
button until security is alerted, the entire process is
guaranteed to be finished in less than five seconds
thanks to this optimized pipeline.

Dynamic Evacuation Routing

Upon triggering an SOS or during a drill, users can access an
evacuation screen.

DOI: 10.55041/IJSREM54044 |

I. Request: Using the user's current position (origin)
and the coordinates of a pre-established safe zone
(destination), the app submits a request to the Google Maps
Directions API.

Page 3

https://ijsrem.com/

.", ‘z;‘_
U?ﬁ@ International Journal of Scientific Research in Engineering and Management (IJSREM)

w Volume: 09 Issue: 11 | Nov - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

2. Path Generation: The best route is
returned by the API and superimposed on an
interactive Google Map inside the application.

3. Real-Time Updates: Periodically, the
user's location is monitored. To ensure that the
guidance is still applicable even in the event that the
user becomes confused or a path is blocked, a fresh
API call can be made to recalculate the route if they
diverge significantly from: it.

D. Real-Time Chat Interface

The Firebase Realtime Database, which powers the chat
system, was selected for its low-latency, subscription-
based data synchronization, making it ideal for
emergency communication.

1. Databas structure:
Chats/{emergencyld}/{messageld} is the path
under which messages are arranged. Every
emergency has its own chat area, which keeps all
communications organized and context-specific.

2. Security Rules: Access control is
enforced by Firebase Security Rules. While security
professionals have read/write access to all live
emergency conversations, students can only view
and send messages in chat rooms where their user
ID is specifically specified as a participant. This
permits security to monitor all communications
while maintaining privacy.

3. UI Integration: A StreamBuilder widget
is used by the Flutter application to integrate this
system on the client side. The Ul instantaneously
updates on all connected devices whenever a new
message is submitted when the StreamBuilder
subscribes to the appropriate chat node. This
eliminates the need for manual refreshes and
produces a seamless, real-time conversation
experience.

Logi

r::".

Cinel YU

nir credentials to accesz tha app

ClHisGio (U dullooe L FION

Emall

nischev7@gmail.com

Password

E. Admin Dashboard

Administrators and security staff have access to a special
web- based dashboard. Constructed using Flutter Web (or
a similar framework), the dashboard ensures smooth real-
time synchronization by connecting to the same Firestore
collections (chats, activeEmergencies) as the mobile app.

© 2025, IJSREM | https://ijsrem.com

By showing user positions as anonymous points on a real-time
map, it provides a geographic picture of all ongoing incidents.
Security teams have real-time access to SOS alerts, evacuation
status updates, and situational monitoring. The dashboard also
facilitates multi-user communication, which enables staff to
manage group updates, collaborate with multiple impacted kids at
once, and expedite emergency response activities

DOI: 10.55041/IJ]SREM54044 | Page 4

https://ijsrem.com/

w Volume: 09 Issue: 11 | Nov - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

User Stary Completion Stats - Campus Enrgancy Response App

\

With 8 of the 10 intended user stories implemented—an
80% completion rate—the Campus Emergency Response
App's user story completion status shows impressive
project progress. The app satisfies its vital safety goals
since all of its essential emergency features—such as
SOS activation, real-time position monitoring, live
communication, and dynamic evacuation routing—are
operational. The two remaining articles, which deal with
reminders for notifications and historical alert tracking,
are seen as non-essential improvements. With only
secondary features set aside for later iterations, their
pending status emphasizes that the project is functionally
complete, strategically prioritized, and concentrated on
essential use cases.

IV. RESULTS AND EVALUATION

In order to verify the system's functionality and
performance under simulated emergency scenarios, 50
students, faculty members, and campus security officers
participated in organized mock drills.

A. Performance Metrics
The primary quantitative metric was system latency.

. SOS-to-Notification Latency: This was
the amount of time that passed between a student
hitting the SOS button and the alert that appeared on
the security dashboard. The solution demonstrated
the speed and dependability of its serverless
Firebase-based architecture by achieving an
average latency of 2.3 seconds with a standard
variation of 0.7 seconds across 20 test scenarios.

o Message Delivery Latency: The live chat
function ensures seamless, real-time contact
between students and security staff by reliably
delivering and displaying messages on recipient
devices in less than one second.

B. Usability and User Feedback

Participants assessed the system's usability and efficacy by
completing a Likert-scale survey (1-5) after the simulated
exercises.

Satisfaction Rate: During emergency simulations,
92% of respondents said they were either satisfied or very
satisfied with the system's overall performance.

Usability Score: The System Usability Scale (SUS)
yielded an 89% usability score, which is classified as
"Excellent." The user-friendly interface and unambiguous
evacuation instructions were cited by participants as
particularly noteworthy aspects.

. Qualitative Feedback: In contrast to conventional
radio- based communication, security staff commended the
centralized dashboard, pointing out that it offered
unparalleled situational awareness and more effective
coordination.

V. DISCUSSION, LIMITATIONS,
AND FUTURE WORK

Even if the Campus Emergency Response System's (CERS)
outcomes are quite encouraging, a number of drawbacks offer
chances for further development and study:

. Internet Dependency: Constant cellular or Wi-Fi
connectivity is essential to the system's operation. Critical
functions might be delayed during connectivity failures.
Implementing an offline mode with local caching (such as
Hive or SQLite) to temporarily retain SOS notifications and
outgoing messages until the device regains connectivity
would be a significant benefit.
. Proactive vs. Reactive System: CERS now
operates mostly as a reactive system, reacting to alarms that
are initiated by users. By integrating Al and ML, future
versions could incorporate proactive features like:

o Predictive Analytics:Using past incident

data to predict high-risk areas and times is known as

predictive analytics.

o Audio Analysis: By using on-device
machine learning models to identify crisis signals
(such as screaming or shattering glass), the system
can either affirm or sound an emergency warning.

) IoT Sensor Integration: Creating a more
self- sufficient safety net by automatically setting
off alarms through campus IoT devices including
door access systems, smoke detectors, and seismic
Sensors.

. Scalability and Cost: Supporting a big user base
(10,000+ users) may result in expensive expenses due to
frequent Google Maps API calls and complex database
operations, even though Firebase offers automated scaling.
To guarantee scalability without sacrificing price, future
research should concentrate on cost optimization techniques
including request batching, data caching, and effective
indexing.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJ]SREM54044 | Page 5

https://ijsrem.com/

} International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

w Volume: 09 Issue: 11 | Nov - 2025

VL CONCLUSION

This paper has presented the Campus Emergency
Response System (CERS), created to address the
shortcomings of conventional campus security protocols
by offering a quick, connected, and user-friendly solution.
SOS alarms, real-time position monitoring, evacuation
instructions, and live chat are just a few of the features
that help students, teachers, and security personnel react
swiftly and efficiently in an emergency.Built with Flutter
and Firebase, CERS demonstrated cost-effectiveness and
scalability while producing impressive outcomes in
campus exercises. It can significantly improve daily
campus safety, as seen by the high ratings given by
participants for its dependability and simplicity of use.
Beyond merely providing a technological solution, CERS
supports the UN Sustainable Development framework's
objectives by helping to create academic communities that
are safer, smarter, and more resilient. Going forward, the
system will be able to stop responding to crises and begin
proactively preventing them with the addition of offline
capability, Al- based forecasts, and IoT integrations.

VII. REFERENCES

[1] “Development of a Campus Disaster Risk
Reduction Response System Using Flutter and Firebase”
— A recent implementation of a campus safety app using
cross-platform Flutter development, Firebase for alerts,
and Google Maps for location tracking.

[2] “A Support Tool for Emergency Management in
Smart Campuses” — Presents an [oT-driven system using
cameras and Raspberry Pi for smart campus disaster
response, emphasizing usability and low-cost design.

[31 “HELP ME”: An Emergency Response Mobile
Application” — Android-based mobile emergency app
with SOS functionality, location tracking, Firebase push
notifications, and a web command-center.

[4] “Res-Q: A Smart Disaster Safety Management
System with Real-Time Alerting” — Illustrates a Flutter +
Firebase app for real-time alerts, mobile emergency
management, and environmental sensing.

[5] Enhancing Community Safety Through Real-Time
Mobile Applications — Addresses real-time emergency
alerts, live tracking, and monitoring system evaluations,
including usability.

[6] Design and Build Disaster Emergency Response
Systems Using Firebase Cloud Messaging and SMS
Gateway — Examines use of Firebase Cloud Messaging
for rapid emergency notifications in a mobile system

[71 Mobile System Design for Campus Safety Apps —
Discusses best practices for designing user-friendly,
secure, and real-time mobile safety applications for
campuses.

[8] Emergency Response Mobile Application (GitHub
project) — A cross-platform Flutter-based emergency app
incorporating Google Maps, live streaming, SOS alerts,
and a responder dashboard.

[9] PulsePoint Respond — A widely deployed 911-
connected mobile app that sends live emergency alerts
(e.g., cardiac arrests) to users nearby, demonstrating
geolocation- based real-time emergency communicatio.

[10] Good Smartphone Activated Medics (GoodSAM) —
A volunteer-based emergency platform leveraging
smartphones for instant alerts and on-scene assistance,
widely adopted by first-response networks.

[L1JSHIELD: Social Sensing and Help In Emergency
Using Mobile Devices — A distributed, proximity-
enabled emergency alert system for campuses, utilizing
Bluetooth/Wi-Fi for rapid, localized response.

[12] TeamPhone: Networking Smartphones for Disaster
Recovery — A hybrid networking solution combining
cellular, ad-hoc, and opportunistic networking to support
communications when infrastructure is disrupted.

[13] SecurelT using Firebase, Google Maps and Node.js
— Describes an Android safety app using Firebase and
mapping for user protection, showing parallels to your
implementation.

[14] Advanced Mobile Location (AML) — A standard for
automatically sending precise geolocation during
emergency calls, emphasizing the impact of accurate
positioning in crisis systems.

[15] Large Emergency Event Digital
InformationRepository (LEEDIR) — A citizen

reporting platform that collects real-time media
(photos, videos) from the public during
emergencies—useful as a complementary model for
crowd- sourced incident awareness.

DOI: 10.55041/IJSREM54044 | Page6

© 2025, IJSREM | https://ijsrem.com

https://ijsrem.com/

