

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54044 | Page 1

A Real-Time Cloud-Native Architecture for Mobile Emergency Response in

Academic Campuses

Fawaz Ahmed Madhumitha K

Department of Computing Technologies Department of Computing Technologies

SRM Institute of Science and Technology SRM Institute of Science and Technology

Abstract— Rigid procedures, slow communication, and a lack
of real-time knowledge are common features of traditional
campus emergency systems, which can increase hazards during
crises. In order to fill in these gaps, the Campus Emergency
Response System (CERS) is presented as a mobile application
that makes use of Google's Firebase serverless architecture. It
offers real-time two-way communication, dynamic evacuation
routes via the Google Maps API, and geolocation-based SOS
alerts, guaranteeing quicker response, better coordination, and
increased campus safety. Firebase Cloud Messaging (FCM)
provides instant emergency notifications to the entire campus,
guaranteeing prompt communication in times of emergency.
With a 92% satisfaction rate and an 89% usability score
during organized campus drills, the system, which was
developed with the Flutter framework for cross-platform
efficiency, has demonstrated a noticeable decrease in response
delays and great user adoption. This approach provides a
scalable and economical model for bolstering institutional
emergency preparedness in addition to improving immediate
safety. By creating safer, more resilient, and digitally
empowered learning settings, it also directly supports the
Sustainable Development Goals of the UN, especially SDG 3
(Good Health and Well-Being) and SDG 11 (Sustainable Cities
and Communities).

Keywords—Emergency Response System, Real-Time
Communication, Mobile Application, Geolocation, Firebase,
Flutter, SDG 3, SDG 11, Campus Safety, Evacuation Routing.

I. INTRODUCTION

In the 21st century, people's safety and security in big

educational institutions have become extremely important.

Since campuses frequently serve as micro-cities, they are

susceptible to a variety of crises, including natural disasters,

medical crises, fires, and security concerns. Conventional

response methods in these settings usually depend on

antiquated infrastructure, such as inflexible phone-based

communication chains, static evacuation maps, and passive

alarm systems. These methods have several serious

drawbacks, including a lack of real-time interaction, an

inability to provide tailored advice, and information gaps

that cause unwarranted alarm, delayed reactions, and

wasteful resource utilization in emergency situations.

The critical need for safety and resilience technologies is

emphasized by the Sustainable Development Goals (SDGs),

which were established as a worldwide call to action by the

United Nations. SDG 11 aims to create inclusive, secure,

resilient, and sustainable cities and human settlements;

academic institutions are part of this ambition. Preventing

casualties and protecting people in times of emergency

are

closely related to SDG 3, which focuses on promoting well-being

and guaranteeing healthy lifestyles at all ages.

Therefore, creating accessible and intelligent emergency systems is

not only a technical endeavor but also a social duty that is closely

related to these global goals.

Recent developments in real-time databases, cloud computing, and

mobile technologies have opened up new avenues for

revolutionizing emergency management. Smartphones can serve as

individualized lifelines in emergency situations because of their

extensive availability, potent sensors, and continuous

communication. This study presents the Campus Emergency

Response System (CERS), an integrated mobile platform intended

to improve safety and cooperation in academic settings, in order to

overcome the shortcomings of conventional methods. The

following are this work's primary contributions:

1. The development and deployment of a

microservices-based, serverless cloud architecture for

emergency management that guarantees low operating

overhead, scalability, and dependability.

2. The creation of a location-aware, real-time SOS and

navigation system that offers dynamic evacuation routing

based on user context

3. A Firebase Realtime Database facilitates the

incorporation of a low-latency, secure communication route

between security personnel and end users.

4. Through organized campus drills, the system's

performance and usability are assessed both quantitatively

and qualitatively, proving its usefulness and user approval.

II . S Y S T E M A R C H I T E C T U R E

The client-server design of the Campus Emergency Response

System (CERS) uses contemporary cloud services to provide

scalability, resilience, and real-time performance. In order to

simplify development, lower infrastructure overhead, and

guarantee dependable system performance during crucial events,

its architecture places a strong emphasis on the decoupling of

services, stateless operations, and the utilization of

managed cloud feature

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54044 | Page 2

and email/password. Additionally, it offers role-based access

control (RBAC), which guarantees that administrators,

teachers, security personnel, and students all have the

appropriate amount of access. Custom claims set up by Cloud

Functions are used to handle permissions, giving the system

flexibility and security.

A. Client-Side Architecture (Frontend)

The Flutter framework (v3.13.0), which was selected to

provide a uniform user experience across the iOS and

Android platforms from a single codebase, is used to

construct the client application. When compared to

maintaining independent native programs, this method saves

development and maintenance work by about 40%. The

frontend layer of CERS is in charge of facilitating real-time

interactions, offering an easy-to-use user interface, and

guaranteeing smooth access to the system's essential safety

functions, such as:

• User Interface (UI): Offers a simple, easy-

to-use dashboard that is tailored for high-stress

situations. The user interface, which was created in

accordance with Material Design 3 requirements, has a

strong emphasis on large touch targets, legible text, and

high contrast images. A central notification center, an

integrated chat interface, a live map view (with the

google_maps_flutter plugin), and a conspicuous SOS

button are essential elements.

• Device API Interaction: To access native

device functions that are essential in emergency

situations, the application uses Flutter plugins.

Responders can be sure they know exactly where

assistance is needed by using the Geolocator plugin,

which tracks a user's location in real time (with

consent) with an accuracy of roughly five meters.

Simultaneously, the network interface of the device

facilitates quick and safe data transfer between the

application and the backend.

• State Management: To ensure timely and

seamless user interactions, the application manages its

local state using the Provider package. The

cloud_firestore and firebase_database plugins provide

real-time streams and listeners that keep data in sync

with the cloud backend. This ensures that any changes,

such as new alerts or location updates, are displayed

immediately on the user's screen.

B. Server-Side Architecture (Backend)

The backend uses a serverless microservices architecture and

is entirely driven by Google Firebase, a Backend-as-a-

Service (BaaS) platform. By eliminating the need to manage

virtual machines, physical servers, or container

orchestration, this approach frees developers to concentrate

solely on the features and logic of the application. A number

of essential Firebase services are required by the system,

including:

• Firebase Authentication:Manages user registration,

login, and session administration using Google Sign-In

• Cloud Firestore / Firebase Realtime Database: When

combined, Cloud Firestore and Firebase Realtime Database

act as the main repository for all dynamic data. While the

Firebase Realtime Database supports features that require

ultra-low latency, like live chat and real-time alert updates,

Cloud Firestore is used to store user profiles and other

comparatively static data. Any modification is immediately

pushed to all connected clients in milliseconds because of its

listener-based methodology. The chat system's structure, for

instance, is chats/{emergencyId}/{messageId}, which

facilitates the tracking and organization of talks in an

emergency.

• Firebase Cloud Functions:Serve as the microservices

engine of the system, executing serverless, lightweight

JavaScript functions (Node.js runtime) in response to

HTTPS, Firestore, or authentication events. These features

automate important processes:

A. onSOSTriggered: When a fresh SOS alert

is written to Firestore's /emergencies/{id}, the

onSOSTriggered feature is triggered. Following

input validation, a timestamp is added, user profile

information is added to the alert, the state is changed

to active, and Firebase Cloud Messaging (FCM) is

activated to broadcast notifications.

B. onMessageSent: Every time a new chat

message is entered into the Realtime Database, the

onMessageSent function is called. In addition to

sanitizing the message and logging it for auditing

purposes, it can be expanded to include threat

detection or even profanity filtering.

C. generateEvacuationPath: An HTTPS

callable function that uses the supplied origin and

destination to safely query the Google Maps API

(server-side to safeguard API keys) and then

provides the client with the optimized evacuation

route data.

• Firebase Cloud Messaging (FCM): Ensures that

emergency warnings are reliably and immediately sent by

handling push notifications at scale. Depending on the

circumstance, notifications may be sent to the entire campus or

to particular groups (such as "Building A occupants"). A data

field containing the related emergency ID is included in

every notification payload, allowing for deep linking straight

into the app's pertinent part.

• Google Maps Platform APIs: included to provide location

and navigation functions via HTTPS queries from Cloud

Functions and the client app. The Static Maps API offers

lightweight map snapshots that may even be included in

FCM notifications for easy access, the Directions API

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54044 | Page 3

creates evacuation routes, and the Geocoding API

transforms unprocessed coordinates into addresses that

humans can understand.

C. Data Model and Security

The architecture's security paradigm, which is upheld by

Firebase Security Rules, is one of its main advantages. By

acting as gatekeepers for all database operations, these rules

guarantee that users can only access data that is pertinent to

their roles. For instance, a security officer can monitor all

active SOS warnings, while a student can only read and

write in their own chat thread with security professionals.

Even in situations where the client application itself may be

hacked, the solution provides robust security against

unwanted access by directly implementing access control at

the database level.

This workflow diagram highlights the key interactions between

the system’s primary users and its core functionalities.

1. The Actors (Who uses the system):

• Students are the app's primary users,

depending on it to ask for assistance and get safety

advice in an emergency.

• Security Personnel:Secondary users who use

the system's admin interface to interact with students,

monitor issues, and get notifications, such as campus

security officers.

2. The Use Cases (What the system does):

These are oval shapes that are linked to the Campus

Emergency Response App and show the key functions of

the app:

• The most important feature is Send SOS

Alert, which allows a student to send out an

emergency alert that instantly notifies campus security

of their current position and other pertinent

information.

• View Evacuation Routes: Gives students

access to dynamic, real-time maps that indicate the

most secure way to evacuate from where they are right

now.

• Communicate with Security: Provides a

two-way line of contact, like live chat, so that security

and students may exchange information, provide

clarification, and provide comfort in an emergency.

• Receive Notifications: Both user groups are

covered. Security staff are immediately informed when new

SOS warnings are generated, and students receive alerts

regarding crises, exercises, or security messaging.

3. The System Boundary:

Students receive alerts about emergencies, drills, or security

messages, and security personnel are notified instantly when fresh

SOS warnings are created.

III. CORE FUNCTIONALITIES &

IMPLEMENTATION

A. One-Tap SOS Alert with Geolocation

The SOS trigger, which is built for speed and dependability, is the

system's most important component. This is how its process works:

1. Trigger: On the main screen of the app, user taps

the big red SOS button.

2. Data Capture: The application immediately logs

the GPS coordinates (latitude and longitude) of the device

and compares them with the user's profile information and

unique ID.

3. Cloud Function Trigger: Firestore's emergency

collection receives this SOS request.

4. Server-Side Processing: The onSOSTriggered

Cloud Function is triggered by the write action, which

verifies the information, adds a timestamp, and changes the

alert's state to active.

5. Notification & Broadcast: The function is used

with the Firebase Admin SDK.

• All security staff devices receive a

multicast notification through Firebase Cloud

Messaging (FCM), along with a deep link to the

incident on their dashboard.

• Keeps the processed alert in the

activeEmergencies collection, which is constantly

checked for real-time updates by the admin

dashboard.

• From the time a student touches the SOS

button until security is alerted, the entire process is

guaranteed to be finished in less than five seconds

thanks to this optimized pipeline.

B. Dynamic Evacuation Routing

Upon triggering an SOS or during a drill, users can access an

evacuation screen.

1. Request: Using the user's current position (origin)

and the coordinates of a pre-established safe zone

(destination), the app submits a request to the Google Maps

Directions API.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54044 | Page 4

2. Path Generation: The best route is

returned by the API and superimposed on an

interactive Google Map inside the application.

3. Real-Time Updates: Periodically, the

user's location is monitored. To ensure that the

guidance is still applicable even in the event that the

user becomes confused or a path is blocked, a fresh

API call can be made to recalculate the route if they

diverge significantly from it.

D. Real-Time Chat Interface

The Firebase Realtime Database, which powers the chat

system, was selected for its low-latency, subscription-

based data synchronization, making it ideal for

emergency communication.

1. Databas structure:

Chats/{emergencyId}/{messageId} is the path

under which messages are arranged. Every

emergency has its own chat area, which keeps all

communications organized and context-specific.

2. Security Rules: Access control is

enforced by Firebase Security Rules. While security

professionals have read/write access to all live

emergency conversations, students can only view

and send messages in chat rooms where their user

ID is specifically specified as a participant. This

permits security to monitor all communications

while maintaining privacy.

3. UI Integration: A StreamBuilder widget

is used by the Flutter application to integrate this

system on the client side. The UI instantaneously

updates on all connected devices whenever a new

message is submitted when the StreamBuilder

subscribes to the appropriate chat node. This

eliminates the need for manual refreshes and

produces a seamless, real-time conversation

experience.

E. Admin Dashboard

Administrators and security staff have access to a special

web- based dashboard. Constructed using Flutter Web (or

a similar framework), the dashboard ensures smooth real-

time synchronization by connecting to the same Firestore

collections (chats, activeEmergencies) as the mobile app.

By showing user positions as anonymous points on a real-time

map, it provides a geographic picture of all ongoing incidents.

Security teams have real-time access to SOS alerts, evacuation

status updates, and situational monitoring. The dashboard also

facilitates multi-user communication, which enables staff to

manage group updates, collaborate with multiple impacted kids at

once, and expedite emergency response activities

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54044 | Page 5

With 8 of the 10 intended user stories implemented—an

80% completion rate—the Campus Emergency Response

App's user story completion status shows impressive

project progress. The app satisfies its vital safety goals

since all of its essential emergency features—such as

SOS activation, real-time position monitoring, live

communication, and dynamic evacuation routing—are

operational. The two remaining articles, which deal with

reminders for notifications and historical alert tracking,

are seen as non-essential improvements. With only

secondary features set aside for later iterations, their

pending status emphasizes that the project is functionally

complete, strategically prioritized, and concentrated on

essential use cases.

IV. RESULTS AND EVALUATION

In order to verify the system's functionality and

performance under simulated emergency scenarios, 50

students, faculty members, and campus security officers

participated in organized mock drills.

A. Performance Metrics

The primary quantitative metric was system latency.

• SOS-to-Notification Latency: This was

the amount of time that passed between a student

hitting the SOS button and the alert that appeared on

the security dashboard. The solution demonstrated

the speed and dependability of its serverless

Firebase-based architecture by achieving an

average latency of 2.3 seconds with a standard

variation of 0.7 seconds across 20 test scenarios.

• Message Delivery Latency: The live chat

function ensures seamless, real-time contact

between students and security staff by reliably

delivering and displaying messages on recipient

devices in less than one second.

B. Usability and User Feedback

Participants assessed the system's usability and efficacy by

completing a Likert-scale survey (1–5) after the simulated

exercises.

• Satisfaction Rate: During emergency simulations,

92% of respondents said they were either satisfied or very

satisfied with the system's overall performance.

• Usability Score: The System Usability Scale (SUS)

yielded an 89% usability score, which is classified as

"Excellent." The user-friendly interface and unambiguous

evacuation instructions were cited by participants as

particularly noteworthy aspects.

• Qualitative Feedback: In contrast to conventional

radio- based communication, security staff commended the

centralized dashboard, pointing out that it offered

unparalleled situational awareness and more effective

coordination.

V. DISCUSSION, LIMITATIONS,

AND FUTURE WORK

Even if the Campus Emergency Response System's (CERS)

outcomes are quite encouraging, a number of drawbacks offer

chances for further development and study:

• Internet Dependency: Constant cellular or Wi-Fi

connectivity is essential to the system's operation. Critical

functions might be delayed during connectivity failures.

Implementing an offline mode with local caching (such as

Hive or SQLite) to temporarily retain SOS notifications and

outgoing messages until the device regains connectivity

would be a significant benefit.

• Proactive vs. Reactive System: CERS now

operates mostly as a reactive system, reacting to alarms that

are initiated by users. By integrating AI and ML, future

versions could incorporate proactive features like:

o Predictive Analytics:Using past incident

data to predict high-risk areas and times is known as

predictive analytics.

o Audio Analysis: By using on-device

machine learning models to identify crisis signals

(such as screaming or shattering glass), the system

can either affirm or sound an emergency warning.

o IoT Sensor Integration: Creating a more

self- sufficient safety net by automatically setting

off alarms through campus IoT devices including

door access systems, smoke detectors, and seismic

sensors.

• Scalability and Cost: Supporting a big user base

(10,000+ users) may result in expensive expenses due to

frequent Google Maps API calls and complex database

operations, even though Firebase offers automated scaling.

To guarantee scalability without sacrificing price, future

research should concentrate on cost optimization techniques

including request batching, data caching, and effective

indexing.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 11 | Nov - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54044 | Page 6

VI. CONCLUSION

This paper has presented the Campus Emergency

Response System (CERS), created to address the

shortcomings of conventional campus security protocols

by offering a quick, connected, and user-friendly solution.

SOS alarms, real-time position monitoring, evacuation

instructions, and live chat are just a few of the features

that help students, teachers, and security personnel react

swiftly and efficiently in an emergency.Built with Flutter

and Firebase, CERS demonstrated cost-effectiveness and

scalability while producing impressive outcomes in

campus exercises. It can significantly improve daily

campus safety, as seen by the high ratings given by

participants for its dependability and simplicity of use.

Beyond merely providing a technological solution, CERS

supports the UN Sustainable Development framework's

objectives by helping to create academic communities that

are safer, smarter, and more resilient. Going forward, the

system will be able to stop responding to crises and begin

proactively preventing them with the addition of offline

capability, AI- based forecasts, and IoT integrations.

VII. REFERENCES

[1] “Development of a Campus Disaster Risk

Reduction Response System Using Flutter and Firebase”

— A recent implementation of a campus safety app using

cross-platform Flutter development, Firebase for alerts,

and Google Maps for location tracking.

[2] “A Support Tool for Emergency Management in

Smart Campuses” — Presents an IoT-driven system using

cameras and Raspberry Pi for smart campus disaster

response, emphasizing usability and low-cost design.

[3] “HELP ME”: An Emergency Response Mobile

Application” — Android-based mobile emergency app

with SOS functionality, location tracking, Firebase push

notifications, and a web command-center.

[4] “Res-Q: A Smart Disaster Safety Management

System with Real-Time Alerting” — Illustrates a Flutter +

Firebase app for real-time alerts, mobile emergency

management, and environmental sensing.

[5] Enhancing Community Safety Through Real-Time

Mobile Applications — Addresses real-time emergency

alerts, live tracking, and monitoring system evaluations,

including usability.

[6] Design and Build Disaster Emergency Response

Systems Using Firebase Cloud Messaging and SMS

Gateway — Examines use of Firebase Cloud Messaging

for rapid emergency notifications in a mobile system

[7] Mobile System Design for Campus Safety Apps —

Discusses best practices for designing user-friendly,

secure, and real-time mobile safety applications for

campuses.

[8] Emergency Response Mobile Application (GitHub

project) — A cross-platform Flutter-based emergency app

incorporating Google Maps, live streaming, SOS alerts,

and a responder dashboard.

[9] PulsePoint Respond — A widely deployed 911-

connected mobile app that sends live emergency alerts

(e.g., cardiac arrests) to users nearby, demonstrating

geolocation- based real-time emergency communicatio.

[10] Good Smartphone Activated Medics (GoodSAM) —

A volunteer-based emergency platform leveraging

smartphones for instant alerts and on-scene assistance,

widely adopted by first-response networks.

[11] SHIELD: Social Sensing and Help In Emergency

Using Mobile Devices — A distributed, proximity-

enabled emergency alert system for campuses, utilizing

Bluetooth/Wi-Fi for rapid, localized response.

[12] TeamPhone: Networking Smartphones for Disaster

Recovery — A hybrid networking solution combining

cellular, ad-hoc, and opportunistic networking to support

communications when infrastructure is disrupted.

[13] SecureIT using Firebase, Google Maps and Node.js

— Describes an Android safety app using Firebase and

mapping for user protection, showing parallels to your

implementation.

[14] Advanced Mobile Location (AML) — A standard for

automatically sending precise geolocation during

emergency calls, emphasizing the impact of accurate

positioning in crisis systems.

[15] Large Emergency Event Digital

InformationRepository (LEEDIR) — A citizen

reporting platform that collects real-time media

(photos, videos) from the public during

emergencies—useful as a complementary model for

crowd- sourced incident awareness.

https://ijsrem.com/

