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Abstract - The growing complexity of urban infrastructure 

and the frequency of accidents and fire hazards highlight the 

limitations of conventional CCTV systems, which rely heavily 

on manual monitoring and delayed responses. This study 

presents a real-time, AI-powered surveillance system capable 

of detecting vehicular crashes, fire, and smoke from live 

CCTV footage. At its core, the system employs the YOLOv8 

object detection model, leveraging its speed and accuracy for 

high-performance visual analytics. Incoming video frames are 

processed through a deep learning pipeline, with event data 

transmitted via a Flask-SocketIO backend to a web-based 

frontend. MongoDB is used for structured alert logging, while 

the dashboard provides live annotated streams and real-time 

notifications. Evaluation results show crash detection 

precision exceeding 90%, alert latency under one second, and 

reliable performance across diverse scenarios. The system 

also supports multi-camera feeds and SMS/email alerting 

through external APIs. By integrating deep learning, computer 

vision, and web technologies, this solution significantly 

enhances emergency responsiveness and scalability in 

surveillance infrastructure. 
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1.INTRODUCTION 

  
The rapid growth of urban infrastructure and rising safety 

concerns have increased the demand for intelligent 

surveillance systems. Traditional Closed-Circuit Television 

(CCTV) systems, though widely used in traffic management 

and public safety, remain passive due to their reliance on 

human monitoring. Manual oversight often results in delayed 

emergency responses, hindered by fatigue or limited attention 

spans.  

 To address this gap, we propose a real-time, AI-powered 

surveillance system capable of detecting vehicular accidents, 

fire, and smoke through live video feeds. By integrating deep 

learning with computer vision, the system transforms 

conventional CCTV setups into proactive safety solutions. It 

leverages YOLOv8, a state-of-the-art object detection model, 

known for balancing high accuracy with real-time 

performance. 

 

2. LITERATURE REVIEW 
 

Real-time object detection has transformed intelligent 

surveillance systems, especially for detecting abnormal events 

like accidents, fires, and smoke. Traditional sensors—such as 

infrared or smoke alarms—lacked contextual awareness and 

often gave false positives, making them unsuitable for 

complex environments like highways or industrial zones. 

The introduction of convolutional neural networks 

(CNNs), including Faster R-CNN and SSD, improved 

detection performance but suffered from high latency. YOLO 

(You Only Look Once) models addressed this by balancing 

speed and accuracy. YOLOv3 and v4 enabled real-time 

detection on embedded systems, while YOLOv5 enhanced 

usability with a PyTorch-based design. 

Earlier systems often focused narrowly (e.g., fire-

only detection), lacked modularity, and missed features like 

alert systems or real-time feedback. YOLOv8 brought further 

advances—anchor-free detection, faster inference, and 

improved generalization—making it ideal for live 

surveillance. Modern systems now integrate detection, real-

time alerts, storage, and dashboards for smarter, scalable 

monitoring in cities, transport, and industry. 

 

3. SYSTEM ARCHITECTURE 

 
The proposed system is architected as a modular, scalable 

pipeline that supports real-time emergency detection using 

deep learning and web technologies. It is divided into six 

functional layers that collectively enable the transformation of 

raw CCTV footage into actionable safety alerts. 

3.1 Input Layer: Video Acquisition 

Video input is obtained via RTSP streams from IP cameras, 

USB webcams, or local video files. OpenCV’s VideoCapture 

module processes these feeds into sequential frames, ensuring 

cross-device compatibility and seamless integration in both 

small and large surveillance setups. 

3.2 Processing Layer: Object Detection (YOLOv8) 

The detection engine utilizes YOLOv8, implemented in 

PyTorch, for high-speed identification of crash, fire, and 

smoke incidents. Preprocessed frames (640×640 pixels) are 

analyzed to produce bounding boxes, labels, and confidence 

scores, with an average inference time of 80–120 ms per 

frame. 

3.3 Decision Layer: Detected events are validated using 

confidence thresholds (e.g., >0.85 for crashes), temporal 

consistency across frames, and multi-label support. Valid 

events are assigned unique IDs and timestamps. 

3.4 Notification Layer: Real-time alerts are sent via Flask-

SocketIO (WebSocket), with SMS and email notifications 

through Twilio and EmailJS, including event type, time, and 

image snapshot for reliable communication. 

3.5 Storage Layer: MongoDB Logging 

Events are stored in MongoDB using flexible JSON-like 

schemas, including event_type, timestamp, image data, and 

confidence score. Query filters enable time-based or severity-

based log retrieval, aiding in forensic analysis and system 

audits. 

3.6 Frontend Layer: Web Dashboard 

Built using HTML, CSS, JavaScript, and Bootstrap, the 

dashboard displays live annotated video and real-time alerts. It 

features color-coded event cards, alert acknowledgment 

buttons, a searchable history log, and a mobile-responsive 

design for remote access across devices. 

3.7 Transaction Workflow 

http://www.ijsrem.com/
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The real-time crash and fire detection system operates in the 

following steps: 

Video Stream Input: Live CCTV footage is captured using 

OpenCV. 

Object Detection: Each video frame is processed through the 

YOLOv8 model to detect incidents like accidents, fire, and 

smoke. 

Confidence Filtering: Detections with confidence 

≥ 0.5 are considered valid. 
Alert Generation: Valid detections are converted into alerts 

with a timestamp and image. 

Alert Transmission: Alerts are sent in real-time to the 

frontend via Flask-SocketIO. 

Database Logging: Detection events are stored in MongoDB 

for future reference and analysis. 

Dashboard Display: Alerts and incident data are visualized 

on a web dashboard for real-time monitoring. 

Storage Optimization: Old alerts are periodically cleaned 

from MongoDB to manage storage limits. 

Fig.1: Transaction Workflow 

 

 
 

3.8 Scalability 

The system supports both edge deployment (e.g., Raspberry 

Pi, Jetson Nano) and cloud-based scaling (e.g., AWS, 

Dockerized services). Its modular design allows easy 

integration of future features like license plate recognition or 

GIS-based incident mapping. 

Fig. 2: Modular Architecture of the Proposal Real-Time 

Surveillance System 

 

 
 

4. METHODOLOGY 
 

The development of the proposed intelligent surveillance 

system followed a structured approach involving dataset 

preparation, model training, performance evaluation, and 

inference optimization. The objective was to ensure 

robustness, minimize false positives, and enable accurate real-

time detection of vehicular crashes, fire outbreaks, and smoke 

emissions across varied environments. 

4.1 Data Preparation 

The model's performance is highly dependent on dataset 

quality and diversity. Data was sourced from: 

Roboflow: Fire and smoke annotations across indoor and 

outdoor settings. 

Kaggle Surveillance Datasets: Traffic footage for crash 

detection. 

Manually Captured Videos: Recorded under different 

lighting and weather conditions for real-world variability. 

Annotation was done using CVAT, labeling three classes: 

Crash, Fire, Smoke. 

Data Augmentation: The dataset was enhanced using various 

data augmentation techniques to improve model performance 

and generalization. These included horizontal flipping to 

simulate different viewing angles, brightness and contrast 

adjustments to handle varying lighting conditions, Gaussian 

noise addition for robustness, ±15° rotation to account for 

tilted frames, and random cropping and zooming to introduce 

scale and position variability. 

Dataset Split: 

Training- 70%, Validation- 20%, Testing- 10% 

This ensured robust generalization and minimized overfitting. 

4.2 Model Training 

The detection model was based on YOLOv8s, selected for its 

balance of speed and accuracy. Transfer learning was 

employed using pre trained COCO weights to accelerate 

convergence. 

Training Details: 

The model was trained on Google Colab Pro+, utilizing a 

Tesla T4 GPU and 16 GB RAM. The training ran for 

approximately 3 hours, covering 100 to 200 epochs. Input 

images were resized to 640×640 pixels, with a batch size of 

16. The optimization was performed using SGD with 

momentum, starting with a learning rate of 0.01 and 

applying step decay for scheduling. The training used CIoU 

and Binary Cross-Entropy as loss functions. To enhance 

http://www.ijsrem.com/
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robustness, augmentations such as mosaic, scaling, color 

jitter, and horizontal flipping were applied. 

Evaluation Metrics: 

 

4.3 Inference Optimization 

To support real-time use, the model was optimized for speed 

and efficiency. 

Performance: 

The system achieved an average inference time of 

approximately 110 milliseconds per frame, resulting in a 

real-time processing speed of 8 to 10 frames per second 

(FPS). Non-Maximum Suppression (NMS) was used during 

post-processing to eliminate redundant detections. 

Additionally, class-specific confidence thresholds were 

applied to minimize false positives and improve detection 

accuracy. 

Resource Usage: The system operates efficiently, consuming 

less than 3 GB of RAM and utilizing around 30% of GPU 

capacity. This lightweight design makes it well-suited for 

deployment on edge devices with limited computational 

power, ensuring reliable performance in real-time 

applications. 

Summary 

By combining diverse data, structured training, and inference 

optimization, the YOLOv8s model achieved high 

performance, with over 85% accuracy across all classes. Its 

lightweight and modular design allows deployment in both 

cloud-based and edge surveillance systems. 

 

5. IMPLEMENTATION DETAILS 
 

The proposed intelligent surveillance system has been realized 

as a fully operational prototype, capable of performing real-

time emergency detection, incident classification, and multi-

channel alert dissemination. By integrating computer vision, 

web development technologies, backend services, and cloud-

based storage, the system delivers a robust, responsive, and 

scalable solution suited for diverse real-world surveillance 

environments. 

5.1 System Overview 

The architecture follows a modular pipeline designed for 

extensibility and seamless integration with camera inputs, 

inference engines, and real-time dashboards.The system 

architecture is structured into a six-layer pipeline, each 

playing a critical role in enabling real-time and reliable 

emergency detection. The Input Layer handles video feeds 

sourced from CCTV cameras via RTSP streams or pre-

recorded files, ensuring flexibility in data acquisition. 

 The Detection Layer leverages a trained YOLOv8 

model to accurately identify incidents such as fire, crash, and 

smoke within the video frames. 

Following detection, the Decision Layer validates 

the outputs by applying confidence thresholds and evaluating 

frame persistence, which helps in reducing false positives 

and ensuring consistent detection. The Backend Layer 

processes these validated results, communicates with the 

frontend interface, and interacts with various notification 

APIs for further action. 

The Frontend Layer is responsible for displaying 

the annotated live video streams, presenting alert logs, and 

providing intuitive user controls for interaction. Finally, the 

Storage & Notification Layer securely stores all event-

related data in MongoDB and disseminates alerts through 

WebSocket, SMS, and email, ensuring immediate and 

reliable communication even if the user is not actively 

monitoring the dashboard. 

This modular and layered design promotes 

scalability, enhances system reliability, and supports real-

time responsiveness, making it well-suited for critical 

surveillance applications. 

5.2 Backend Framework (Flask + SocketIO) 

The backend is implemented using Flask, a lightweight 

Python framework. Flask-SocketIO enables real-time, bi-

directional communication with the frontend using 

WebSockets. RESTful endpoints are used for video stream 

access, log retrieval, and system controls. This event-driven 

design enables immediate alert updates without requiring page 

refreshes or polling. 

5.3 Detection Module (YOLOv8 Integration) 

The system uses YOLOv8s for fast, accurate 

real-time detection. Frames from OpenCV 

are passed to the model, and detections with 

confidence ≥ 0.65 are converted to JSON 

objects with metadata like timestamp, event 

type, and image. 
5.4 Real-Time Alert System 

The system employs a three-tier alert mechanism to 

guarantee prompt and reliable notification of detected 

incidents. First, real-time SMS alerts are delivered through 

Twilio, ensuring immediate communication even on mobile 

devices. Second, email notifications are sent using EmailJS 

or SMTP, including event details and image snapshots for 

visual confirmation. Third, WebSocket broadcasts are used 

to trigger live alerts on the dashboard interface. This multi-

channel approach ensures redundancy and reliability, 

maximizing the chances of timely response even if one 

channel is temporarily unavailable. 

5.5 Frontend Dashboard 

Developed using HTML5, CSS3, JavaScript, and 

Bootstrap, the dashboard offers an intuitive and interactive 

interface for monitoring real-time events. Key features include 

live video streams with detection overlays, color-coded 

alert cards for quick identification, filters by date and 

severity to streamline event tracking, and acknowledgment 

buttons for user response. The design is fully mobile-

responsive, enabling seamless remote access and usability 

across various devices. 

5.6 Storage Layer 

Events are stored in MongoDB with details like event_type, 

timestamp, confidence, and base64 images. Data is filterable 

and exportable for analysis. 

5.7 Security and Access Control 

Security Measures: The system ensures safe and reliable 

operation through multiple layers of security. User 

authentication is implemented using Flask-Login to control 

access. Rate limiting and CORS policies protect APIs from 

abuse and unauthorized cross-origin requests. Additionally, 

Category Precision (%) Recall (%) F1-Score 

(%) 

Crash 88.5 86.1 87.3 

Fire 85.2 83.5 84.3 

Smoke 82.6 81.0 81.8 

http://www.ijsrem.com/
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HTTPS is used to encrypt data transmission, safeguarding 

sensitive information during communication. 

 5.8 Deployment and Scalability 

The system was deployed on a local Linux server using 

Gunicorn as the application server and Nginx as the reverse 

proxy. Performance tests demonstrated the ability to process 

three RTSP streams in real time, handling up to 25 detections 

per minute with a 99.7% uptime over six hours. The 

architecture supports Docker-based deployment and enables 

horizontal scaling through microservices or edge devices, 

ensuring flexibility and scalability for larger or distributed 

environments. 

 5.9 Summary 

This chapter outlines the implementation of a high-

performance, intelligent surveillance system that integrates 

modern AI models, real-time communication, and intuitive UI 

design. Each module is optimized for efficiency and 

scalability, making the system a strong candidate for 

deployment in smart cities, industrial zones, and other safety-

critical environments. 

 

6.  RESULTS AND EVALUATION 
 

The intelligent surveillance system was rigorously evaluated 

to assess its effectiveness in detecting emergency events such 

as vehicular crashes, fire, and smoke. Testing occurred in both 

simulated and semi-operational environments to validate 

system performance under varied conditions. 

6.1 Evaluation Metrics and Methodology 

The system’s performance was evaluated using standard 

metrics commonly employed in computer vision and machine 

learning. Precision measured the proportion of correctly 

identified positive instances, while recall assessed the 

system’s ability to detect all actual positive events. The F1-

score provided a balanced harmonic mean of precision and 

recall, reflecting overall detection accuracy. Latency was 

recorded as the time elapsed from frame acquisition to alert 

delivery, indicating real-time responsiveness. The alert 

delivery rate quantified the percentage of alerts successfully 

received by users. Additionally, snapshot quality was 

assessed based on image resolution. To complement 

quantitative measures, user feedback was gathered through 

surveys focusing on usability, responsiveness, and overall 

satisfaction. 

6.2 Detection Performance Results 

 

 

 

   The detection performance was evaluated for each event 

class. Below are the key metrics:These results show that the 

system maintained precision above 85%, with crash detection 

yielding the best performance due to its distinct visual 

characteristics. 

6.3 Alert Transmission and Delivery Performance 

Out of 500 generated alerts, 499 were successfully delivered, 

achieving a 99.8% success rate. Key transmission details 

include SMS delivery times ranging from 2 to 4 seconds, 

email delivery within 4 to 6 seconds, and snapshot images 

stored at a resolution of 640×640 pixels. 

6.4 Front End Responsiveness and User Interaction 

The frontend was rigorously tested under both single and 

multi-stream scenarios. Results showed that detection 

overlays consistently maintained frame rates above 25 FPS, 

ensuring smooth video playback. Alerts appeared instantly on-

screen, accurately reflecting event types with color-coded 

classifications. 

6.5 User Acceptance and Satisfaction 

A survey of 15 participants indicated high satisfaction: 

 

6.6 Stress Testing and System Stability 

The system underwent a continuous 6-hour stress test, 

simultaneously processing three RTSP video streams. During 

this period, it successfully handled 300 unique event 

detections without any downtime or crashes, maintaining a 

100% uptime. Memory usage remained stable throughout the 

test, confirming the system’s capability for prolonged, reliable 

operation under real-world conditions. 

6.7 Visualization of Performance Metrics 

This section includes performance visualizations for 

better understanding model behavior: 

Fig. 3: Precision-Confidence Curves per class (Accident, Fire, 

Smoke) 

 
 

Fig. 4: F1-Score vs Confidence Threshold to select the best 

cutoff 

Event 

Type 

Precision Recall F1-Score Average 

Latency 

Crash 0.89 0.88 0.885 < 1 second 

Fire 0.87 0.84 0.855 < 1 second 

Smoke 0.85 0.81 0.83 < 1 second 

Criterion Average 

Score 

(out of 5) 

Comment Summary 

Ease of Use 4.7 Intuitive layout and clean UI 

Detection 

Responsiveness 

4.8 Alerts appeared almost 

instantly 

Visual Clarity 4.6 Color-coded alerts improved 

readability 

Alert Reliability 4.7 High confidence in system 

accuracy 

Overall 

Satisfaction 

4.75 “Suitable for real-world safety 

operations” 

http://www.ijsrem.com/
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Fig. 4: The validation batch prediction images 

 
 

6.8 Summary of Findings 

The evaluation demonstrated that the proposed system is 

highly effective, scalable, and ideal for real-time deployment 

in safety-critical settings. Key findings include a precision 

exceeding 85% across all detection categories (Accident, Fire, 

Smoke), and sub-second alert latency, ensuring rapid 

incident response. The alert mechanism proved robust with a 

99.8% delivery reliability. The system features a user-

friendly, responsive interface that supports real-time 

monitoring, while maintaining stable performance under 

heavy load, highlighting its operational resilience. Positive 

user feedback further confirmed its practical utility and ease 

of integration into existing workflows. 

These results establish the system as a robust and 

intelligent surveillance solution, capable of enhancing 

situational awareness and emergency responsiveness in high-

risk environments. 

 

7. DISCUSSION 
 

The development of the proposed intelligent surveillance 

system signifies a pivotal shift in how CCTV infrastructure is 

utilized—transitioning from passive observation tools to 

active, real-time emergency detection platforms. This 

evolution is facilitated through the integration of deep 

learning-based object detection, responsive user interfaces, 

and multi-channel notification systems, offering high 

reliability and sub-second latency in detecting vehicular 

crashes, fire outbreaks, and smoke emissions. 

  A key differentiator of the system lies in its 

autonomy. Unlike traditional surveillance, which depends on 

human observation and is prone to fatigue or oversight, the 

system independently monitors and analyzes live feeds with a 

99.8% alert delivery success rate. Detection performance was 

notably strong, achieving F1-scores of 0.885 for crashes, 

0.855 for fire, and 0.83 for smoke, the latter affected by 

environmental factors that visually resemble smoke. These 

insights suggest that future models could benefit from 

adaptive thresholding and scene-aware tuning. 

The system’s modular design provides significant 

architectural flexibility. Each core component—from 

detection to alerts—is loosely coupled, allowing for seamless 

upgrades. For instance, its notification layer can integrate 

emergency APIs or push services without affecting other 

modules. The platform’s capacity to handle multiple video 

feeds concurrently makes it suitable for large-scale urban 

deployments. 

Pilot feedback highlighted the system's ease of use, 

visual clarity, and real-time responsiveness. However, 

challenges such as occasional delays in low-connectivity 

regions and GPU strain with high feed volumes point to future 

optimization via edge computing and model distribution. 

Ethical considerations remain essential. While the 

current implementation avoids biometric tracking, future 

expansions must prioritize compliance with privacy standards 

such as GDPR, including access controls and encryption. 

 

Future Prospects 

Several enhancements are proposed to broaden the system’s 

capabilities and impact. GIS integration would enable real-

time geo-tagging and map-based visualization to aid 

emergency coordination. Developing a mobile application 

would provide field personnel with direct access to alerts and 

live video streams. Incorporating advanced detection 

modules such as behavioral recognition, crowd analysis, and 

threat identification would deepen situational awareness. 

Deploying the system on edge AI devices like the Jetson 

Nano would facilitate operation in remote or infrastructure-

limited areas. Additionally, integrating forensic tools like 

facial recognition and automatic number plate recognition 

(ANPR), with strict privacy safeguards, would enhance 

investigative capabilities. Leveraging user behavior 

analytics powered by AI could improve alert prioritization 

and optimize the user interface. Finally, fostering community 

and academic collaborations would create shared safety 

networks and drive ongoing innovation through research 

partnerships. 

 

8.  FUTURE WORK 
 

While the current system provides a robust framework for 

real-time emergency detection, several enhancements are 

envisioned to expand its utility and adaptability. 

Integrating Geographic Information Systems (GIS) 

for real-time geo-tagging and map-based incident 

visualization could support quicker decision-making and 

http://www.ijsrem.com/
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response coordination. A dedicated mobile application is 

proposed for remote access to alerts, live streams, and system 

controls—beneficial for campus security or industrial 

monitoring. 

Future versions may extend detection capabilities to 

include behavioral analytics (e.g., crowd monitoring, 

altercations) through pose estimation and advanced object 

recognition. Edge AI deployment using devices like the 

NVIDIA Jetson Nano can enable decentralized processing, 

reduce latency, and improve privacy. 

Additional features like facial recognition and 

Automatic Number Plate Recognition (ANPR) can support 

forensic applications, subject to strict data protection 

standards (e.g., GDPR). Personalization features, such as 

alert prioritization based on user behavior, may further 

enhance usability. 

Collaboration with academic and industry partners 

will aid in system validation and pave the way for scalable 

deployments in smart city ecosystems. 

 

9. CONCLUSION 

 
In an era marked by urban expansion, increased traffic, and 

rising safety demands, the shift from passive surveillance to 

intelligent, real-time monitoring is both timely and essential. 

The system presented in this study addresses this 

transformation by leveraging artificial intelligence, low-

latency communication, and intuitive interfaces to enable 

automated emergency detection and rapid response. 

   Central to its functionality is a YOLOv8-based deep 

learning framework integrated with OpenCV for real-time 

video analysis. The system successfully identifies incidents—

such as crashes, fires, and smoke—with detection accuracy 

above 88% and alert latency under one second, surpassing the 

limitations of manual monitoring. 

The system’s modular architecture integrates several 

key components to ensure seamless operation and scalability. 

It features a Flask-SocketIO Python backend that handles 

live inference and system control, paired with MongoDB for 

persistent and scalable data storage. A responsive web 

dashboard provides intuitive visualization and alert 

management, while multichannel alerting is achieved through 

SMS and email notifications, ensuring timely 

communication across platforms. 

Extensive evaluations confirmed strong system 

performance, stability, and user satisfaction (4.75/5 average 

rating). 

Designed for versatility, the platform can serve smart 

cities, industrial facilities, and campuses while supporting 

future enhancements like facial recognition, behavioral 

analytics, and GIS-based incident mapping. 

Challenges such as poor visibility and network 

dependency were noted, with future work focusing on 

adaptive models and edge-based deployments. Ultimately, this 

system lays the groundwork for next-generation, AI-powered 

surveillance, offering a practical and scalable solution to 

evolving public safety needs. 
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