
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48718 | Page 1

A Real Time Crash and Fire Detection Using CCTV

Himanshu Jaiswara1, Alok Kumar2, Atul Verma3, Nisha Kumari4, Dr. A.P. Srivastva5

1,2,3,4UG Student, Department of Computer Science and Engg., NITRA Technical Campus,UP, India
5Asst. Professor and Head, Department of Computer Science & Engg., NITRA Technical Campus, UP, India

Abstract - The growing complexity of urban infrastructure

and the frequency of accidents and fire hazards highlight the

limitations of conventional CCTV systems, which rely heavily

on manual monitoring and delayed responses. This study

presents a real-time, AI-powered surveillance system capable

of detecting vehicular crashes, fire, and smoke from live

CCTV footage. At its core, the system employs the YOLOv8

object detection model, leveraging its speed and accuracy for

high-performance visual analytics. Incoming video frames are

processed through a deep learning pipeline, with event data

transmitted via a Flask-SocketIO backend to a web-based

frontend. MongoDB is used for structured alert logging, while

the dashboard provides live annotated streams and real-time

notifications. Evaluation results show crash detection

precision exceeding 90%, alert latency under one second, and

reliable performance across diverse scenarios. The system

also supports multi-camera feeds and SMS/email alerting

through external APIs. By integrating deep learning, computer

vision, and web technologies, this solution significantly

enhances emergency responsiveness and scalability in

surveillance infrastructure.

Key Words: YOLOv8, Computer Vision, Real-Time

Detection, Fire Monitoring, Crash Surveillance.

1.INTRODUCTION

The rapid growth of urban infrastructure and rising safety

concerns have increased the demand for intelligent

surveillance systems. Traditional Closed-Circuit Television

(CCTV) systems, though widely used in traffic management

and public safety, remain passive due to their reliance on

human monitoring. Manual oversight often results in delayed

emergency responses, hindered by fatigue or limited attention

spans.

 To address this gap, we propose a real-time, AI-powered

surveillance system capable of detecting vehicular accidents,

fire, and smoke through live video feeds. By integrating deep

learning with computer vision, the system transforms

conventional CCTV setups into proactive safety solutions. It

leverages YOLOv8, a state-of-the-art object detection model,

known for balancing high accuracy with real-time

performance.

2. LITERATURE REVIEW

Real-time object detection has transformed intelligent

surveillance systems, especially for detecting abnormal events

like accidents, fires, and smoke. Traditional sensors—such as

infrared or smoke alarms—lacked contextual awareness and

often gave false positives, making them unsuitable for

complex environments like highways or industrial zones.

The introduction of convolutional neural networks

(CNNs), including Faster R-CNN and SSD, improved

detection performance but suffered from high latency. YOLO

(You Only Look Once) models addressed this by balancing

speed and accuracy. YOLOv3 and v4 enabled real-time

detection on embedded systems, while YOLOv5 enhanced

usability with a PyTorch-based design.

Earlier systems often focused narrowly (e.g., fire-

only detection), lacked modularity, and missed features like

alert systems or real-time feedback. YOLOv8 brought further

advances—anchor-free detection, faster inference, and

improved generalization—making it ideal for live

surveillance. Modern systems now integrate detection, real-

time alerts, storage, and dashboards for smarter, scalable

monitoring in cities, transport, and industry.

3. SYSTEM ARCHITECTURE

The proposed system is architected as a modular, scalable

pipeline that supports real-time emergency detection using

deep learning and web technologies. It is divided into six

functional layers that collectively enable the transformation of

raw CCTV footage into actionable safety alerts.

3.1 Input Layer: Video Acquisition

Video input is obtained via RTSP streams from IP cameras,

USB webcams, or local video files. OpenCV’s VideoCapture

module processes these feeds into sequential frames, ensuring

cross-device compatibility and seamless integration in both

small and large surveillance setups.

3.2 Processing Layer: Object Detection (YOLOv8)

The detection engine utilizes YOLOv8, implemented in

PyTorch, for high-speed identification of crash, fire, and

smoke incidents. Preprocessed frames (640×640 pixels) are

analyzed to produce bounding boxes, labels, and confidence

scores, with an average inference time of 80–120 ms per

frame.

3.3 Decision Layer: Detected events are validated using

confidence thresholds (e.g., >0.85 for crashes), temporal

consistency across frames, and multi-label support. Valid

events are assigned unique IDs and timestamps.

3.4 Notification Layer: Real-time alerts are sent via Flask-

SocketIO (WebSocket), with SMS and email notifications

through Twilio and EmailJS, including event type, time, and

image snapshot for reliable communication.

3.5 Storage Layer: MongoDB Logging

Events are stored in MongoDB using flexible JSON-like

schemas, including event_type, timestamp, image data, and

confidence score. Query filters enable time-based or severity-

based log retrieval, aiding in forensic analysis and system

audits.

3.6 Frontend Layer: Web Dashboard

Built using HTML, CSS, JavaScript, and Bootstrap, the

dashboard displays live annotated video and real-time alerts. It

features color-coded event cards, alert acknowledgment

buttons, a searchable history log, and a mobile-responsive

design for remote access across devices.

3.7 Transaction Workflow

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48718 | Page 2

The real-time crash and fire detection system operates in the

following steps:

Video Stream Input: Live CCTV footage is captured using

OpenCV.

Object Detection: Each video frame is processed through the

YOLOv8 model to detect incidents like accidents, fire, and

smoke.

Confidence Filtering: Detections with confidence

≥ 0.5 are considered valid.
Alert Generation: Valid detections are converted into alerts

with a timestamp and image.

Alert Transmission: Alerts are sent in real-time to the

frontend via Flask-SocketIO.

Database Logging: Detection events are stored in MongoDB

for future reference and analysis.

Dashboard Display: Alerts and incident data are visualized

on a web dashboard for real-time monitoring.

Storage Optimization: Old alerts are periodically cleaned

from MongoDB to manage storage limits.

Fig.1: Transaction Workflow

3.8 Scalability

The system supports both edge deployment (e.g., Raspberry

Pi, Jetson Nano) and cloud-based scaling (e.g., AWS,

Dockerized services). Its modular design allows easy

integration of future features like license plate recognition or

GIS-based incident mapping.

Fig. 2: Modular Architecture of the Proposal Real-Time

Surveillance System

4. METHODOLOGY

The development of the proposed intelligent surveillance

system followed a structured approach involving dataset

preparation, model training, performance evaluation, and

inference optimization. The objective was to ensure

robustness, minimize false positives, and enable accurate real-

time detection of vehicular crashes, fire outbreaks, and smoke

emissions across varied environments.

4.1 Data Preparation

The model's performance is highly dependent on dataset

quality and diversity. Data was sourced from:

Roboflow: Fire and smoke annotations across indoor and

outdoor settings.

Kaggle Surveillance Datasets: Traffic footage for crash

detection.

Manually Captured Videos: Recorded under different

lighting and weather conditions for real-world variability.

Annotation was done using CVAT, labeling three classes:

Crash, Fire, Smoke.

Data Augmentation: The dataset was enhanced using various

data augmentation techniques to improve model performance

and generalization. These included horizontal flipping to

simulate different viewing angles, brightness and contrast

adjustments to handle varying lighting conditions, Gaussian

noise addition for robustness, ±15° rotation to account for

tilted frames, and random cropping and zooming to introduce

scale and position variability.

Dataset Split:

Training- 70%, Validation- 20%, Testing- 10%

This ensured robust generalization and minimized overfitting.

4.2 Model Training

The detection model was based on YOLOv8s, selected for its

balance of speed and accuracy. Transfer learning was

employed using pre trained COCO weights to accelerate

convergence.

Training Details:

The model was trained on Google Colab Pro+, utilizing a

Tesla T4 GPU and 16 GB RAM. The training ran for

approximately 3 hours, covering 100 to 200 epochs. Input

images were resized to 640×640 pixels, with a batch size of

16. The optimization was performed using SGD with

momentum, starting with a learning rate of 0.01 and

applying step decay for scheduling. The training used CIoU

and Binary Cross-Entropy as loss functions. To enhance

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48718 | Page 3

robustness, augmentations such as mosaic, scaling, color

jitter, and horizontal flipping were applied.

Evaluation Metrics:

4.3 Inference Optimization

To support real-time use, the model was optimized for speed

and efficiency.

Performance:

The system achieved an average inference time of

approximately 110 milliseconds per frame, resulting in a

real-time processing speed of 8 to 10 frames per second

(FPS). Non-Maximum Suppression (NMS) was used during

post-processing to eliminate redundant detections.

Additionally, class-specific confidence thresholds were

applied to minimize false positives and improve detection

accuracy.

Resource Usage: The system operates efficiently, consuming

less than 3 GB of RAM and utilizing around 30% of GPU

capacity. This lightweight design makes it well-suited for

deployment on edge devices with limited computational

power, ensuring reliable performance in real-time

applications.

Summary

By combining diverse data, structured training, and inference

optimization, the YOLOv8s model achieved high

performance, with over 85% accuracy across all classes. Its

lightweight and modular design allows deployment in both

cloud-based and edge surveillance systems.

5. IMPLEMENTATION DETAILS

The proposed intelligent surveillance system has been realized

as a fully operational prototype, capable of performing real-

time emergency detection, incident classification, and multi-

channel alert dissemination. By integrating computer vision,

web development technologies, backend services, and cloud-

based storage, the system delivers a robust, responsive, and

scalable solution suited for diverse real-world surveillance

environments.

5.1 System Overview

The architecture follows a modular pipeline designed for

extensibility and seamless integration with camera inputs,

inference engines, and real-time dashboards.The system

architecture is structured into a six-layer pipeline, each

playing a critical role in enabling real-time and reliable

emergency detection. The Input Layer handles video feeds

sourced from CCTV cameras via RTSP streams or pre-

recorded files, ensuring flexibility in data acquisition.

 The Detection Layer leverages a trained YOLOv8

model to accurately identify incidents such as fire, crash, and

smoke within the video frames.

Following detection, the Decision Layer validates

the outputs by applying confidence thresholds and evaluating

frame persistence, which helps in reducing false positives

and ensuring consistent detection. The Backend Layer

processes these validated results, communicates with the

frontend interface, and interacts with various notification

APIs for further action.

The Frontend Layer is responsible for displaying

the annotated live video streams, presenting alert logs, and

providing intuitive user controls for interaction. Finally, the

Storage & Notification Layer securely stores all event-

related data in MongoDB and disseminates alerts through

WebSocket, SMS, and email, ensuring immediate and

reliable communication even if the user is not actively

monitoring the dashboard.

This modular and layered design promotes

scalability, enhances system reliability, and supports real-

time responsiveness, making it well-suited for critical

surveillance applications.

5.2 Backend Framework (Flask + SocketIO)

The backend is implemented using Flask, a lightweight

Python framework. Flask-SocketIO enables real-time, bi-

directional communication with the frontend using

WebSockets. RESTful endpoints are used for video stream

access, log retrieval, and system controls. This event-driven

design enables immediate alert updates without requiring page

refreshes or polling.

5.3 Detection Module (YOLOv8 Integration)

The system uses YOLOv8s for fast, accurate

real-time detection. Frames from OpenCV

are passed to the model, and detections with

confidence ≥ 0.65 are converted to JSON

objects with metadata like timestamp, event

type, and image.
5.4 Real-Time Alert System

The system employs a three-tier alert mechanism to

guarantee prompt and reliable notification of detected

incidents. First, real-time SMS alerts are delivered through

Twilio, ensuring immediate communication even on mobile

devices. Second, email notifications are sent using EmailJS

or SMTP, including event details and image snapshots for

visual confirmation. Third, WebSocket broadcasts are used

to trigger live alerts on the dashboard interface. This multi-

channel approach ensures redundancy and reliability,

maximizing the chances of timely response even if one

channel is temporarily unavailable.

5.5 Frontend Dashboard

Developed using HTML5, CSS3, JavaScript, and

Bootstrap, the dashboard offers an intuitive and interactive

interface for monitoring real-time events. Key features include

live video streams with detection overlays, color-coded

alert cards for quick identification, filters by date and

severity to streamline event tracking, and acknowledgment

buttons for user response. The design is fully mobile-

responsive, enabling seamless remote access and usability

across various devices.

5.6 Storage Layer

Events are stored in MongoDB with details like event_type,

timestamp, confidence, and base64 images. Data is filterable

and exportable for analysis.

5.7 Security and Access Control

Security Measures: The system ensures safe and reliable

operation through multiple layers of security. User

authentication is implemented using Flask-Login to control

access. Rate limiting and CORS policies protect APIs from

abuse and unauthorized cross-origin requests. Additionally,

Category Precision (%) Recall (%) F1-Score

(%)

Crash 88.5 86.1 87.3

Fire 85.2 83.5 84.3

Smoke 82.6 81.0 81.8

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48718 | Page 4

HTTPS is used to encrypt data transmission, safeguarding

sensitive information during communication.

 5.8 Deployment and Scalability

The system was deployed on a local Linux server using

Gunicorn as the application server and Nginx as the reverse

proxy. Performance tests demonstrated the ability to process

three RTSP streams in real time, handling up to 25 detections

per minute with a 99.7% uptime over six hours. The

architecture supports Docker-based deployment and enables

horizontal scaling through microservices or edge devices,

ensuring flexibility and scalability for larger or distributed

environments.

 5.9 Summary

This chapter outlines the implementation of a high-

performance, intelligent surveillance system that integrates

modern AI models, real-time communication, and intuitive UI

design. Each module is optimized for efficiency and

scalability, making the system a strong candidate for

deployment in smart cities, industrial zones, and other safety-

critical environments.

6. RESULTS AND EVALUATION

The intelligent surveillance system was rigorously evaluated

to assess its effectiveness in detecting emergency events such

as vehicular crashes, fire, and smoke. Testing occurred in both

simulated and semi-operational environments to validate

system performance under varied conditions.

6.1 Evaluation Metrics and Methodology

The system’s performance was evaluated using standard

metrics commonly employed in computer vision and machine

learning. Precision measured the proportion of correctly

identified positive instances, while recall assessed the

system’s ability to detect all actual positive events. The F1-

score provided a balanced harmonic mean of precision and

recall, reflecting overall detection accuracy. Latency was

recorded as the time elapsed from frame acquisition to alert

delivery, indicating real-time responsiveness. The alert

delivery rate quantified the percentage of alerts successfully

received by users. Additionally, snapshot quality was

assessed based on image resolution. To complement

quantitative measures, user feedback was gathered through

surveys focusing on usability, responsiveness, and overall

satisfaction.

6.2 Detection Performance Results

 The detection performance was evaluated for each event

class. Below are the key metrics:These results show that the

system maintained precision above 85%, with crash detection

yielding the best performance due to its distinct visual

characteristics.

6.3 Alert Transmission and Delivery Performance

Out of 500 generated alerts, 499 were successfully delivered,

achieving a 99.8% success rate. Key transmission details

include SMS delivery times ranging from 2 to 4 seconds,

email delivery within 4 to 6 seconds, and snapshot images

stored at a resolution of 640×640 pixels.

6.4 Front End Responsiveness and User Interaction

The frontend was rigorously tested under both single and

multi-stream scenarios. Results showed that detection

overlays consistently maintained frame rates above 25 FPS,

ensuring smooth video playback. Alerts appeared instantly on-

screen, accurately reflecting event types with color-coded

classifications.

6.5 User Acceptance and Satisfaction

A survey of 15 participants indicated high satisfaction:

6.6 Stress Testing and System Stability

The system underwent a continuous 6-hour stress test,

simultaneously processing three RTSP video streams. During

this period, it successfully handled 300 unique event

detections without any downtime or crashes, maintaining a

100% uptime. Memory usage remained stable throughout the

test, confirming the system’s capability for prolonged, reliable

operation under real-world conditions.

6.7 Visualization of Performance Metrics

This section includes performance visualizations for

better understanding model behavior:

Fig. 3: Precision-Confidence Curves per class (Accident, Fire,

Smoke)

Fig. 4: F1-Score vs Confidence Threshold to select the best

cutoff

Event

Type

Precision Recall F1-Score Average

Latency

Crash 0.89 0.88 0.885 < 1 second

Fire 0.87 0.84 0.855 < 1 second

Smoke 0.85 0.81 0.83 < 1 second

Criterion Average

Score

(out of 5)

Comment Summary

Ease of Use 4.7 Intuitive layout and clean UI

Detection

Responsiveness

4.8 Alerts appeared almost

instantly

Visual Clarity 4.6 Color-coded alerts improved

readability

Alert Reliability 4.7 High confidence in system

accuracy

Overall

Satisfaction

4.75 “Suitable for real-world safety

operations”

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48718 | Page 5

Fig. 4: The validation batch prediction images

6.8 Summary of Findings

The evaluation demonstrated that the proposed system is

highly effective, scalable, and ideal for real-time deployment

in safety-critical settings. Key findings include a precision

exceeding 85% across all detection categories (Accident, Fire,

Smoke), and sub-second alert latency, ensuring rapid

incident response. The alert mechanism proved robust with a

99.8% delivery reliability. The system features a user-

friendly, responsive interface that supports real-time

monitoring, while maintaining stable performance under

heavy load, highlighting its operational resilience. Positive

user feedback further confirmed its practical utility and ease

of integration into existing workflows.

These results establish the system as a robust and

intelligent surveillance solution, capable of enhancing

situational awareness and emergency responsiveness in high-

risk environments.

7. DISCUSSION

The development of the proposed intelligent surveillance

system signifies a pivotal shift in how CCTV infrastructure is

utilized—transitioning from passive observation tools to

active, real-time emergency detection platforms. This

evolution is facilitated through the integration of deep

learning-based object detection, responsive user interfaces,

and multi-channel notification systems, offering high

reliability and sub-second latency in detecting vehicular

crashes, fire outbreaks, and smoke emissions.

 A key differentiator of the system lies in its

autonomy. Unlike traditional surveillance, which depends on

human observation and is prone to fatigue or oversight, the

system independently monitors and analyzes live feeds with a

99.8% alert delivery success rate. Detection performance was

notably strong, achieving F1-scores of 0.885 for crashes,

0.855 for fire, and 0.83 for smoke, the latter affected by

environmental factors that visually resemble smoke. These

insights suggest that future models could benefit from

adaptive thresholding and scene-aware tuning.

The system’s modular design provides significant

architectural flexibility. Each core component—from

detection to alerts—is loosely coupled, allowing for seamless

upgrades. For instance, its notification layer can integrate

emergency APIs or push services without affecting other

modules. The platform’s capacity to handle multiple video

feeds concurrently makes it suitable for large-scale urban

deployments.

Pilot feedback highlighted the system's ease of use,

visual clarity, and real-time responsiveness. However,

challenges such as occasional delays in low-connectivity

regions and GPU strain with high feed volumes point to future

optimization via edge computing and model distribution.

Ethical considerations remain essential. While the

current implementation avoids biometric tracking, future

expansions must prioritize compliance with privacy standards

such as GDPR, including access controls and encryption.

Future Prospects

Several enhancements are proposed to broaden the system’s

capabilities and impact. GIS integration would enable real-

time geo-tagging and map-based visualization to aid

emergency coordination. Developing a mobile application

would provide field personnel with direct access to alerts and

live video streams. Incorporating advanced detection

modules such as behavioral recognition, crowd analysis, and

threat identification would deepen situational awareness.

Deploying the system on edge AI devices like the Jetson

Nano would facilitate operation in remote or infrastructure-

limited areas. Additionally, integrating forensic tools like

facial recognition and automatic number plate recognition

(ANPR), with strict privacy safeguards, would enhance

investigative capabilities. Leveraging user behavior

analytics powered by AI could improve alert prioritization

and optimize the user interface. Finally, fostering community

and academic collaborations would create shared safety

networks and drive ongoing innovation through research

partnerships.

8. FUTURE WORK

While the current system provides a robust framework for

real-time emergency detection, several enhancements are

envisioned to expand its utility and adaptability.

Integrating Geographic Information Systems (GIS)

for real-time geo-tagging and map-based incident

visualization could support quicker decision-making and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM48718 | Page 6

response coordination. A dedicated mobile application is

proposed for remote access to alerts, live streams, and system

controls—beneficial for campus security or industrial

monitoring.

Future versions may extend detection capabilities to

include behavioral analytics (e.g., crowd monitoring,

altercations) through pose estimation and advanced object

recognition. Edge AI deployment using devices like the

NVIDIA Jetson Nano can enable decentralized processing,

reduce latency, and improve privacy.

Additional features like facial recognition and

Automatic Number Plate Recognition (ANPR) can support

forensic applications, subject to strict data protection

standards (e.g., GDPR). Personalization features, such as

alert prioritization based on user behavior, may further

enhance usability.

Collaboration with academic and industry partners

will aid in system validation and pave the way for scalable

deployments in smart city ecosystems.

9. CONCLUSION

In an era marked by urban expansion, increased traffic, and

rising safety demands, the shift from passive surveillance to

intelligent, real-time monitoring is both timely and essential.

The system presented in this study addresses this

transformation by leveraging artificial intelligence, low-

latency communication, and intuitive interfaces to enable

automated emergency detection and rapid response.

 Central to its functionality is a YOLOv8-based deep

learning framework integrated with OpenCV for real-time

video analysis. The system successfully identifies incidents—

such as crashes, fires, and smoke—with detection accuracy

above 88% and alert latency under one second, surpassing the

limitations of manual monitoring.

The system’s modular architecture integrates several

key components to ensure seamless operation and scalability.

It features a Flask-SocketIO Python backend that handles

live inference and system control, paired with MongoDB for

persistent and scalable data storage. A responsive web

dashboard provides intuitive visualization and alert

management, while multichannel alerting is achieved through

SMS and email notifications, ensuring timely

communication across platforms.

Extensive evaluations confirmed strong system

performance, stability, and user satisfaction (4.75/5 average

rating).

Designed for versatility, the platform can serve smart

cities, industrial facilities, and campuses while supporting

future enhancements like facial recognition, behavioral

analytics, and GIS-based incident mapping.

Challenges such as poor visibility and network

dependency were noted, with future work focusing on

adaptive models and edge-based deployments. Ultimately, this

system lays the groundwork for next-generation, AI-powered

surveillance, offering a practical and scalable solution to

evolving public safety needs.

REFERENCES

1. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M.

(2020). YOLOv4: Optimal Speed and Accuracy of

Object Detection. arXiv preprint arXiv:2004.10934.

2. Jocher, G., & Ultralytics Team. (2023). YOLOv8:

Cutting-edge object detection. Retrieved from

https://github.com/ultralytics/ultralytics

3. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A.

(2016). You Only Look Once: Unified, Real-Time

Object Detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 779–788.

4. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed,

S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single Shot

MultiBox Detector. In European Conference on

Computer Vision (ECCV), 21–37.

5. Ren, S., He, K., Girshick, R., & Sun, J. (2015).

Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks. In Advances in

Neural Information Processing Systems (NeurIPS),

91–99.

6. Bradski, G. (2000). The OpenCV Library. Dr.

Dobb’s Journal of Software Tools.

7. Flask Documentation. (2023). Flask web framework.

Retrieved from https://flask.palletsprojects.com/

8. Flask-SocketIO. (2023). WebSockets for Flask.

Retrieved from https://flask-socketio.readthedocs.io/

9. MongoDB Inc. (2023). MongoDB Documentation.

Retrieved from https://www.mongodb.com/docs/

10. Twilio Inc. (2023). Twilio Programmable Messaging

API. Retrieved from

https://www.twilio.com/docs/sms/send-messages

11. EmailJS. (2023). Send emails using JavaScript.

Retrieved from https://www.emailjs.com/

12. Roboflow. (2023). Fire, smoke, and traffic accident

datasets. Retrieved from https://roboflow.com/

13. Kaggle. (2023). Traffic Surveillance and Fire

Detection Datasets. Retrieved from

https://www.kaggle.com/

14. Google Colab. (2023). Cloud-based Jupyter

Notebook environment. Retrieved from

https://colab.research.google.com/

15. CVAT (Computer Vision Annotation Tool). (2023).

Open Source Video and Image Labeling. Retrieved

from https://github.com/opencv/cvat

16. Ultralytics. (2023). YOLOv8 Model Weights and

Training. Retrieved from https://docs.ultralytics.com/

17. NVIDIA. (2023). NVIDIA Jetson Nano Developer

Kit. Retrieved from

https://developer.nvidia.com/embedded/jetson-nano

18. Raspberry Pi Foundation. (2023). Raspberry Pi 4

Technical Specs. Retrieved from

https://www.raspberrypi.com/products/raspberry-pi-

4-model-b/

19. Mozilla Developer Network. (2023). HTML5, CSS3,

and JavaScript documentation. Retrieved from

https://developer.mozilla.org/

20. Docker Inc. (2023). Containerization Platform.

Retrieved from https://www.docker.com/

21. Google Cloud Platform. (2023). Cloud Hosting

Services. Retrieved from https://cloud.google.com/

22. Amazon Web Services. (2023). AWS EC2 and S3

Services. Retrieved from https://aws.amazon.com/

23. European Union. (2018). General Data Protection

Regulation (GDPR). Retrieved from https://gdpr.eu/

http://www.ijsrem.com/
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://flask-socketio.readthedocs.io/
https://flask-socketio.readthedocs.io/
https://www.mongodb.com/docs/
https://www.mongodb.com/docs/
https://www.emailjs.com/
https://www.emailjs.com/
https://roboflow.com/
https://roboflow.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.kaggle.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://github.com/opencv/cvat
https://github.com/opencv/cvat
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano
https://developer.mozilla.org/
https://developer.mozilla.org/
https://developer.mozilla.org/
https://www.docker.com/
https://www.docker.com/
https://cloud.google.com/
https://cloud.google.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://gdpr.eu/
https://gdpr.eu/

