
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 1

A Review of Approaches for Compassionate

Checkpointing with Mobile Computing Systems

Naheeda zaib

NIMS University Rajasthan Jaipur

NIMS School of Data Science and Engineering

ABSTRACT

A distribution system is a group of autonomous entities working together to

address a challenge that cannot be addressed by any one of them alone. A

distributed system called a mobile computing device (MCD) has certain processes
that are executed on mobile nodes, whose position within the network shifts over

time. Distributed mobile systems create new problems such as mobility, poor

wireless channel bandwidth, disconnections, low battery life, and a lack of a
steady, trustworthy store on mobile nodes. The issue of fault-tolerant computation

in mobile distributed databases is discussed in this study. Checkpointing and roll-

it-back recovery are the foundations for the procedures outlined.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 2

1. INTRODUCTION

Due to their affordability, scalability, and ability to

satisfy the requirements of high-performance

computing, distributed computing and cluster

computing are widely employed—the likelihood of

failure exponentially with the number of

components increases. Understanding the types of

faults that can arise in these systems is crucial for

fault tolerance. Permanent and transitory faults are

the two basic types. Transient faults are brought on

by changes in the environment, whereas permanent

faults are brought on by long-term damage with one

or more components. Component repair or

replacement can fix permanent problems. Transient

defects are hard to find and fix since they last for a

brief period of time. As a result, fault tolerance

becomes important, especially for temporary

breakdowns in distributed systems. A system can

accomplish tasks using fault-tolerant approaches,

which include fault detection, fault localization,

fault containment, and fault recovery. Component

repair or replacement can fix permanent problems.

Transient defects are hard to find and fix since they

last for a brief period of time. As a result, fault

tolerance becomes important, especially for

temporary breakdowns in distributed systems. A

system can accomplish tasks using fault-tolerant

approaches, which include fault detection, fault

localization, fault containment, and fault recovery.

These systems include a range of computational,

communication, and storage technologies. A

system can experience a variety of fault causes,

such as hardware failure, interference from the

environment, software bugs, security breaches, and

human mistakes. Permanent and transitory defects

are the two categories into which faults may be

divided. Faults that permanently harm a particular

component of the system are known as permanent

faults. Restoration of the damaged component and

system reconfiguration is required for recovery

from permanent problems. Transient defects are

momentary and do not cause long-term harm.

Because system reconfiguration is not required,

recovery from transitory failures is easier than from

permanent issues. Transient defects might dissipate

without having any noticeable effects on the

system, making it harder to identify them [8].

Through some form of redundancy, fault tolerance

may be obtained. Redundancy may be geographical

or temporal. When a defect occurs, an application

is resumed using a previous checkpoint or recovery

point in temporal redundancy, also known as

checkpoint-restart. Applications could be unable to

fulfil rigorous time requirements, and some

processing may be lost as a result. Strict temporal

limitations can be satisfied when there is spatial

redundancy because several copies of the program

run simultaneously on various processors.

However, the expense of adopting spatial

redundancy to provide fault tolerance is relatively

expensive, and it can call for more hardware. In

scientific and industrial applications, the program's

execution must be halted and restarted from the

beginning in the event of a transitory malfunction.

As a reason, the large applications can only be

finished if the system has a long enough fault-free

period of time. If there are errors, the program's

average execution time may increase exponentially

over time. The main purpose of checkpointing is to

prevent losing any useful processing that was

completed prior to a problem. A program's state is

periodically saved in a dependable storage media as

part of checkpointing. The prior consistent

condition is restored if a problem is found.

Checkpointing allows a program's execution to be

restarted in the event of a fault. This considerably

reduces the amount of meaningful processing that

is lost due to the problem. The average

programmed execution with checkpointing only

increases linearly with programmed length [8].

Backward error recovery, also known as

checkpoint-restart, is often affordable and doesn't

need additional hardware. Checkpointing may be

utilized for process migration, distributed

application debugging, task shifting, post-mortem

analysis, and stable property identification, in

addition to fault tolerance [95].

There are two methods for recovering from

errors:

The type of mistakes and damage produced by

failures must be thoroughly and precisely analysed

in forward error correction approaches so that it is

feasible to eliminate those errors from the system.

The process's current condition allows it to proceed

[70]. It might not be feasible to accurately analyse

every failure in a distributed system.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 3

The type of failures need not be predicted when

using backward error recovery approaches, and in

the event of an error, the process's state is returned

to the prior error-free state. It doesn't depend on the

type of fault. Backward error recovery is a more

versatile recovery strategy as a result [14], [56].

Backward-error recovery consists of three phases.

These are Restart from the restored state,

Restoration in case of failure, and Periodic

checkpointing of the error-free state.

Checkpoint-restore-restart (C.R.R.) or checkpoint-

restart are other names for backward error recovery

(C.R.R.). To move the recovery line forward, the

checkpointing procedure is conducted frequently.

2. CHECKPOINTING

A checkpoint is indeed a local process state that is

kept in secure storage to enable subsequent

processing restart. Saving the status data is done by

checkpointing because of a distributed system's

processes. Share Memories defines a system's

global state as a collection of individual process-

specific local states.

 Figure 1.1 shows the global states' consistency

and inconsistency

The collection of messages transmitted but that

have not yet been received represents the state of

pathways that corresponds to a global state. A

message that was sent and recorded by the sender

but could not be received and captured by the

receiving process is referred to as being lost or in

transit. An orphaned message is one whose send

event was lost but whose receive event was

recorded. If there are no orphan messages and all

in-transit messages are logged, a global state is

considered to be "consistent." The initial global

condition of C10, C20, C30, C40, and C50 is

consistent in Figure 1.1. Because it cannot include

any orphan messages, the initial global status is

always constant. Additionally compatible with the

global state is C11, C21, C31, C41, and C51

because it is message-free and has no orphans. It

should be noticed that just by nature, m0 is in

message rather than an orphan message. Because it

contains the orphan message m8, the global state

"C12, C22, C32, C42, C52" is incoherent. M8 is

indeed an orphan message by definition. The

system resumes its execution after a failure from a

prior consistent global state that was stored on the

persistent storage throughout fault-free execution.

The calculation up to the most recent checkpointed

state is saved, and only the calculation performed

afterward has to be restarted [8], [77], [78].

A system has to be brought back to a stable

condition after a failure. Irrespective of the velocity

vector of unit operations, any system state is

essentially consistent if that would have happened

throughout the operation of the plan that came

before it from its beginning state. This is based on

the presumption that the system would operate

flawlessly throughout [8]. It has been demonstrated

that for two local checkpoints to adhere to the same

cohesive and comprehensive checkpoint, they must

be causally unrelated to each other. In order to catch

both their causation and hidden connections, Netzer

and Xu [62] presented the idea of a Z-path between

local checkpoints as the first solution to this issue.

The rollback is based on checkpoints and

communication patterns. It is a requirement of

property that there be no covert relationship among

local checkpoints [11]. A system state must be

recoverable together with each of its separate

process states. Thus, a recoverable process variable

is a coherent system state whereby each process

state may be restored.

A distributed system's processes interact with one

another by exchanging messages. A process can

only record its very own state and the

communications it delivers and receives. A

procedure that determines the overall system status.

Other processes must cooperate with Pi by

recording their respective local states and sending

those records to Pi. It is impossible for all processes

to record the local states at the exact same time.

Unless they are able to use a shared clock,

processes are assumed not to share memory or

clocks. The challenge is to provide algorithms that

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 4

enable processes to record their own states as well

as the states of channels of communication,

forming a global system state from the collection of

recorded processes and channel states. The

underlying calculation is to be overlaid by the

dynamic memory detection algorithm, which must

operate concurrently with it without changing it

[22].

A state detection method assumes the role of a team

of photographers viewing a vast, dynamic picture

that is too large to be recorded by a single shot, such

as a sky full of migratory birds. To create a view of

the overall scene, the photographer must take many

photos and combine them. Due to synchronization

issues, all pictures cannot be generated at the exact

same moment. Additionally, the process being

captured shouldn't be disturbed by the

photographers. However, the whole image ought to

have significance. We must first decide what is

significant before deciding how to shoot the images

[22]. Because any random collection of

checkpoints cannot be utilized for recovery, setting

a checkpoint in a message-passing distributed

system is a challenging challenge [22], [77], [78].

This is because the collection of checkpoints in use

for recovery has to create a stable global state.

Depending on the programmer's involvement

throughout the checkpointing procedure, the

categorization for backward error recovery might

be:

Checkpoints Triggered by the User Checkpointing

Transparency

Human-triggered checkpointing strategies

necessitate user input while helping to lower the

amount of reliable storage needed [27]. These are

often used in situations where the user is aware of

the calculation being done and has control over

where the checkpoints should be placed. The user's

ability to locate the checkpoint is the key issue.

The following categories can be used to group

transparent checkpointing solutions that don't

involve user interaction:

1.1 Uncoordinated Checkpointing

Processes need not synchronize their checkpointing

activities in disorganized or independent

checkpointing, and each process independently

records its local checkpoint [14], [86], [96]. It gives

each process the greatest degree of autonomy in

determining when to take a checkpoint, allowing

each process to do so whenever it is most practical.

On recovery following a defect, it completely

removes coordination overhead and creates a

global sustainability state [14]. By monitoring the

dependencies, a reliable global checkpoint is

created following a failure. Due to the domino

effect, it could need cascaded rollbacks that might

return the system to its starting state [44], [77],

[78].

Each process must have numerous checkpoints

saved, and the garbage collection mechanism is

regularly used to recover those checkpoints which

are no longer required. An unnecessary checkpoint

that would never be a part of the consistent global

state may be taken by a process under this system.

Checkpoints that are unnecessary cause overhead

without moving the recovery line forward [27].

 Fig. 1.2 The domino effect

The domino effect [Figure 1.2] is this strategy's

biggest drawback. In this illustration, operations P1

and P2 had taken a series of checkpoints separately.

There is only one consistent checkpoint for P1 and

P2, the first one at "C10, C20," due to the

interleaving of messages and checkpoints. P1 and

P2 must thus restart the computation from the

beginning once P1 fails [44]. It should be

highlighted that orphan message m1 is the cause of

the inconsistent global state "C11, C21." The

orphan message m4 also causes the global state

"C12, C22" to be inconsistent.

2.2 Co-ordinated checkpointing

When checkpoints are taken during coordination or

synchronous checkpointing, the resultant global

state is consistent. The commit structure is often

two-phase [22], [28], [44]. Processes establish

provisional checkpoints in the first stage, and in the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 5

second stage, they are made permanent. The key

benefit is that no more than one tentative

checkpoint or one permanent checkpoint has to be

stored. Processes roll back to the last checkpointed

state in the event of a malfunction. A permanent

checkpoint is irreversible. It ensures that the

calculations required to arrive at the checkpoint

state won't be repeated. However, a temporary

checkpoint can be changed to a permanent one or

reversed.

Blocking communication while the synchronized

checkpointing protocol is running is a simple

solution [88]. The coordinator performs a

checkpoint and transmits a message to everyone's

operations requesting that they do a checkpoint.

Upon receiving the message, a process halts all

executions, flushes all communication channels,

executes a provisional checkpoint, and then replies

to the coordinator with an acknowledgment

message. The coordinator broadcasts a

commitment message to end its two-phase

checkpoint method after receiving recognitions

from all processes.

When a process receives a commit, it turns its

speculative checkpoint into a permanent one and, if

any, discards its previous permanent checkpoint.

After that, the process is free to continue running

and communicate with other processes.

Blocking and non-blocking coordinated

checkpointing techniques may be categorized into

two groups. As was before established,

checkpointing in blocking algorithms causes some

process blocking [44], [88].

There is no need to block processes when using

non-blocking algorithms [22], [28]. The two

categories listed below can also be used to group

coordinated checkpointing algorithms: minimal

and total processes algorithms. Every process must

take its checkpoint in an initiation when using all-

process coordinated checkpointing techniques [22],

[28]. Minimum interacting processes must take

their checkpoints during an initiation in minimum-

process algorithms [44].

2.3 Communication-Induced or Quasi-

Synchronous Checkpointing
Without requiring that every checkpoint be

coordinated, communication-induced

checkpointing prevent the domino effect [12], [33],

[55]. These protocols use local and forced

checkpoints for their procedures. Locally

checkpoints can be made on their own, but enforced

checkpoints must be made to ensure the recovery

line moves forward ultimately and to reduce

pointless checks. In contrast to synchronized

checkpointing, these procedures don't

communicate specifically to coordinate when

enforced checkpoints must be taken. However, they

tack on protocol-specific data to every application

message (often checkpoint sequence numbers), and

the receiver utilizes this data to determine whether

to take a forced checkpoint or not. The receiver's

assessment of whether previous interaction and

checkpoint tendencies can result in the

establishment of pointless checkpoints informs this

choice; a forceful checkpoint would then be

implemented to disrupt these tendencies [27], [55].

2.4 Protocols for Message Logging-Based

Checkpointing

For example, [3], [4], [5], [6], [9], [29], [30], [40],

[74], [87], [90], [91], [92], [93] are message-

logging protocols that are frequently used to create

systems that can withstand process crash failures.

In distributed systems where message-based inter-

process communication is the only form of

communication, message log and checkpointing

could be employed to offer fault tolerance. A

process logs every message it receives on stable

storage in the message log. There is no need for

coordination between messages log and

checkpointing or even between checkpointing of

various processes. All processes are considered to

run on fail-stop processes, with each process'

execution being presumed to be predictable

between received messages.

A fresh process is started in the event of a process

crash. The relevant recorded local state is

transferred to the new process, and the logged

message is then played it back in the sequence in

which they were initially received by the process.

When a wrecked process restarts, it must have a

state that is compatible with both the state of all the

other processes, according to all message-logging

protocols [27], [98]. This requirement for

consistency is usually described in terms of orphan

operations, which are survivor processes with states

that differ from the restored state of crashing

processes. Therefore, message-logging techniques

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 6

ensure that no activity is an orphan upon recovery.

This criterion can be implemented in one of two

ways: either by taking suitable measures during

recovery to destroy all orphans, as optimistic

protocols would, or by preventing the production of

orphans when in execution, as do pessimistic

protocols. For mobile hosts, mobile support

stations, and the home agent in an Ip Based

environment, Bin Yao et al. [98] provide a receiver-

based message recording protocol that ensures

independent recovery. The use of checkpointing

helps to reduce recovery latency and log size.

CHECKPOINTING PERSPECTIVES

3.1 Checkpoint Recurrence

The fundamental calculation is run concurrently

with a checkpointing technique. Therefore,

checkpointing overheads should be kept to a

minimum. Checkpointing should make it possible

for a user to recover fast and avoid losing a

considerable amount of computation in the event of

a mistake, which calls for frequent checkpointing

and subsequently significant overhead. The number

of checkpoints launched will be such that the

overhead associated with checkpointing is

negligible, and the cost of data losses caused by the

failure is low. These are influenced by the

likelihood of failure and the value of computation.

A checkpoint could be performed after every

operation in a transaction processing system, for

instance, if every transaction is crucial and

information loss is not allowed [42]. This

dramatically increases checkpoint overhead.

3.2 Checkpoint Contents
In order to resume a process in the event of a

mistake, its state must be preserved in a reliable

storage location. Including the ambient and the

contents of the registers, the state/context also

contains portions of code, data, and the stack. The

environment contains the file pointers and details

of the different files that are currently in use.

Environment variables include messages that have

been delivered but have not yet been received in

message-passing systems. The backdrop of that

operation [42] is the knowledge required to

continue an operation after it has been pre-empted.

 3.3 Checkpointing Algorithm Overheads

 Every global checkpoint during a failure-free run

in a multiprocessor system results in coordination

cost and context-saving overhead. To achieve a

consistent global state in parallel/distributed

systems, process coordination is necessary. To

achieve process coordination, special messages and

information that is piggybacked onto conventional

communications are employed. Piggybacked

information and specific control messages cause

coordination overhead. The bookkeeping tasks

required to keep coordination in place also add to

its overhead. The overhead associated with context

saving is the amount of time needed to save a

computation's overall context. The context is

transported via the network in a compute node if

reliable storage is not present on every node. The

overhead also includes the delay in network

transmission [42].

3.4 Checkpointing in Practice

Checkpointing is used to migrate processes in

multiprocessor systems and debug distributed

programs in addition to recovering from errors.

When debugging distributed applications, it's

important to keep track of how a process's state

changes over time. Checkpoints help with this kind

of monitoring. Processes are transferred from

processors that are significantly loaded to

processors that are less loaded in order to balance

the load on the distributed system's processors. A

process can be moved from one computer to

another by regularly checkpointing it [42]. Without

having to start the program again from scratch,

checkpointing allows for the extraction of any

temporal segment of the runtime for thorough study

[26].

3.5 Complementary Ideas

It becomes challenging to have a complete ordering

of events when processes communicate with one

another by exchanging messages because

dependencies are established among the events of

various processes. In order to obtain the expected

occurrences in a distributed network, Lamport [52]

suggested a relation termed "happened before"

(denoted by). This relationship is transitive,

antisymmetric, and irreflexive.

If events a and b are part of the same system and a

happens-before b, then ab. If the event and is the

sending of a message and event b is the receipt of

that same message, then ab. If and only if a does not

occur before b and b does not occur before a, two

occurrences, a and b, are said to be

contemporaneous. Local checkpoints are occasions

where the condition of a process on a processor is

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 7

recorded at a certain moment. A number of the

fellow checkpoint, one from each phase, make up a

global checkpoint. If every event is part of a

concurrent set, the global position is shown to be

consistent. A set of local checkpoints—one from

each process—that are all synchronous with one

another constitutes a consistent global checkpoint.

Resuming or recovering a calculation from a

cohesive and comprehensive checkpoint is known

as rollback recovery.

 Calculation messages, or just messages, are

the outputs of the underlying computation and are

identified by the letters mi or m. Pi indicates the

processes. The calculation between a process's ith

and (i+1)th checkpoints, such as the ith checkpoint

but excluding the (i+1) the checkpoint, is

represented as the process' ith CI.

A course of action Pi is only directly dependent on

Pj if m exists such that I Pi received m sent out by

Pj (ii) Pi really hasn't reached a lasting checkpoint

after receiving m (iii), and (iv) Pj has not reached a

lasting checkpoint before sending m. A bit array of

fixed length for n operations can hold direct

dependencies at Pi. [Say ddvi[j]. Pi is implied to be

directly reliant on Pj by the statement ddvi[j]=1

relationship between processes and minimal set

computation [48], [64].

1. CONNECTED WORK
Several studies have been published on fault-

tolerant checkpointing, according to a literature

review. The bulk of them was developed by

loosening up several of Chandy and Lamport's

(1985) assumptions; the main objective of

enhancing the previous extensions of Chandy &

Lamport's (1985) algorithm was to reduce the

operating costs of coordinating among activities in

a multicore processor. To maintain consistent

memory, a small number of techniques have been

developed to checkpoint shared-memory

multiprocessors. These algorithms essentially

expand cache coherence protocols. These

algorithms don't store context to disc and presume

that the main memory is secure. Recently, methods

for distributed shared memory systems have been

put forth. For checkpoints in these systems, it is

also crucial to maintain the cache cohesion of the

virtual global memory. It is important to store main

memory contents in a disc since physical memory

is spread. Therefore, compared to shared-memory

systems, contextual saving latency is larger. We

also note that the majority of techniques make no

assumptions on prior program structure knowledge

intended for multiprocessor execution. Based on

the presumption that hosts' locations in the network

don't vary and their connectivity is constant in the

absence of faults, techniques for distributed

applications and their communications expenses

have been designed. These presumptions are now

invalid due to the development of smartphones.

Furthermore, the power consumption of mobile

hosts is strictly regulated, and the wireless

connections that connect M.H.s to the local M.S.S.s

have a certain amount of bandwidth.

One of the earliest non-blocking, all-process

coordinated checkpointing algorithms for static

nodes is the Chandy-Lamport [22] technique. This

approach sends markers through every channel in

the network, resulting in an O(N2) message

complexity and necessitating FIFO channel

ordering. Lai and Yang [50] suggested a method to

loosen the FIFO assumption. When a process enters

a checkpoint in this method, the piggybacks a

signal onto the message that sends out through each

channel. Before processing the message, the

receiver looks just at the piggybacked flag to see

whether a checkpoint is necessary. If so, a

checkpoint is performed before the message is

processed in order to prevent inconsistency. Each

process must save the whole past messages on

every route as part of local checkpoints in order to

capture the channel information. All procedures

must include checkpoints. An all-process non-

blocking synchronous checkpointing technique

with message complexity of O was proposed by

Elnozahy et al. (N). They reduce the requirement

for processes to be halted during checkpointing by

identifying orphan messages using checkpoint

sequence numbers. This strategy, however,

necessitates communication between the initiator

and every processing process. The processes that

did not connect with one another during the last

checkpointing period need not take fresh

checkpoints in the method presented by Silva &

Silva [85]. Both of these techniques [28], [85]

presuppose that a notable initiator chooses the

appropriate time to start the checkpointing

operation. As a result, they experience the

drawbacks of centralized algorithms, such as one-

site failure, traffic jams, etc.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 8

 The method described by Leu & Bhargava [51]

does not presume that the channels are FIFO, which

is a prerequisite in [44] and is robust to many

process failures. However, these two techniques

[44] and [51] presume a sliding window type of

scheme to address the message loss problem and do

not take into account lost data in checkpointing and

recovery. An algorithm was put out by Dang and

Park [25] to deal with both lost and orphaned

communications. A synchronized checkpointing

strategy was initially suggested in the article [15].

It makes an overly restrictive presumption that

almost all communications are atomic. The premise

that all communications are atomic is relaxed by

the minimal level coordinated checkpointing

protocol introduced by Koo-Tong [44]. Both the

number of checkpoints and synchronization

messages is decreased. Only if it has communicated

with Pi in the current CI the initiator process will

send the checkpoint request. Similar to this, Pi will

only make checkpoints demand to a process Pj if Pj

has sent some m to Pi during the current CI. A

synchronization tree is created in this manner, and

the leaf node operations on a tree finally take their

checkpoints. Due to movement, disconnections,

and unstable wireless channels, coordinated

checkpoint collection may take too long in mobile

systems. Due to the processes' heavy stalling during

checkpointing, the system's performance may

suffer.

 For mobile systems, Cao and Singhal [19] devised

the minimum-process blocking technique.

Comparing this approach to [44], blocking time is

drastically decreased. For n processes, each process

keeps track of its direct dependents inside a bit

array of length n. The initiator process computes

the smallest set by gathering all of the processes'

direct dependence vectors. The checkpoint request

and the minimum set are then communicated to all

processes. A situation remained in the blocking

phase during the time when it transmits its

dependence vectors to the initiating processes and

receives the minimal set. If a process falls under the

minimum specified, it will reach its checkpoint.

According to the algorithm [44], if some important

process in initiation is unable to reach its

checkpoint, the whole checkpointing procedure for

that specific initiation is halted. An improved

method to handle checkpointing failures was put

forth by Kim and Park [45]. It enables some

subtrees' new checkpoints to be committed. A

procedure commits its preliminary checkpoint

according to the method if none of the processes on

which it transitively depends fail. For those

operations that committed their checkpoints, the

continuous recovery line is advanced. The initiator

and any other processes that depend transitorily just

on failing processes must abandon any tentative

checkpoints. As a result, complete checkpointing

abortion in the event of component failures is

prevented. Loosely synchronized clocks are

utilized [23], [63], [79], and [84] to further

minimize the system messages required to

synchronize the checkpointing. A coordinated

checkpointing strategy that is loosely synchronized

by Neves et al. [63] eliminates the overhead

associated with synchronizing. According to this

method, the processes' clocks are only weakly

synced. Without a coordinator, clocks that are

loosely synced may trigger all local checks at all of

the processes nearly at the same time.

 A procedure waits for a duration after setting a

checkpoint, which is equal to the maximum amount

of time needed to detect another program in the

system failing and the maximum time allowed for

clocks to differ. It is presumed that all checkpoints

associated with a certain coordinating session have

indeed been completed without the requirement of

sending any messages. The protocol is terminated

if a failure is discovered within the allotted period.

A tool-aided method was developed by Sinha and

Ren [75]. A technique for a timestamp-based

checkpointing protocol's formal verification.

All of the aforementioned methods make an effort

to minimize the overhead caused by coordinated

checkpointing. The quantity of synchronization

messages is kept to a minimum, checkpoint

procedures are kept to a minimum [19], [44], and

non-intrusive techniques are produced [22], [28].

The aforementioned algorithms are either non-

intrusive or minimum-process.

The first minimal-process non-intrusive

coordinated checkpointing mechanism for mobile

distributed systems was proposed by Prakash and

Singhal [72]. However, their algorithm could

produce contradictions [19]. It was established in

[19] that no minimal-process non-intrusive

coordinated checkpointing technique exists.

Therefore, some process blocking or pointless

checkpoints are taken in minimal level

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 9

synchronized checkpointing algorithms [19], [44],

[20], [48], and [64]. We may need to piggyback the

numeric C.S.N. (checkpoints sequence number) on

top of the regular messages in synchronized

checkpointing protocols [20], [21], [28], [64], and

[48]. For distributed systems, L. Kumar et al. [47]

suggested some all non-intrusive checkpointing

protocols in which just one bit is piggybacked onto

regular communications. This is accomplished by

adding extra overhead for vector transfer during

checkpointing.

The idea of changeable checkpoints was introduced

by Cao & Singhal [20] to achieve quasi in the

minimal level approach. According to their

methodology, an initiator, such as Pin, will only

send a checkpoint demand to any process, such as

Pj, if Pin has already received m from Pj within the

current CI. If Pj has transmitted m to Pins in the

current CI, Pj accepts its tentative checkpoint; if

not, Pj determines that the request for a checkpoint

is pointless. Similar to this, when Pj takes its

provisional checkpoint, it broadcasts the request for

a checkpoint to other processes.

The checkpointing tree is constructed as a result of

continuing this procedure until the checkpoint

request reaches all of the operations upon which the

initiator transitively depends. When checkpointing,

Pi could be required to take a checkpoint known as

a mutable checkpoint if Pj sends m and Pj has

already taken several checkpoints inside the current

commencement before sending m. Pi's mutable

checkpoint is worthless if it is not in the minimum

threshold and is deleted on commit. In order to cut

down on the number of pointless checkpoint

requests, the enormous data structure M.R. [] is

additionally connected with the checkpoint

requests. Each procedure immediately sends the

initiator its response.

Using the method suggested in [73], this algorithm

[20] has already been constructed to support

concurrent executions. The Cao-Singhal method

[20] may result in inconsistencies during

concurrent executions, as Ni et al. [61] have

demonstrated. The algorithm suggested in [20] was

revised by the authors [61] to support concurrent

executions. In rare circumstances [48], the number

of pointless checkpoints in [20] could be quite

large.

By maintaining non-intrusiveness, L. Kumar et al.

[48] & P. Kumar et al. [64] decreased the depth of

the synchronization tree as well as the number of

pointless checkpoints, though at the added expense

of maintaining and gathering physical dependence

vectors, computer technology the minimum set,

and transmitting that on the deterministic system

including the checkpoint proposal. In method [48],

Pi analyzes m sent by Pj whether any of the

following circumstances are true before

transmitting the dependency vector and before

getting the minimal set:

Since Pj is a direct dependant of Pi, Pj did not

perform any checkpoints for such current

commencement prior to transmitting m.

After transmitting m, Pj has made several long-

term checkpoints.

Pi has already completed its generated checkpoint

for the ongoing start.

For this initiation, Pi has already reached its

induced checkpoint.

Since the most recent committed checkpoint, Pi did

not send any messages.

Otherwise, before processing m, Pi performs its

induced checkpoint, which is comparable to a

mutable checkpoint.

Pi removes its preliminary checkpoint or changes

any induced checkpoints it has into a tentative one

if, after obtaining the minimal set, it discovers it

was not a component of the minimum set. This

approach does not create a checkpointing tree. If a

process is in the minimal set when it receives the

minimum set, the algorithm [64] instructs it to take

its tentative checkpoint; else, it rejects the requests.

If a process Pi is directly reliant on a process Pj and

Pj is not included in the calculated minimum set; Pi

transmits the checkpoint demand to Pj when Pi

performs its tentative checkpoint. When Pi gets m

via Pj, Pi only performs its triggered checkpoints

before executing m if the following criteria are

satisfied: I Pj checked a few things during the

present commencement before sending m. (ii) Pi

really hasn't taken any checkpoints during this

initiation (iii) Pi has transmitted at most one

message since the last permanent checkpoint. If Pi

discovers that it isn't a member of the group upon

commit, Pi dismisses its inspired checkpoints, if

any, if it discovers it was not a part of the minimal

set. In essence, the strategies suggested in [64] and

[48] aim to reduce the amount of time a process

may be compelled to wait before taking its

induced/mutable checkpoint. The quantity of

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 10

pointless checkpoints is automatically decreased by

shortening this duration.

The asynchronous checkpointing approach was put

up by Acharya and Badrinath [1] for distributed

systems on mobile distributed applications. For not

using synchronized checkpointing for mobile

systems, they provided the following justifications:

Due to a Chandy Lamport [22] type of algorithm,

M.H.s must respond to queries along every

incoming connection, which results in 1) a high

cost of identifying M.H.s and 2) non-availability of

such local checkpoint of a detached M.H.

throughout synchronized checkpointing. Every

time a message receipt at a node is accompanied by

a messaging broadcast, an M.H. is required by [1]

to take its checkpoint. The number of local

checkpoints would be equivalent to half the number

of calculation messages if the transmitter and

receiver messages are interleaved. This will

probably result in extremely significant

checkpointing overhead.

REFERENCES

[1] Acharya A. and Badrinath B. R., "Checkpointing Distributed Applications on Mobile Computers,"

Proceedings of the 3rd International Conference on Parallel and Distributed Information Systems, pp. 73-80,

September 1994.

[2] Acharya A., "Structuring Distributed Algorithms and Services for networks with Mobile Hosts", Ph.D.

Thesis, Rutgers University, 1995.

 [3] Alvisi, Lorenzo and Marzullo, Keith, "Message Logging: Pessimistic, Optimistic, Causal, and Optimal",

IEEE Transactions on Software Engineering, Vol. 24, No. 2, February 1998, pp. 149-159.

[4] L. Alvisi, Hoppe, B., Marzullo, K., "Nonblocking and Orphan-Free message Logging Protocol," Proc. of

23rd Fault-Tolerant Computing Symp., pp. 145-154, June 1993.

[5] L. Alvisi, "Understanding the Message Logging Paradigm for Masking Process Crashes, "Ph.D. Thesis,

Cornell Univ., Dept. of Computer Science, Jan. 1996. Available as Technical Report TR-96-1577.

[6] L. Alvisi and K. Marzullo, "Tradeoffs in implementing Optimal Message Logging Protocol", Proc. 15th

Symp. Principles of Distributed Computing, pp. 58-67, A.C.M., June, 1996.

[7] Adnan Agbaria, William H Sanders, "Distributed Snapshots for Mobile Computing Systems", IEEE Intl.

Conf. PERCOM "04, pp. 1-10, 2004.

[8] Avi Ziv and Jehoshua Bruck, "Checkpointing in Parallel and Distributed Systems", Book Chapter from

Parallel and Distributed Computing Handbook edited by Albert Z. H. Zomaya, pp. 274-302, Mc Graw Hill,

1996.

[9] A. Borg, J. Baumbach, and S. Glazer, "A Message System Supporting Fault Tolerance", Proc. Symp.

Operating System Principles, pp. 90-99, ACM SIG OPS, Oct. 1983.

[10] Adnan Agbaria, William H. Sanders, "Distributed Snapshots for Mobile Computing Systems",

Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (Percom"

04), pp. 1-10, 2004.

[11] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., "Rollback Dependency Trackability: A Minimal

Characterization and its Protocol", Information and Computation, 165, pp. 144-173, 2003.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 11

[12] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., "A Communication- Induced Checkpointing

Protocol that Ensures Rollback-Dependency Trackability," Proceedings of the International Symposium on

Fault-Tolerant-Computing Systems, pp. 68-77, June 1997.

[13] Bhagwat P., and Perkins, C.E., "A mobile Networking System based on Internet Protocol (I.P.)",USENIX

Symposium on Mobile and Location-Independent Computing, August 1993.

[14] Bhargava B. and Lian S. R., "Independent Checkpointing and Concurrent Rollback for Recovery in

Distributed Systems-An Optimistic Approach," Proceedings of 17th IEEE Symposium on Reliable Distributed

Systems, pp. 3- 12, 1988.

[15] G. Barigazzi and L. Strigni, "Application-Transparent Setting of Recovery Points", Digest of Papers

Fault-Tolerant Computing Systems-13, pp. 48-55, 1983.

[16] Badrinath B. R, Acharya A., T. Imielinski "Structuring Distributed Algorithms for Mobile Hosts", Proc.

14th Int. Conf. Distributed Computing Systems, June 1994.

 [17] Badrinath B. R, Acharya A., T. Imielinski "Designing Distributed Algorithms for Mobile Computing

Networks", Computer Communications, Vol. 19, No. 4, 1996.

[18] Cao G. and Singhal M., "On coordinated checkpointing in Distributed Systems", IEEE Transactions on

Parallel and Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998.

[19] Cao G. and Singhal M., "On the Impossibility of Min- process Non-blocking Checkpointing and an

Efficient Checkpointing Algorithm for Mobile Computing Systems," Proceedings of International Conference

on Parallel Processing, pp. 37-44, August 1998.

[20] Cao G. and Singhal M., "Mutable Checkpoints: A New Checkpointing Approach for Mobile Computing

systems," IEEE Transaction On Parallel and Distributed Systems, vol. 12, no. 2, pp. 157-172, February 2001.

[21] Cao G. and Singhal M., "Checkpointing with Mutable Checkpoints", Theoretical Computer Science,

290(2003), pp. 1127-1148.

[22] Chandy K. M. and Lamport L., "Distributed Snapshots: Determining Global State of Distributed

Systems," A.C.M. Transaction on Computing Systems, vol. 3, No. 1, pp. 63- 75, February 1985.

[23] F. Cristian and F. Jahanian, "A timestamp-based Checkpointing Protocol for Long-Lived Distributed

Computations", Proc IEEE Symp. Reliable Distributed Systems, pp. 12-20, 1991.

[24] David R. Jefferson, "Virtual Time", A.C.M. Transactions on Programming Languages and Systems, Vol.

7, NO.3, pp 404-425, July 1985.

[25] Dang Y., Park, E.K. , "Checkpointing and Rollback- Recovery Algorithms in Distributed Systems",

Journal of Systems and Software, pp. 59-71, April 1994.

[26] Dieter Kranzlmuller, Nam Thoai, Jens Volkert, "Error Detection in Large Scale Parallel Programs with

Long runtimes, Future Generation Computer Systems 19, pp. 689- 700, 2003.

[27] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., "A Survey of Rollback-Recovery Protocols in

Message-Passing Systems," A.C.M. Computing Surveys, vol. 34, no. 3, pp. 375- 408, 2002.

[28] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., "The Performance of Consistent Checkpointing,"

Proceedings of the 11th Symposium on Reliable Distributed Systems, pp. 39-47, October 1992.

[29] Elnozahy and Zwaenepoel W, "Manetho: Transparent Roll-back Recovery with Low-overhead, Limited

Rollback and Fast Output Commit," IEEE Trans. Computers, vol. 41, no. 5, pp. 526-531, May 1992.

[30] Elnozahy and Zwaenepoel W, “ On the Use and Implementation of Message Logging,” 24th int‟l Symp.

Fault-Tolerant Computing, pp. 298-307, IEEE Computer Society, June 1994.

 [31] George H. Forman and John Zahorjan, "The Challenges of Mobile Computing", IEEE Computers vol.

27, no. 4, April 1994, pp. 38-47.

[32] Richard C. Gass and Bidyut Gupta, "An Efficient Checkpointing Scheme for Mobile Computing

Systems", European Simulation Symposium, Oct 18-20, 2001, pp. 1-6.

[33] Hélary J. M., Mostefaoui A. and Raynal M., "Communication-Induced Determination of Consistent

Snapshots," Proceedings of the 28th International Symposium on Fault-Tolerant Computing, pp. 208-217,

June 1998.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 12

[34] Higaki H. and Takizawa M., "Checkpoint-recovery Protocol for Reliable Mobile Systems," Trans. of

Information processing Japan, vol. 40, no.1, pp. 236-244, Jan. 1999.

[35] Higaki H. and Takizawa M., "Recovery Protocol for Mobile Checkpointing", IEEE 9th International

Conference on Database Expert Systems Applications, Viena, pp. 520-525, 1998

[36] Higaki H. and Takizawa M., "Checkpoint Recovery Protocol for Reliable Mobile Systems", 17th

Symposium on Reliable Distributed Systems, pp. 93-99, Oct. 1998.

[37] Ioannidis, J., Duchamp, D., and Maguire, G.Q., "IP-based protocols for Mobile Internetworking", In Proc.

of ACM SIGCOMM

 Symposium on Communications, Architectures, and Protocols, pp. 235-245, September 1991.

[38] Johnson, D.B., Zwaenepoel, W., "Sender-based message logging", In Proceedings of 17th international

Symposium on Fault-Tolerant Computing, pp 14-19, 1987.

[39] Johnson, D.B., Zwaenepoel, W., "Recovery in Distributed Systems using optimistic message logging and

checkpointing. In 7th A.C.M. Symposium on Principles of Distributed Computing, pp 171-181, 1988.

[40] D. Johnson, "Distributed System Fault Tolerance Using Message Logging and Checkpointing," Ph.D.

Thesis, Rice Univ., Dec. 1989.

[41] JinHo Ahn, Sung-Gi Min, Chong-Sun Hwang, "A Causal Message Logging Protocol for Mobile Nodes

in Mobile Computing Environments", Future Generation Computer Systems 20, pp 663-686, 2004.

[42] Kalaiselvi, S., Rajaraman, V., "A Survey of Checkpointing Algorithms for Parallel and Distributed

Systems", Sadhna, Vol. 25, Part 5, October 2000, pp. 489-510.

[43] Kistler, J., and Satyanarayana, M., "Disconnected Operation in the Coda file system", A.C.M. Trans. on

Computer Systems 10, 1 (Feb. 1992).

[44] Koo R. and Toueg S., "Checkpointing and Roll-Back Recovery for Distributed Systems," IEEE Trans.

on Software Engineering, vol. 13, no. 1, pp. 23-31, January 1987.

[45] J.L. Kim, T. Park, "An efficient Protocol for checkpointing Recovery in Distributed Systems," IEEE

Trans. Parallel and Distributed Systems, pp. 955-960, Aug. 1993.

[46] Kyne-Sup BYUN, Sung_Hwa L.I.M., Jai-Hoon K.I.M., "Two- Tier Checkpointing Algorithm Using

M.S.S. in Wireless

 Networks", IEICE Trans. Communications, Vol E86-B, No. 7, pp. 2136-2142, July 2003.

[47] L. Kumar, M. Misra, R.C. Joshi, "Checkpointing in Distributed Computing Systems" Book Chapter

"Concurrency in Dependable Computing", pp. 273-92, 2002.

[48] L. Kumar, M. Misra, R.C. Joshi, "Low overhead optimal checkpointing for mobile distributed systems"

Proceedings. 19th IEEE International Conference on Data Engineering, pp 686 – 88, 2003.

[49] Lalit Kumar, Parveen Kumar, R K Chauhan, "Logging based Coordinated Checkpointing in Mobile

Distributed Computing Systems", IETE Journal of Research, vol. 51, no. 6, pp. 485-490, 2005.

[50] T.H. Lai and T.H. Yang, "On Distributed Snapshots", Information Processing Letters, vol. 25, pp. 153-

158, 1987.

[51] P.J. Leu and B.Bhargawa, "Concurrent Robust Checkpointing and Recovery in Distributed Systems",

Proceeding Fourth Intl Conf. Data Engg. Pp. 154-163, Feb. 1988.

[52] L. Lamport, "Time, clocks and ordering of events in a distributed system" Comm. A.C.M., vol.21, no.7,

pp. 558- 565, July 1978.

[53] Lalit Kumar, Parveen Kumar, R K Chauhan, "Pitfalls in Minimum-process Coordinated Checkpointing

protocols for Mobile Distributed", ACCST Journal of Research, Volume III, No. 1, 2005 pp. 51-56.

[54] Lalit Kumar, Parveen Kumar, R K Chauhan, "Message Logging and Checkpointing in Mobile

Computing", Journal of Multi-disciplinary Engineering Technologies, Vol.1, No.1, 2005, pp. 61-66.

[55] Manivannan D. and Singhal M., "Quasi-Synchronous Checkpointing: Models, Characterization, and

Classification," IEEE Trans. Parallel and Distributed Systems, vol. 10, no. 7, pp. 703-713, July 1999.

[56] Manivannan D., Netzer R. H. and Singhal M., "Finding Consistent Global Checkpoints in a Distributed

Computation," IEEE Transactions on Parallel & Distributed Systems, vol. 8, no. 6, pp. 623-627, June 1997.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 13

[57] Yoshifumi Manabe, "A Distributed Consistent Global Checkpoint Algorithm for Distributed Mobile

Systems", 8th Int" l Conference on Parallel and Distributed Systems", pp. 125-132, 2001.

[58] Mannivannam, D., Singhal, M., "Failure Recovery based on Quasi-Synchronous Checkpointing in Mobile

Computing Systems", In T.R. No. OSU-CISRC-7/96-TR-36, Dept of Computer and Information Science, The

Ohio State University, 1996.

[59] Mannivannam, D., Singhal, M., "A Low overhead Recovery Techniques using Quasi Synchronous

Checkpointing", Proc. 16th int "l conf. Distributed Computing Systems, pp 100-107, May 1996.

[60] Yoshinori Morita, Kengo Hiraga and Hiroaki Higaki, "Hybrid Checkpoint Protocol for Supporting

Mobile-to-

 Mobile Communication", Proc. Of the International Conference on Information Networking, 2001.

[61] Ni, W., S. Vrbsky and S. Ray, "Pitfalls in Distributed Nonblocking Checkpointing", Journal of

Interconnection Networks, Vol. 1 No. 5, pp. 47-78, March 2004.

[62] Netzer, R.H. and Xu,J , "Necessary and Sufficient Conditions for Consistent Global Snapshots", IEEE

Trans. Parallel and Distributed Systems 6,2, pp 165-169, 1995.

[63] Neves N. and Fuchs W. K., "Adaptive Recovery for Mobile Environments," Communications of the

A.C.M., vol. 40, no. 1, pp. 68-74, January 1997.

[64] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta "A Non-Intrusive Minimum Process

Synchronous Checkpointing Protocol for Mobile Distributed Systems" Proceedings of IEEE ICPWC-2005,

January 2005.

[65] Parveen Kumar, Lalit Kumar, R K Chauhan, "A low overhead Non-intrusive Hybrid Synchronous

checkpointing protocol for mobile systems", Journal of Multidisciplinary Engineering Technologies, Vol.1,

No. 1, pp 40-50, 2005.

[66] Parveen Kumar, Lalit Kumar, R K Chauhan, "Synchronous Checkpointing Protocols for Mobile

Distributed Systems: A Comparative Study", International Journal of information and computing science,

Volume 8, No.2, 2005, pp 14-21.

[67] Parveen Kumar, Lalit Kumar, R K Chauhan, "A Hybrid Coordinated Checkpointing Protocol for Mobile

Computing Systems", IETE Journal of research, Vol 52, No. 2&3, pp 247-254, 2006.

[68] Parveen Kumar, Lalit Kumar, R K Chauhan, "A Synchronous Checkpointing Protocol for Mobile

Distributed Systems: A Probabilistic Approach, Accepted for Publication in International Journal of

Information and Computer Security.

[69] Pradhan D.K., Krishana P.P. and Vaidya N.H., "Recoverable Mobile Environment: Design and Trade-off

Analysis," Proceedings 26th International Symposium on Fault-Tolerant Computing, pp. 16-25, 1996.

[70] Pradhan D.K. and Vaidya N., "Roll-forward Checkpointing Scheme: Concurrent Retry with Non-

dedicated Spares," Proceedings of the IEEE Workshop on Fault-Tolerant Parallel and Distributed Systems,

pp. 166-174, July 1992.

[71] Pushpendra Singh, Gilbert Cabillic, "A Checkpointing Algorithm for Mobile Computing Environment",

LNCS, No. 2775, pp 65-74, 2003.

[72] Prakash R. and Singhal M., "Low-Cost Checkpointing and Failure Recovery in Mobile Computing

Systems," IEEE Transaction On Parallel and Distributed Systems, vol. 7, no. 10, pp. 1035-1048, October1996.

[73] Prakash R. and Singhal M., "Maximum Global Snapshot with Concurrent Initiations", Proc. Sixth IEEE

Symp. Parallel and Distributed Processing, pp. 344-51, Oct. 1994.

[74] M.L. Powell and D.L. Presotto, "Publishing: A Reliable Broadcast Communication Mechanism", Proc.

ninth Symp. Operating System Principles, pp. 100-109, ACM SIGOPS, Oct. 1983.

 [75] Purnendu Sinha, Da Qi Ren, "Formal Verification of Dependable Distributed Protocols", Information

and Software Technology, 45, pp. 873-888, 2003.

[76] Quaglia, F., Cipriani, R., Baldoni, R., "Checkpointing Protocols in Distributed Systems with Mobile

Hosts: A Performance Analysis", IPPS/SPDP Workshop, pp. 742-755, 1998.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 14

[77] Randall, B, "System Structure for Software Fault Tolerance", IEEE Trans. on Software Engineering, 1,2,

220- 232, 1975.

[78] Russell, D.L., "State Restoration in Systems of Communicating Processes", IEEE Trans. Software

Engineering, 6,2. 183-194, 1980.

[79] Ramanathan, P. and K.G. Shin, "Use of Common Time Base for Checkpointing and Rollback Recovery

in a Distributed System", IEEE Trans. Software Engg., pp. 571- 583, June 1993.

[80] R K Chauhan, Parveen Kumar, Lalit Kumar, "A coordinated checkpointing protocol for mobile

computing systems", International Journal of information and computing science, Accepted for Publication,

Vol 9, No. 1, 2006.

[81] R K Chauhan, Parveen Kumar, Lalit Kumar, "Hybrid and intrusive synchronous checkpointing protocols

for mobile distributed systems", Accepted for publication in ACCST Journal of Research, Volume IV, No. 4,

2006

[82] R K Chauhan, Parveen Kumar, Lalit Kumar, "Non-intrusive Coordinated Checkpointing Protocols for

Mobile Computing Systems : A Critical Survey, ACCST Journal of Research, to be published in Volume IV,

No. 3, 2006.

[83] R K Chauhan, Parveen Kumar, Lalit Kumar, "Checkpointing Distributed Applications on Mobile

Computers", Journal of Multidisciplinary Engineering and Technologies, Vol. 2 No.1, Jan. 2006.

[84] Ssu K.F., Yao B., Fuchs W.K. and Neves N. F., "Adaptive Checkpointing with Storage Management for

Mobile Environments," IEEE Transactions on Reliability, vol. 48, no. 4, pp. 315-324, December 1999.

[85] Silva, L.M. and J.G. Silva, "Global checkpointing for distributed programs", Proc. 11th symp. Reliable

Distributed Systems, pp. 155-62, Oct. 1992.

[86] Storm R., and Termini, S., "Optimistic Recovery in Distributed Systems", A.C.M. Trans. Computer

Systems, Aug, 1985, pp. 204-226.

[87] A.P. Sistla and J.L. Welch, "Efficient Distributed Recovery Using Message Logging", Proc. 18th Symp.

Principles of Distributed Computing", pp 223-238, Aug. 1989.

[88] Tamir, Y., Sequin, C.H., "Error Recovery in multi- computers using global checkpoints", In Proceedings

of the International Conference on Parallel Processing, pp. 32-41, 1984.

[89] Terakota, F., Yokote, Y., and Tokoro, M., "A Network Architecture providing host migration

transparency", Proc, of ACM SIGCOMM 91, September 1991.

 [90] S. Venkatesan and T.Y. Juang, "Efficient Algorithms for Optimistic Crash recovery", Distributed

Computing, vol. 8, no. 2, pp. 105-114, June 1994.

[91] S. Venkatesan, "Message-Optimal Incremental Snapshots", Computer and Software Engineering, vol.1,

no.3, pp. 211- 231, 1993.

[92] S. Venkatesan, "Optimistic Crash recovery Without Rolling back Non-Faulty Processors", Information

Sciences, 1993.

[93] S. Venkatesan and T.T.Y. Juang, "Low Overhead optimistic crash Recovery", Proc. 11th Int. Conf.

Distributed Computing Systems, pp. 454-461, 1991.

[94] Wada H., Yazawa, T., Ohnishi, T. and Tanaka, Y., "Mobile Computing Environment based on internet

packet forwarding", Winter Usenix, Jan. 1993.

 [95] Wang Y. M., Huang Y., Vo K.P., Chung P.Y. and Kintala C., "Checkpointing and its Applications,"

Proceedings of the 25th International Symposium on Fault-Tolerant Computing (FTCS-25),pp. 22-31, June

1995.

[96] Wood, W.G., "A Decentralized Recovery Control Protocol", 1981 IEEE Symposium on Fault-Tolerant

Computing, 1981.

[97] Wang Y. and Fuchs, W.K., "Lazy Checkpoint Coordination for Bounding Rollback Propagation," Proc.

12th Symp. Reliable Distributed Systems, pp. 78-85, Oct. 1993.

[98] Bin Yao, Kuo-Feng Ssu & W. Kent Fuchs, "Message Logging in Mobile Computing", Proceedings of

international conference on FTCS, pp 294-301, 1999.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 07 | July - 2022 Impact Factor: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM15479 | Page 15

[99] Yasuo Sato, Michiko Inoue, Toshimitsu Masuzawa, Hideo Fujiwara, "A Snapshot Algorithm for

Distributed Mobile Systems" Proceedings of the 16th ICDCS, pp734-743,1996.

http://www.ijsrem.com/

