
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40438 | Page 1

A Review of Discrete Mathematics in Artificial Intelligence

Neeta Ravindra Mohite 1, Dr.G.J.Chhajed2 , Monali Rahul Bhosale3

1AI & DS (Computer Engineering) VP’s Kamalnayan Bajaj Institute of Engineering and Technology,

Baramati.
2HOD AI & DS (Computer Engineering) VP’s Kamalnayan Bajaj Institute of Engineering and Technology,

Baramati.

3Assistant Professor AI &DS (Computer Engineering) VP’s Kamalnayan Bajaj Institute of Engineering and

Technology, Baramati.

---***---

Abstract - The foundation of many Artificial

Intelligence (AI) approaches and algorithms is discrete

mathematics. Graph theory, combinatorics, and logic are

just a few of the discrete mathematics fields that provide

substantial contributions to AI. Each of these fields is

essential to the development of contemporary AI

systems. This section lays the groundwork for a more in-

depth examination of particular instances by giving a

summary of how discrete mathematics supports the

architecture and operation of AI

Key Words: Artificial Intelligence, DiscreteMathematics,

GraphTheory, Combinatorics in AI.

1.INTRODUCTION

This chapter provides an introduction to mathematical

induction, set theory, and the formalization of

mathematical functions. In abstract mathematics,

"elementary" does not mean simple; rather, it means the

bare minimum of knowledge required to comprehend,

even when the subject matter is basic. As a result, some

concepts—even those that seem straightforward—may

defy conventional wisdom and require correction.[3]

Artificial intelligence (AI) has emerged as a key

component of contemporary technology development,

permeating every sphere of human existence, from

entertainment and security to healthcare and education.

Discrete mathematics, a subfield of mathematics that

deals with distinct and separable values, is fundamental

to AI's operation and development.[7] In order to predict

how these interactions will continue to influence AI

technologies in the future, this paper attempts to clarify

the intricate relationship between discrete mathematics

and AI.

2. Application of discrete mathematics

The foundation of algorithms and data structures in

computer science is discrete mathematics. The creation

of effective computing solutions is made easier by

discrete mathematics, which is used in sorting

algorithms like quicksort and merge sort as well as

graph algorithms like Dijkstra's algorithm and breadth-

first search. [2]

 The theoretical underpinnings for the creation and

evaluation of algorithms and data structuresare found in

discrete mathematics. Sorting, searching, optimization,

and algorithmic complexity all depend on concepts like

graphs, trees, sets, permutations, combinations, and

probability theory.[6]

 3.Information Theory

 1Graph Theory in AI

The architecture of neural networks and other AI models

is based on graph theory. In these situations, graphs are

nodes that are connected to one another, and information

is processed and delivered via these connections. In

fields where interactions between data points are

modeled and examined, like networking, deep learning,

and online search algorithms, this structure is crucial.[5]

 2 Set Theory in AI

A group of unique elements is called a set. In contrast to

{1,1,3}\{1, 1, 3\}{1,1,3}, which has duplicate items,

{1,2,3}\{1, 2, 3\}{1,2,3} is a set. A multiset is a

collection that contains repetitions. Curly brace notation

is frequently used to express sets.[9]

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40438 | Page 2

3Tree Theory

The specific properties and uses of trees in domains such

as data structures, network architecture, and computer

science make them a popular topic in graph theory.

Being a linked graph without any cycles is a tree's most

basic characteristic. Trees can be further defined and

characterized with the use of other attributes and

comparable conditions. Comprehending these

characteristics is crucial for evaluating trees in diverse

settings[1]

4.Foundations of Sets

Set theory definitions:

1). Definition: Establish Membership an object is a

member of a set if it has the set membership symbol

2) A Set's Cardinality A set's cardinality is a measure of

its size. The cardinality of a finite set is the total number

of elements that make up the set.[4] The cardinality in a

collection ∣S∣|S|∣S∣ is the notation for SSS. In the event

that S= {1,2,3}, for instance, ∣S∣=3. We'll introduce and

examine the idea of cardinality for infinite sets

Set Operations

 Similar to numbers, sets in mathematics can be worked

with through a variety of operations. Set operations

enable us to mix and compare sets of elements, just like

addition, multiplication, and negation do for integers

 fig: Intersection(A∩B)

fig: Union(A∪B)

 fig: Disjoint

Exploring Graphs

Graph Theory in AI The architecture of neural networks

and other AI models is based on graph theory. In these

situations, graphs are nodes that are connected to one

another, and information is processed and delivered via

these connections.[1] In fields where interactions

between data points are modeled and examined, like

networking, deeplearning, and online search algorithms,

this structure is crucial.

Combinatorics and Learning Machines

Machine learning algorithms benefit greatly from

combinatorics, especially when it comes to pattern

detection and optimization issues. [6]Improving

predicted accuracy and performance in machine learning

tasks requires understanding the different combinations

of data attributes, optimizing resource allocation, and

modeling complicated relationships. Reasoning and

Automated Reasoning.The basis for automated

reasoning and decision-making in AI systems is logic.

AI systems are capable of making judgments, proving

theorems, and deriving new knowledge from data by

using formal logical systems. [3]Expert systems, rule-

based reasoning systems, and natural language

processing (NLP) all depend on logical frameworks like

propositional and predicate logic.

AI Discrete Structures

Discrete structures like sets, graphs, and functions are

essential for organizing data and algorithms in addition

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40438 | Page 3

to the previously stated domains. [8]These structures

facilitate effective algorithm creation, organize

computational procedures, and model the relationships

between data points. For instance in AI graphs represent

relational data, functions translate data to results, and

sets define input spaces. The fundamental connection

between discrete mathematics and artificial intelligence

is highlighted in this section, laying the groundwork for

succeeding sections' more detailed examples and

applications.[1] If you would want to discuss any of

these subjects in.

5.Neural Networks as Graphs in Graph Theory in AI

The fundamental building blocks of machine learning,

neural networks, can be efficiently depicted as directed

graphs. In these models, neurons are represented by

nodes, while the connections between them are

represented by edges. [9]The tools needed to describe,

analyze, and optimize these networks are provided by

graph theory. The fundamentals of graph theory are

covered in this section, along with how graph structures

can be used to model and analyze neural networks in

order to improve their connection, performance, and

learning potential.

Fig: Neural Networks

AICombinatorics: Optimization Issues:

In AI optimization, combinatorics is crucial, especially

when tackling issues like shortest path, which

determines the smallest distance between network

nodes.[4] Numerous applications of this basic issue can

be found in network routing, logistics, and urban

planning. Combinatorial techniques can be used to

improve the accuracy and efficiency of algorithms in a

variety of domains.

a) Neural Networks with Continuous Time

(CTNNs): CTNNs' advantage is their ability to

efficiently handle dynamic and continuous

input. Applications of Optimization: Perfect for

figuring out the shortest path around

complicated problems. Time-Dependent Data:

Excellent for real-time optimization and

changing surroundings. The main advantages

are that they provide effective real-time

scheduling, routing, and decisionmaking

practices.[3]

b) Dynamic Response to Changing Input

Conditions and Continuous-Time Neural

Networks (CTNNs) : CTNNs can analyze data

constantly and dynamically, efficiently adjusting

to changing inputs. Real-time optimization is

helpful for applications where input data

changes over time, allowing for iterative

solution refinement. Dynamic Response:

Address issues such as the Traveling Salesman

Problem (TSP) by continuously modifying

network conditions. The CTNN Framework's

advantages improves optimization efficiency by

producing higherquality solutions and faster

convergence[10].

The use of C++ in CTNN research serves to

illustrate how theoretical models can be applied

in real-world scenarios. A conceptual use of

CTNN to address a streamlined Traveling

Salesman Problem (TSP) is the example focus.

Relevance: Emphasizes how CTNN can be used

to solve combinatorial optimization problems in

the real world.

Conceptual C++ Code for CTNN Implementation:

#include <iostream> #include <vector> #include

<cmath> #include <limits>

using namespace std;

const int NUM_CITIES = 5; // Example: 5 cities

const double INF =

numeric_limits<double>::infinity();

// Define the distances between cities (distance

matrix) double

dist[NUM_CITIES][NUM_CITIES] = { {0,

10, 15, 20, 25}, {10, 0, 35, 25, 30}, {15,

35, 0, 30, 5}, {20, 25, 30, 0, 15}, {25, 30,

5, 15, 0} };

// Sigmoid function (used for activation in

CTNN) double sigmoid(double x) { return 1.0

/ (1.0 + exp(-x)); }

// CTNN model for optimizing TSP (simplified

example) class CTNN { public:

vector<vector<double>>neuronStates;

vector<vector<double>> synapses;

CTNN() { // Initialize neuron states and

synapses randomly

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40438 | Page 4

neuronStates.resize(NUM_CITIES,

vector<double>(NUM_CITIES, 0.0));

synapses.resize(NUM_CITIES,

vector<double>(NUM_CITIES, 0.0));

 for (int i = 0; i< NUM_CITIES; ++i) {

for (int j = 0; j < NUM_CITIES; ++j) {

if (i != j) { synapses[i][j] =

static_cast<double>(rand()) / RAND_MAX;

} } } }

 // Update neuron states based on input

distances (simplified model) void

updateNeuronStates() { for (int i = 0; i<

NUM_CITIES; ++i) { for (int j = 0; j <

NUM_CITIES; ++j) { if (i != j) {

neuronStates[i][j] = sigmoid(neuronStates[i][j] -

dist[i][j]); } } } }

 // Calculate the total distance (objective

function) double totalDistance() { double

total = 0.0; for (int i = 0; i< NUM_CITIES;

++i) { for (int j = 0; j < NUM_CITIES;

++j) { total += neuronStates[i][j] *

dist[i][j]; } } return total; }

 // Perform optimization (simplified iteration)

void optimize() { double prevDistance =

INF; double currentDistance =

totalDistance(); // Iteratively optimize

the neuron states while

(abs(currentDistance - prevDistance) > 1e-5) {

prevDistance = currentDistance;

updateNeuronStates(); currentDistance =

totalDistance(); } }

};

int main () {CTNN ctnn; ctnn.optimize();

cout<< "Optimized Total Distance: "

<<ctnn.totalDistance() <<endl; return 0; }

The Traveling Salesman Problem (TSP) :

Overview of the Traveling Salesman Problem

(TSP) Definition: The shortest path for a

salesman to travel to every city exactly once and

then return to the starting point is a classic NP-

hard issue. Complexity: The more cities there

are in the challenge, the more computationally

challenging it becomes. Applications: Used in

logistics, urban planning, and network routing.

Optimization Need: Techniques like neural

networks seek to effectively identify near-

optimal solutions for big datasets.

Method of solving the TSP:

 1.City Encoding as Neurons: In the TSP, every

city is represented by a network neuron. The

salesman has a variety of options, which are

represented by the states of the neurons. Finding

the state configuration that reducestheoverall

travel distance is the network's objective. [10]

2. Representation of the Energy Function:

The salesman's entire journey distance is

represented by the energy function in a Hopfield

network. The network develops in a way that

minimizes the energy function, which is

equivalent to taking the shortest path.

 As the network progresses toward a solution, the energy

drops[2].

3. Time-Continuous Dynamics: The CTNNs

modify the states of the neurons through

continuous-time dynamics. The Hopfield

dynamics dictate that the neuron states evolve

continuously rather than in discrete time steps:

τdxidt = −∂E∂xi\tau \frac{d x_i}{dt} = -

\frac{\partial E}{\partial x_i}"τdtdxi=−∂xi∂E"

Where xix_ixi is the state of neuron iii, τ\tauτ is

a temporal constant, and EEE is the energy

function that the network aims to minimize. The

network will eventually converge to the

energyminimization state,

An Example of Application An analog neural

network circuit or an FPGA (Field-

Programmable Gate Array) device are two

examples of hardware configurations that can be

used to create CTNNs for TSP solving.

Compared to conventional, entirely digital

algorithms, these systems can process big

datasets in

parallel and find solutions more quickly by

utilizing the continuous nature of CTNNs.

Because of their efficiency and versatility,

CTNNs are a desirable choice for large-scale,

real-time optimization issues.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40438 | Page 5

6.Planar Graphs

A graph is said to be planar if none of its edges

cross when it is depicted on a plane. The

discrete areas created by the vertices and edges

in such a drawing, including the "outside"

region, are referred to as faces. Below is a

summary of your questions: 2. Two distinct

planar graphs that have the same quantity of

faces, edges, and vertices Indeed, two distinct

planar graphs with the same number of vertices,

edges, and faces can be made.[1] Here's an

illustration:

• Graph 1: A straightforward triangle with three

vertices, three edges, and one face

 • Graph 2: A square with two faces, four vertices,

and four edges with a single diagonal

There are two distinct planar graphs that have the same

number of edges and vertices but different numbers of

faces.

Planar graphs with a variable number of faces but the

same number of vertices and edges can also be made. As

an example:

Graph 1: There is just one face when a complete graph

with four vertices (K₄) is depicted as a planar graph.

 3. Is It Possible to Draw a Graph Without Any Edges

Crossing? If a graph can be drawn on a plane without

any edges crossing, then it is said to be planar.

Kuratowski's theorem, which asserts that a graph is

planar if and only if it does not contain a subgraph that

is a subdivision of either K₅ (the full graph with 5

vertices) or K₃,₃ (the complete bipartite graph with 3

vertices in each set), makes this possible for graphs that

meet its requirements.[10] A graph is considered non-

planar if it contains one of these two minimal nonplanar

graphs as a subgraph.

4. Graph Redrawing for Planarity

As mentioned, if you can redraw a graph so that no

edges cross, you can make it appear planar even if it

doesn't at first. For instance, the graph below may

appear non-planar at first, but it may be rebuilt to show

that it is planar by avoiding edge crossings.

5.Illustration of a Three-Faced Planar Graph

Take the graph with three sides, including the outer

region, as an example.[5] A triangle with a diagonal is

among the most basic planar graphs that have precisely

three faces. The plane is divided into three areas by its

edges and vertices

7.Tree Structures

Spanning tree types include:

Trees with a maximum degree limitation on each vertex

are known as bounded-degree spanning trees. helpful

when there are connectivity limitations. Spanning Trees

with Structural Features: Trees tailored to meet

particular requirements, like Bounded Number of

Leaves: Trees with a restricted number of ends,

frequently for dependability or efficiency.[10]

a) Trees with branching restrictions that minimize

intricate connections are known as bounded number of

branch vertices.[9]

b) A tree that spans every vertex with the smallest

possible total edge weight is known as a Minimum

Weight Spanning Tree (MST). essential for designs that

are economical. MSTP, or the Minimum Weight

Spanning Tree Problem:

 Fig: Spanning Tree

Additional Tree Properties

 • Spanning Tree: A spanning tree is a subgraph of a

linked graph that is a tree in and of itself and contains

every vertex in the original graph. [4]At least one

spanning tree exists in every connected graph. n−1n-

1n−1 edges make up a spanning tree, where nnn is the

number of vertices in the original graph

. • Leaf Nodes: Vertices with a single edge (degree 1) in

a tree are known as leaf nodes. The "endpoints" of the

tree are the common term for them.[7] In algorithms that

investigate tree structures, such as depth-first search

(DFS) and breadth-first search (BFS), an understanding

of leaf nodes is crucial.

Importance of Spanning Tree Variants

The significance of spanning tree variations is in their

ability to provide flexibility in addressing certain

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40438 | Page 6

application restrictions and optimization objectives.[10]

Relevance to Practice: discovered in domains such as

infrastructure construction, transportation, and

telecommunications.

8.Hierarchical Structure of Rooted Trees

Fig: Hierarchical Structure of Rooted Trees

9.CONCLUSION

The study concludes that highlights discrete

mathematics' fundamental importance in artificial

intelligence (AI). Important fields including

combinatorics, set theory, and graph theory are

emphasized for their contributions to the design,

development, and optimization of AI algorithms.

[4][9]By demonstrating the harmony between

theoretical ideas and real-world applications, the

research further emphasizes the importance of

continuous-time neural networks (CTNNs) in

resolving combinatorial challenges such as the

Traveling Salesman Problem. Discrete mathematics

integration guarantees improvements in AI's

effectiveness, scalability, and real-time flexibility

REFERENCES

 [1] Chen, L., & Gupta, S.Discrete Mathematics in

Artificial Intelligence: A Comprehensive Review

Journal Artificial Intelligence and Discrete

Mathematics, Vol.7,Issue.2, pp112-130, 2023.

 [2] F. Glover, Future Paths for Integer

Programming and Links to Artificial Intelligence,

Computers and Operations Research, Vol.13,

Issue.5, pp.533-549, 1986.

 [3] Gendreau, M., Hertz, A., & Laporte, G. A

review of heuristics for the vehicle routing problem.

Operations Research, Vol.44, Issue.3, pp378-400,

1996.

 [4] Hopfield, J. J. Neural networks and physical

systems with emergent collective computational

abilities. Proceedings of the National Academy of

Sciences, Vol.79, Issue.8, pp2554-2558, 1982.

[5] Hopfield JJ., Tank DW., “ Neural” computation

of decisions in optimization problems Biological

Cybernetics, Vol.52, Issue.3, pp141-152, 1985.

 [6] Kennedy, M. P., & Chua, L. O. Neural

networks for nonlinear programming. IEEE

Transactions on Circuits and Systems, Vol.35,

Issue.5, pp554-562, 1988.

 [7] Laporte, G. The traveling salesman problem:

An overview of exact and approximate algorithms.

European Journal of Operational Research, Vol.59,

Issue.2, pp231-247, 1992.

 [8] Patel, R., & Wang, Graph-Theoretic

Approaches to Machine Learning: A Survey ,

Journal of Artificial Intelligence and Discrete

Mathematics Vol.5, Issue.3, pp201-220, 2022.

 [9] Smith, K., & Lee, T. H. Continuous-time

neural networks for combinatorial optimization.

IEEE Transactions on Circuits and Systems I:

Regular Papers, Vol.55, Issue.8, pp2451-2461,

2008.

[10] Yang, S., et al. On the convergence of a class

of continuous time stochastic processes. IEEE

Transactions on Automatic Control, Vol 62,

Issue.12, pp6534-6549, 2017

http://www.ijsrem.com/

