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Abstract - The AI-powered code debugging and explainer has 

emerged as a promising approach to assist programmers beyond 

traditional syntax error detection. Prior studies explore 

conversational debuggers, prompt-based logical error correction, 

neural machine translation for bug fixing, and educational tools 

that diagnose common student errors. However, limitations such 

as dependency on third-party APIs, lack of offline functionality, 

poor explainability of fixes, and restricted language support 

remain significant challenges. An AI-powered Code Debugger 

and Explainer aims to identify both syntax and logical errors 

across multiple programming languages while providing clear, 

human-readable explanations. By emphasizing interpretability, 

accessibility, and educational support, the system seeks to 

improve debugging efficiency and enhance conceptual 

understanding for students, educators, and software developers.  

 
Key Words: logical error identification, syntax and logic analysis, 

large language models (LLM), AI-powered debugging, code 

explanation, programming education. 

 

1. INTRODUCTION 

Modern software development requires tools that go beyond 

syntax checking to identify and explain logical errors in code. 

Traditional compilers and IDEs often miss deeper issues that 

affect program correctness, especially for beginners. To address 

this, an intelligent web-based debugging and explanation 

platform has been developed, supporting languages like C, Java, 

and Python. It features a user-friendly interface with a code 

editor, language selector, input field, and two main functions: 

Run and AI Debug. While Run handles compilation and basic 

error reporting, AI Debug uses artificial intelligence to detect, 

explain, and correct logical flaws. The tool enhances learning by 

offering clear explanations, encouraging better coding habits, 

and supporting collaborative features like session sharing. Over 

time, it can evolve into a predictive assistant that helps users write 

cleaner, more efficient code. 

 

2. LITERATURE REVIEW 

The literature survey includes various studies related to AI- 

driven code debugging and explanation. These below works 

explore tools that assist developers by detecting, correcting, and 

explaining code errors. The insights gathered form the 

foundation for building an intelligent web-based debugging 

system. 

 

Reference [1] introduces an approach called ChatDBG that 

integrates large language models into well-known debuggers 

such as GDB, LLDB, and Pdb to enhance debugging with natural 

language interaction. By allowing developers to ask questions 

about runtime behavior in everyday language, the debugging 

process becomes more intuitive and efficient, particularly for 

Python developers. This model helps to improves convenience 

for  

beginner developers. However, it depends upon on third-party 

APIs, which results in issues related to privacy, data transmission 

delays, and also unpredictable performance due to its 

dependency on external services. Along with that, these 

limitations suggest the need for local LLM deployments for 

enterprise usage. 

 

As shown in Ref. [2], AutoSD is introduced to simulate human-

style scientific reasoning during debugging. It guides the 

debugging process through steps like identifying issues, 

hypothesizing causes, performing tests, and generating 

explanations all facilitated by LLMs. This approach results in 

deeper comprehension of the code along with it, making it 

especially useful in educational platforms. The transparent 

workflow allows developers to learn as they debug, fostering 

better programming habits. However, one challenge is that this 

technique is computationally expensive and its success heavily 

relies on prompt formulation, which could make it less effective 

for users who are unfamiliar with LLM prompt engineering. 

 

The technique presented in [3] includes Abstract Syntax Trees 

(ASTs) with transformer models in order to generate detailed and 

human-readable error explanations. The usage of ASTs results in 

enabling the model to understand the code's structural and 

syntactic context, improving the accuracy of explanations. This 

helps the model distinguish between surface-level errors and 

deeper logical issues. Even this method performs very well 

compared to other traditional debugging models, these may 

require access to vast datasets, which may not be readily 

available for all programming languages. Future work could 

focus on making these models more data-efficient or leveraging 

unsupervised learning techniques to overcome dataset 

limitations. 

 

In Ref. [4], a neural machine translation (NMT) approach is 

explored to learn bug-fixing patches from commit data on 

GitHub. By training on real-world code changes, the model 

learns how developers typically fix bugs and uses that knowledge 

to propose repairs for new code. This method is particularly 

effective for Java code and focuses on method-level changes. 

However, it lacks flexibility and struggles with scaling across 

programming languages or larger codebases. Additionally, this 

technique assumes clean and consistent commit histories, which 

may not always be the case in open-source repositories, 

potentially limiting training data quality. 

 

The empirical study in [5] takes a user-centric view by analyzing 

how developers interact with automated fault localization (AFL) 
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tools. It highlights major barriers such as poor usability, weak 

integration with existing development tools, and skepticism 

about the tools' accuracy. Although AFL tools have the potential 

to save time and reduce cognitive load, developers may abandon 

them if the interface or feedback is not clear and actionable. The 

study emphasizes the importance of intuitive design and robust 

testing to improve user trust and long-term adoption. In future the 

systems could get benefits from this personalized error 

explanations which is based on their behavior or their 

preferences. 

 

The reference in [6] introduces a hybrid model which iteratively 

corrects the logical errors by combining a correct code generator 

and a code editing predictor. It is particularly effective in 

structured educational environments like programming courses, 

where the types of errors are often predictable. The model’s 

iterative nature allows it to refine its fixes over multiple passes, 

increasing accuracy. Despite this, the model has limited ability 

to generalize beyond such environments and faces difficulties 

when applied to more dynamic, real-world codebases. Future 

research could explore ways to expand this approach. 

 

In Ref. [7], a prompt-based debugging method is implemented 

using CodeBERT, a pre-trained language model fine-tuned on 

programming data. This method, called LecPrompt, formulates 

prompts to guide the model in locating and fixing logical errors. 

It works well on artificial datasets and in controlled 

environments where the pattern of bugs is predictable. However, 

in practical scenarios involving unstructured or poorly written 

code, the model’s effectiveness declines. Moreover, the 

effectiveness of this method heavily depends on the quality of the 

prompts, indicating a need for better prompt generation strategies 

or prompt-tuning frameworks to enhance real-world usability. 

 

The study in [8] presents a debugging tool tailored for students and 

novice programmers. By analyzing control flow graphs and 

matching common error patterns, it identifies and explains 

frequent mistakes. This is especially helpful for learners as it 

provides clear explanations that provides conceptual programming 

knowledge. The tool has demonstrated success in academic 

settings but requires continuous manual updates to its rule base 

to remain effective. As complexity of the code increases or 

learners move to advanced topics, maintaining the relevance of 

such rule- based systems becomes a challenge. Future systems 

might integrate AI components to automatically update and learn 

the new patterns from student feedbacks. 

 

In Ref. [9], a survey of professional developers explores their 

expectations and concerns regarding automated debugging tools. 

The findings reveal a strong interest in tools that provide 

intelligent suggestions and integrate smoothly into existing 

development environments. However, many developers also 

expressed distrust, citing fears that such tools may introduce 

incorrect fixes or obscure the debugging process. This feedback 

points to a crucial need for explainability and transparency in 

debugging tools. Tools which can not only fix bugs but can also 

explain the reasoning behind the fix in a developer-friendly 

manner are more likely to gain acceptance and be used 

consistently in real-world development. 

 

A thorough review in [10] evaluates around 100 deep learning 

based automated program repair (APR) techniques. It categorizes 

the models based on their architecture, code-level granularity (for 

e.g., token, line or method), and the datasets they use. While the 

review is thorough from a research perspective, it lacks insights 

into the challenges of deploying these models in production 

environments. Many APR techniques have been validated only 

in controlled benchmarks and lack evaluations under real-world 

conditions. Bridging the gap between academic prototypes and 

production-ready systems remains an essential direction for 

future work in this area. 

In Ref. [11], a tool called Bugsplainer is introduced that generates 

real- time bug explanations using a tuned CodeT5 model 

combined with AST features. This combination allows the model 

to produce more accurate and contextual bug descriptions, 

especially for Python code. It outperforms traditional models by 

producing clear and meaningful explanations that developers can 

easily comprehend. However, its limitation lies in being 

restricted to only certain programming languages. Future 

iterations of the tool could include support for additional 

programming languages and cross-language bug analysis to 

enhance versatility and utility in diverse development 

environments. 

 

In Ref. [12], researchers developed a self-debugging mechanism 

for LLMs, where the models are capable of detecting and 

correcting their own output errors without additional training. 

This feedback loop improves the quality of generated code and 

reduces reliance on external validators. Such mechanisms can 

make AI tools more autonomous and reliable. However, the 

explanations these models provide for their corrections are not 

always clear, which can confuse users. Enhancing the 

interpretability of self-debugging LLMs and ensuring that their 

corrections align with best coding practices are important areas 

for future development. 

 

The tool in [13] helps identify logical errors in student code by 

comparing it with inferred intentions. It uses a rule-based system 

to detect where the student's implementation diverges from what 

they likely meant to do. This proves highly beneficial in 

educational settings by assisting students in grasping not just the 

errors, but also the reasons behind them. The approach is 

insightful but difficult to scale, as it requires manually defining 

error patterns and associated intentions for every task. Using 

machine learning to automate the creation of these rules could 

enhance the system’s scalability and effectiveness across various 

programming fields. 

 

In Ref. [14], a user study on automated program repair (APR) tools 

like SimFix, TBar, and Recoder reveals that although these tools 

generate patches, users often find them confusing or incomplete. 

Developers prefer tools that offer not only repair suggestions but 

also clear and insightful explanations supporting those 

recommendations. In its absence, confidence in deploying 

automated patches to live code is compromised. This reveals a 

considerable failing in current APR tools, which tend to prioritize 

accuracy over user proficiency. Future tools must prioritize 

transparency and clarity to bridge this trust gap . 

 

According to [15], Getafix is a machine learning tool that 

examines version control histories to identify common bug-fix 

patterns. These patterns are then delivered as live templates in 

IDEs, streamlining and accelerating the debugging workflow. 

Although this method works well for recurring bugs, it tends to 

be less effective when developers encounter new problems that 

are not documented in the version control system. Consequently, 

the advancement of these systems may depend on hybrid 

approaches that dynamically choose between the template-based 

and generative AI methods depending on nature of the bug. 
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In Ref. [16], a hierarchical approach to debugging is explored, 

where code is broken into smaller functional units that are 

analyzed independently using LLMs. This approach enhances 

debugging by breaking it into smaller, more manageable parts, 

which increases accuracy by focusing each analysis on a specific 

context. Nonetheless, this leads to higher computational 

expenses and longer processing times, particularly in large-scale 

projects. Ensuring a balance between performance and 

scalability is crucial for making these models viable in real-world 

production settings. Optimizations like targeted analysis and 

caching commonly used components may help reduce this 

limitation. 

  

The method presented in [17] utilizes symbolic evaluation in 

combination with traditional rule-based reasoning to analyze 

LISP code, making it especially effective for structured 

educational purposes. By breaking down code behavior into 

symbolic steps, beginners can develop a clearer understanding of 

how programs execute internally. However, its scope is confined 

mainly to specific languages like LISP and lacks adaptability to 

the broader spectrum of modern multi-paradigm programming 

languages such as Python, Java, and JavaScript. This limitation 

restricts its scalability in real-world applications where diverse 

frameworks and syntaxes coexist. A potential enhancement 

would be the integration of symbolic reasoning with LLMs, 

thereby creating hybrid educational tools capable of blending the 

precision of rule-based methods with the adaptability of 

statistical learning. Such integration could also enable 

personalized learning experiences, where the debugger adjusts 

explanations according to the learner’s level of expertise. 

 

DeepBugs [18] is an innovative tool that leverages machine 

learning to detect bugs by learning semantic relationships 

between variable names. Its effectiveness largely depends on the 

quality of variable naming, performing exceptionally well when 

identifiers are clear and descriptive. This feature highlights the 

critical role of coding standards, naming conventions, and 

documentation in ensuring higher debugging accuracy. 

However, in real-world scenarios where naming conventions 

may be inconsistent or legacy codebases use ambiguous 

identifiers, the tool’s performance tends to degrade. Addressing 

this drawback could involve combining DeepBugs with static 

and dynamic analysis methods to provide a more context-aware 

debugging framework. Additionally, augmenting it with LLM-

driven semantic analysis could help the tool infer intent even 

when variable names are not optimally chosen, thus making it 

more resilient and adaptable in practical development 

environments. 

 

The multi-agent system described in [19] employs multiple 

LLMs that collaboratively analyze code while incorporating 

runtime feedback to enhance bug detection and resolution. This 

cooperative mechanism mimics a team-based debugging process 

where different agents specialize in unique tasks, leading to more 

thorough evaluations. The system’s ability to adapt to evolving 

code makes it particularly suitable for large-scale software 

projects with frequent updates. Nevertheless, such multi-agent 

collaboration introduces challenges, including communication 

overhead, synchronization issues, and the risk of producing 

conflicting suggestions. These drawbacks can result in longer 

processing times and occasional inconsistencies in 

recommendations. To overcome these challenges, future 

research should focus on optimizing inter-agent communication 

protocols, reducing latency, and establishing a consensus-driven 

mechanism for decision-making. Such improvements would 

make multi-agent systems not only powerful but also practical 

for everyday software development workflows. 

 

AGDebugger [20] represents a significant advancement in 

interactive debugging by allowing users to directly guide and 

monitor multi-agent LLMs during the debugging process. Its 

visual feedback and control mechanisms enable developers to 

influence the decision-making process, thereby maintaining 

transparency and trust in AI-driven systems. This interactive 

approach empowers developers to strike a balance between 

automated suggestions and human judgment. However, its 

current design demands substantial technical knowledge, making 

it less accessible to beginners and non-experts. To broaden its 

usability, AGDebugger could be enhanced with simplified user 

interfaces, step-by-step guidance modules, and customizable 

difficulty levels for explanations. Such enhancements would 

democratize access to advanced AI debugging systems, making 

them beneficial not only to professionals but also to students, 

educators, and self-learners aiming to improve their 

programming skills. 

 

The key findings from the above literature review are 

summarized in Table 1. 
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TABLE-1 : LITERATURE SURVEY SUMMARY 

 

 

Authors Title Methodology Remarks 

 

K. H. Levin et al. [1], 

2024 

ChatDBG:

 Augme

nting Debugging with Large 

Language Models 

Integrating LLMs into 

traditional debuggers (GDB, 

LLDB, Pdb) for 

conversational debugging 

High effectiveness in 

debugging Python; limited 

by LLM dependency and 

privacy concerns 

S. Kang et al [2], 2024 Explainable

 Auto

mated Debugging via 

Scientific Debugging 

(AutoSD) 

Uses LLMs to simulate human 

debugging with explainable

 patch 

suggestions 

Improves transparency; 

computationally 

expensive and dependent 

on prompt engineering 

 

S. Chakraborty, B. 

Ray. 

[3], 2022 

 

Explaining Software

 Bugs 

Leveraging Code Structures 

 

Uses AST-aware transformer 

models for bug explanation in 

natural language 

 

Outperforms prior models; 

requires large datasets for 

training 

 

M. Tufano et al. [4], 

2019 

 

Learning Bug-Fixing 

Patches in the Wild via NMT 

Trains NMT model on GitHub 

commits to learn bug-fix pairs 

Good results; limited to 

Java and method-

level granularity 

 

C. Parnin, A. Orso. [5], 

2011 

 

Are Automated Debugging 

Techniques Actually Helping 

Programmers? 

 

Empirical study of developer 

interaction with fault 

localization tools 

 

Reveals usability

 gaps; small 

participant sample 

 

T. Matsumoto et al. [6], 

2021 

 

Iterative Trials for 

Correcting Logic Errors in 

Source Code 

 

Combines Correct Code Model 

and Editing Operation Predictor 

for iterative logic 
correction 

 

Strong educational value; 

limited scalability beyond 

structured tasks 

 

Z. Xu, V. Sheng. 

[7], 2024 

LecPrompt: Logical

 Error 

Correction with CodeBERT 

Prompt-based logic bug repair 

using MLM with CodeBERT 

Efficient and

 accurate; 

limited to synthetic 

datasets 

 

A. M .Zin et al. [8], 2000 

 

A Knowledge-Based 

Automated Debugger in 

Learning Systems 

 

Matches student code with bug 

patterns using knowledge base 

and flow graph parsing 

 

Strong pedagogical 

intent; limited 

generalization 

P. S. Kochhar et al. [9], 

2016 

Practitioners’ Expectations 

on 

Automated Fault 

Localization 

Global survey of expectations 

and concerns about AFL 

adoption in 
industry 

Highlights real-world tool 

gaps; excludes post-2015 

literature 
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Q. Zhang et al. [10], 2023 A Survey of Learning-based 

Automated Program Repair 

Reviews 112 studies on APR 

using deep learning 

Excellent summary of 

APR research; lacks 

practical deployment 

discussion 

P. Mahbub et al. [11], 

2023 

Bugsplainer: Code Structures 

+ NMT for Bug Explanation 

Generates bug explanations 

using fine-tuned CodeT5 and 

ASTs 

Real-time utility; currently 

supports only Python 

 

X. Chen et al. [12], 2023 

 

Teaching Large Language 

Models to Self-Debug 

LLMs explain and revise their 

own code outputs through self-

feedback loops 

No training required; 

sensitive to explanation 

quality 

W. L. Johnson, E. 

Soloway. 

[13], 1984 

 

Intention-Based Diagnosis of 

Programming Errors 

(PROUST) 

Diagnoses student logic errors 

based on inferred intentions 

 

High educational value; 

complex rule creation 

 

H. Eladawy et al. [14], 

2024 

 

 

APR: What Is It Good For? 

User study of three APR tools 

(Recoder, SimFix, TBar) in 

debugging Java projects 

 

Strong validity; participants 

debug unfamiliar code 

 

J. Bader et al. [15], 2019 

 

Getafix: Learning to Fix Bugs 

Automatically 

 

Learns bug-fix patterns from 

VCS and applies them in real-

time 

 

Suitable for IDEs; struggles 

with novel cases 

 

Y. Shi et al. [16], 2024 

 

From Code to Correctness: 

Hierarchical Debugging with 

LLMs 

Breaks code into subfunctions 

for isolated testing and AI-based 

debugging 

 

Modular and precise; high 

computational overhead 

 

W. R. Murray. [17], 1984 

 

Heuristic and Formal 

Methods in Automatic 

Program Debugging 

Uses symbolic evaluation and 

heuristics for LISP- based 

student code debugging 

 

Useful in education; 

language-specific (LISP) 

 

M. Pradel, K. Sen. [18], 

2018 

 

DeepBugs: Name-based Bug 

Detection with Learning 

Uses embeddings to detect 

naming-based semantic bugs in 

JavaScript 

 

Learns from names; fails if 

variables are poorly named 

 

N. Ashrafi et al. [19], 

2025 

 

Enhancing LLM Code 

Generation with Multi-Agent 

+ Runtime Debugging 

 

Combines multi-agent LLM 

collaboration with runtime 

feedback 

Comprehensive; long 

execution time and 

inconsistent performance 

across models 

 

 

W. Epperson et al. [20], 

2025 

 

Interactive Debugging and 

Steering of Multi-Agent AI 

Systems 

 

AGDebugger allows 

visualization and intervention in 

multi-agent LLM workflows 

Innovative interaction; 

requires deep user 

understanding and may 

produce non-deterministic 

results 
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3. CONCLUSIONS 

The AI-Powered Code Debugger and Explainer offers several 

advantages for improving the coding experience, particularly in 

educational and development environments. Key benefits 

include enhanced error detection, clear logical error 

identification, interactive learning through code explanations, 

real-time correction suggestions, and support for multiple 

programming languages. The system promotes efficiency, 

reduces debugging time, aids conceptual clarity, and serves as an 

intelligent assistant for both novice and experienced 

programmers. 
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