

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52526 | Page 1

A Review on AI-Powered Code Debugger and Explainer

Poornima K.M.1, Madan H K2, Mizbah Kounain3, Mohamad Saif4, Mohammed Sufyan5

Department of CS&E

 JNN College of Engineering

Shivamogga, Karnataka, India

madanhk18@gmail.com

Abstract - The AI-powered code debugging and explainer has

emerged as a promising approach to assist programmers beyond

traditional syntax error detection. Prior studies explore

conversational debuggers, prompt-based logical error correction,

neural machine translation for bug fixing, and educational tools

that diagnose common student errors. However, limitations such

as dependency on third-party APIs, lack of offline functionality,

poor explainability of fixes, and restricted language support

remain significant challenges. An AI-powered Code Debugger

and Explainer aims to identify both syntax and logical errors

across multiple programming languages while providing clear,

human-readable explanations. By emphasizing interpretability,

accessibility, and educational support, the system seeks to

improve debugging efficiency and enhance conceptual

understanding for students, educators, and software developers.

Key Words: logical error identification, syntax and logic analysis,

large language models (LLM), AI-powered debugging, code

explanation, programming education.

1. INTRODUCTION

Modern software development requires tools that go beyond

syntax checking to identify and explain logical errors in code.

Traditional compilers and IDEs often miss deeper issues that

affect program correctness, especially for beginners. To address

this, an intelligent web-based debugging and explanation

platform has been developed, supporting languages like C, Java,

and Python. It features a user-friendly interface with a code

editor, language selector, input field, and two main functions:

Run and AI Debug. While Run handles compilation and basic

error reporting, AI Debug uses artificial intelligence to detect,

explain, and correct logical flaws. The tool enhances learning by

offering clear explanations, encouraging better coding habits,

and supporting collaborative features like session sharing. Over

time, it can evolve into a predictive assistant that helps users write

cleaner, more efficient code.

2. LITERATURE REVIEW

The literature survey includes various studies related to AI-

driven code debugging and explanation. These below works

explore tools that assist developers by detecting, correcting, and

explaining code errors. The insights gathered form the

foundation for building an intelligent web-based debugging

system.

Reference [1] introduces an approach called ChatDBG that

integrates large language models into well-known debuggers

such as GDB, LLDB, and Pdb to enhance debugging with natural

language interaction. By allowing developers to ask questions

about runtime behavior in everyday language, the debugging

process becomes more intuitive and efficient, particularly for

Python developers. This model helps to improves convenience

for

beginner developers. However, it depends upon on third-party

APIs, which results in issues related to privacy, data transmission

delays, and also unpredictable performance due to its

dependency on external services. Along with that, these

limitations suggest the need for local LLM deployments for

enterprise usage.

As shown in Ref. [2], AutoSD is introduced to simulate human-

style scientific reasoning during debugging. It guides the

debugging process through steps like identifying issues,

hypothesizing causes, performing tests, and generating

explanations all facilitated by LLMs. This approach results in

deeper comprehension of the code along with it, making it

especially useful in educational platforms. The transparent

workflow allows developers to learn as they debug, fostering

better programming habits. However, one challenge is that this

technique is computationally expensive and its success heavily

relies on prompt formulation, which could make it less effective

for users who are unfamiliar with LLM prompt engineering.

The technique presented in [3] includes Abstract Syntax Trees

(ASTs) with transformer models in order to generate detailed and

human-readable error explanations. The usage of ASTs results in

enabling the model to understand the code's structural and

syntactic context, improving the accuracy of explanations. This

helps the model distinguish between surface-level errors and

deeper logical issues. Even this method performs very well

compared to other traditional debugging models, these may

require access to vast datasets, which may not be readily

available for all programming languages. Future work could

focus on making these models more data-efficient or leveraging

unsupervised learning techniques to overcome dataset

limitations.

In Ref. [4], a neural machine translation (NMT) approach is

explored to learn bug-fixing patches from commit data on

GitHub. By training on real-world code changes, the model

learns how developers typically fix bugs and uses that knowledge

to propose repairs for new code. This method is particularly

effective for Java code and focuses on method-level changes.

However, it lacks flexibility and struggles with scaling across

programming languages or larger codebases. Additionally, this

technique assumes clean and consistent commit histories, which

may not always be the case in open-source repositories,

potentially limiting training data quality.

The empirical study in [5] takes a user-centric view by analyzing

how developers interact with automated fault localization (AFL)

https://ijsrem.com/
file:///D:/Engineering/Projects/Major%20Project/madanhk18@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52526 | Page 2

tools. It highlights major barriers such as poor usability, weak

integration with existing development tools, and skepticism

about the tools' accuracy. Although AFL tools have the potential

to save time and reduce cognitive load, developers may abandon

them if the interface or feedback is not clear and actionable. The

study emphasizes the importance of intuitive design and robust

testing to improve user trust and long-term adoption. In future the

systems could get benefits from this personalized error

explanations which is based on their behavior or their

preferences.

The reference in [6] introduces a hybrid model which iteratively

corrects the logical errors by combining a correct code generator

and a code editing predictor. It is particularly effective in

structured educational environments like programming courses,

where the types of errors are often predictable. The model’s

iterative nature allows it to refine its fixes over multiple passes,

increasing accuracy. Despite this, the model has limited ability

to generalize beyond such environments and faces difficulties

when applied to more dynamic, real-world codebases. Future

research could explore ways to expand this approach.

In Ref. [7], a prompt-based debugging method is implemented

using CodeBERT, a pre-trained language model fine-tuned on

programming data. This method, called LecPrompt, formulates

prompts to guide the model in locating and fixing logical errors.

It works well on artificial datasets and in controlled

environments where the pattern of bugs is predictable. However,

in practical scenarios involving unstructured or poorly written

code, the model’s effectiveness declines. Moreover, the

effectiveness of this method heavily depends on the quality of the

prompts, indicating a need for better prompt generation strategies

or prompt-tuning frameworks to enhance real-world usability.

The study in [8] presents a debugging tool tailored for students and

novice programmers. By analyzing control flow graphs and

matching common error patterns, it identifies and explains

frequent mistakes. This is especially helpful for learners as it

provides clear explanations that provides conceptual programming

knowledge. The tool has demonstrated success in academic

settings but requires continuous manual updates to its rule base

to remain effective. As complexity of the code increases or

learners move to advanced topics, maintaining the relevance of

such rule- based systems becomes a challenge. Future systems

might integrate AI components to automatically update and learn

the new patterns from student feedbacks.

In Ref. [9], a survey of professional developers explores their

expectations and concerns regarding automated debugging tools.

The findings reveal a strong interest in tools that provide

intelligent suggestions and integrate smoothly into existing

development environments. However, many developers also

expressed distrust, citing fears that such tools may introduce

incorrect fixes or obscure the debugging process. This feedback

points to a crucial need for explainability and transparency in

debugging tools. Tools which can not only fix bugs but can also

explain the reasoning behind the fix in a developer-friendly

manner are more likely to gain acceptance and be used

consistently in real-world development.

A thorough review in [10] evaluates around 100 deep learning

based automated program repair (APR) techniques. It categorizes

the models based on their architecture, code-level granularity (for

e.g., token, line or method), and the datasets they use. While the

review is thorough from a research perspective, it lacks insights

into the challenges of deploying these models in production

environments. Many APR techniques have been validated only

in controlled benchmarks and lack evaluations under real-world

conditions. Bridging the gap between academic prototypes and

production-ready systems remains an essential direction for

future work in this area.

In Ref. [11], a tool called Bugsplainer is introduced that generates

real- time bug explanations using a tuned CodeT5 model

combined with AST features. This combination allows the model

to produce more accurate and contextual bug descriptions,

especially for Python code. It outperforms traditional models by

producing clear and meaningful explanations that developers can

easily comprehend. However, its limitation lies in being

restricted to only certain programming languages. Future

iterations of the tool could include support for additional

programming languages and cross-language bug analysis to

enhance versatility and utility in diverse development

environments.

In Ref. [12], researchers developed a self-debugging mechanism

for LLMs, where the models are capable of detecting and

correcting their own output errors without additional training.

This feedback loop improves the quality of generated code and

reduces reliance on external validators. Such mechanisms can

make AI tools more autonomous and reliable. However, the

explanations these models provide for their corrections are not

always clear, which can confuse users. Enhancing the

interpretability of self-debugging LLMs and ensuring that their

corrections align with best coding practices are important areas

for future development.

The tool in [13] helps identify logical errors in student code by

comparing it with inferred intentions. It uses a rule-based system

to detect where the student's implementation diverges from what

they likely meant to do. This proves highly beneficial in

educational settings by assisting students in grasping not just the

errors, but also the reasons behind them. The approach is

insightful but difficult to scale, as it requires manually defining

error patterns and associated intentions for every task. Using

machine learning to automate the creation of these rules could

enhance the system’s scalability and effectiveness across various

programming fields.

In Ref. [14], a user study on automated program repair (APR) tools

like SimFix, TBar, and Recoder reveals that although these tools

generate patches, users often find them confusing or incomplete.

Developers prefer tools that offer not only repair suggestions but

also clear and insightful explanations supporting those

recommendations. In its absence, confidence in deploying

automated patches to live code is compromised. This reveals a

considerable failing in current APR tools, which tend to prioritize

accuracy over user proficiency. Future tools must prioritize

transparency and clarity to bridge this trust gap .

According to [15], Getafix is a machine learning tool that

examines version control histories to identify common bug-fix

patterns. These patterns are then delivered as live templates in

IDEs, streamlining and accelerating the debugging workflow.

Although this method works well for recurring bugs, it tends to

be less effective when developers encounter new problems that

are not documented in the version control system. Consequently,

the advancement of these systems may depend on hybrid

approaches that dynamically choose between the template-based

and generative AI methods depending on nature of the bug.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52526 | Page 3

In Ref. [16], a hierarchical approach to debugging is explored,

where code is broken into smaller functional units that are

analyzed independently using LLMs. This approach enhances

debugging by breaking it into smaller, more manageable parts,

which increases accuracy by focusing each analysis on a specific

context. Nonetheless, this leads to higher computational

expenses and longer processing times, particularly in large-scale

projects. Ensuring a balance between performance and

scalability is crucial for making these models viable in real-world

production settings. Optimizations like targeted analysis and

caching commonly used components may help reduce this

limitation.

The method presented in [17] utilizes symbolic evaluation in

combination with traditional rule-based reasoning to analyze

LISP code, making it especially effective for structured

educational purposes. By breaking down code behavior into

symbolic steps, beginners can develop a clearer understanding of

how programs execute internally. However, its scope is confined

mainly to specific languages like LISP and lacks adaptability to

the broader spectrum of modern multi-paradigm programming

languages such as Python, Java, and JavaScript. This limitation

restricts its scalability in real-world applications where diverse

frameworks and syntaxes coexist. A potential enhancement

would be the integration of symbolic reasoning with LLMs,

thereby creating hybrid educational tools capable of blending the

precision of rule-based methods with the adaptability of

statistical learning. Such integration could also enable

personalized learning experiences, where the debugger adjusts

explanations according to the learner’s level of expertise.

DeepBugs [18] is an innovative tool that leverages machine

learning to detect bugs by learning semantic relationships

between variable names. Its effectiveness largely depends on the

quality of variable naming, performing exceptionally well when

identifiers are clear and descriptive. This feature highlights the

critical role of coding standards, naming conventions, and

documentation in ensuring higher debugging accuracy.

However, in real-world scenarios where naming conventions

may be inconsistent or legacy codebases use ambiguous

identifiers, the tool’s performance tends to degrade. Addressing

this drawback could involve combining DeepBugs with static

and dynamic analysis methods to provide a more context-aware

debugging framework. Additionally, augmenting it with LLM-

driven semantic analysis could help the tool infer intent even

when variable names are not optimally chosen, thus making it

more resilient and adaptable in practical development

environments.

The multi-agent system described in [19] employs multiple

LLMs that collaboratively analyze code while incorporating

runtime feedback to enhance bug detection and resolution. This

cooperative mechanism mimics a team-based debugging process

where different agents specialize in unique tasks, leading to more

thorough evaluations. The system’s ability to adapt to evolving

code makes it particularly suitable for large-scale software

projects with frequent updates. Nevertheless, such multi-agent

collaboration introduces challenges, including communication

overhead, synchronization issues, and the risk of producing

conflicting suggestions. These drawbacks can result in longer

processing times and occasional inconsistencies in

recommendations. To overcome these challenges, future

research should focus on optimizing inter-agent communication

protocols, reducing latency, and establishing a consensus-driven

mechanism for decision-making. Such improvements would

make multi-agent systems not only powerful but also practical

for everyday software development workflows.

AGDebugger [20] represents a significant advancement in

interactive debugging by allowing users to directly guide and

monitor multi-agent LLMs during the debugging process. Its

visual feedback and control mechanisms enable developers to

influence the decision-making process, thereby maintaining

transparency and trust in AI-driven systems. This interactive

approach empowers developers to strike a balance between

automated suggestions and human judgment. However, its

current design demands substantial technical knowledge, making

it less accessible to beginners and non-experts. To broaden its

usability, AGDebugger could be enhanced with simplified user

interfaces, step-by-step guidance modules, and customizable

difficulty levels for explanations. Such enhancements would

democratize access to advanced AI debugging systems, making

them beneficial not only to professionals but also to students,

educators, and self-learners aiming to improve their

programming skills.

The key findings from the above literature review are

summarized in Table 1.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52526 | Page 4

TABLE-1 : LITERATURE SURVEY SUMMARY

Authors Title Methodology Remarks

K. H. Levin et al. [1],

2024

ChatDBG:

 Augme

nting Debugging with Large

Language Models

Integrating LLMs into

traditional debuggers (GDB,

LLDB, Pdb) for

conversational debugging

High effectiveness in

debugging Python; limited

by LLM dependency and

privacy concerns

S. Kang et al [2], 2024 Explainable

 Auto

mated Debugging via

Scientific Debugging

(AutoSD)

Uses LLMs to simulate human

debugging with explainable

 patch

suggestions

Improves transparency;

computationally

expensive and dependent

on prompt engineering

S. Chakraborty, B.

Ray.

[3], 2022

Explaining Software

 Bugs

Leveraging Code Structures

Uses AST-aware transformer

models for bug explanation in

natural language

Outperforms prior models;

requires large datasets for

training

M. Tufano et al. [4],

2019

Learning Bug-Fixing

Patches in the Wild via NMT

Trains NMT model on GitHub

commits to learn bug-fix pairs

Good results; limited to

Java and method-

level granularity

C. Parnin, A. Orso. [5],

2011

Are Automated Debugging

Techniques Actually Helping

Programmers?

Empirical study of developer

interaction with fault

localization tools

Reveals usability

 gaps; small

participant sample

T. Matsumoto et al. [6],

2021

Iterative Trials for

Correcting Logic Errors in

Source Code

Combines Correct Code Model

and Editing Operation Predictor

for iterative logic
correction

Strong educational value;

limited scalability beyond

structured tasks

Z. Xu, V. Sheng.

[7], 2024

LecPrompt: Logical

 Error

Correction with CodeBERT

Prompt-based logic bug repair

using MLM with CodeBERT

Efficient and

 accurate;

limited to synthetic

datasets

A. M .Zin et al. [8], 2000

A Knowledge-Based

Automated Debugger in

Learning Systems

Matches student code with bug

patterns using knowledge base

and flow graph parsing

Strong pedagogical

intent; limited

generalization

P. S. Kochhar et al. [9],

2016

Practitioners’ Expectations

on

Automated Fault

Localization

Global survey of expectations

and concerns about AFL

adoption in
industry

Highlights real-world tool

gaps; excludes post-2015

literature

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52526 | Page 5

Q. Zhang et al. [10], 2023 A Survey of Learning-based

Automated Program Repair

Reviews 112 studies on APR

using deep learning

Excellent summary of

APR research; lacks

practical deployment

discussion

P. Mahbub et al. [11],

2023

Bugsplainer: Code Structures

+ NMT for Bug Explanation

Generates bug explanations

using fine-tuned CodeT5 and

ASTs

Real-time utility; currently

supports only Python

X. Chen et al. [12], 2023

Teaching Large Language

Models to Self-Debug

LLMs explain and revise their

own code outputs through self-

feedback loops

No training required;

sensitive to explanation

quality

W. L. Johnson, E.

Soloway.

[13], 1984

Intention-Based Diagnosis of

Programming Errors

(PROUST)

Diagnoses student logic errors

based on inferred intentions

High educational value;

complex rule creation

H. Eladawy et al. [14],

2024

APR: What Is It Good For?

User study of three APR tools

(Recoder, SimFix, TBar) in

debugging Java projects

Strong validity; participants

debug unfamiliar code

J. Bader et al. [15], 2019

Getafix: Learning to Fix Bugs

Automatically

Learns bug-fix patterns from

VCS and applies them in real-

time

Suitable for IDEs; struggles

with novel cases

Y. Shi et al. [16], 2024

From Code to Correctness:

Hierarchical Debugging with

LLMs

Breaks code into subfunctions

for isolated testing and AI-based

debugging

Modular and precise; high

computational overhead

W. R. Murray. [17], 1984

Heuristic and Formal

Methods in Automatic

Program Debugging

Uses symbolic evaluation and

heuristics for LISP- based

student code debugging

Useful in education;

language-specific (LISP)

M. Pradel, K. Sen. [18],

2018

DeepBugs: Name-based Bug

Detection with Learning

Uses embeddings to detect

naming-based semantic bugs in

JavaScript

Learns from names; fails if

variables are poorly named

N. Ashrafi et al. [19],

2025

Enhancing LLM Code

Generation with Multi-Agent

+ Runtime Debugging

Combines multi-agent LLM

collaboration with runtime

feedback

Comprehensive; long

execution time and

inconsistent performance

across models

W. Epperson et al. [20],

2025

Interactive Debugging and

Steering of Multi-Agent AI

Systems

AGDebugger allows

visualization and intervention in

multi-agent LLM workflows

Innovative interaction;

requires deep user

understanding and may

produce non-deterministic

results

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 09 | Sept - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52526 | Page 6

3. CONCLUSIONS

The AI-Powered Code Debugger and Explainer offers several

advantages for improving the coding experience, particularly in

educational and development environments. Key benefits

include enhanced error detection, clear logical error

identification, interactive learning through code explanations,

real-time correction suggestions, and support for multiple

programming languages. The system promotes efficiency,

reduces debugging time, aids conceptual clarity, and serves as an

intelligent assistant for both novice and experienced

programmers.

REFERENCES

[1] K. H. Levin, N. Van Kempen, E. D. Berger, and S. N.

Freund, "ChatDBG: Augmenting Debugging with Large

Language Models," arXiv preprint arXiv:2403.16354, Mar.

2024. [Online].Available: https://arxiv.org/abs/2403.16354

[2] S.Kang, B. Chen, S. Yoo, and J.-G. Lou, "Explainable

Automated Debugging via Large Language Model-driven

Scientific Debugging," Empirical Software Engineering, vol. 29,

no.1,Article 5, 2024. [Online].Available:

https://link.springer.com/article/10.1007/s10664-024-10594-x

[3] S. Chakraborty and B. Ray, "Explaining Software Bugs

Leveraging Code Structures in Neural Machine Translation," in

Proc. 44th Int. Conf. on Software Engineering (ICSE), 2022,
pp. 1466–1478. doi: 10.1145/3510003.3510051

[4] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White,

and

D. Poshyvanyk, "An Empirical Study on Learning Bug-Fixing

Patches in the Wild via Neural Machine Translation," ACM

Trans. Softw. Eng. Methodol., vol. 28, no.4, Art. no. 19, Sep.

2019. doi: 10.1145/3340544

[5] C. Parnin and A. Orso, "Are Automated Debugging

Techniques Actually Helping Programmers?," in Proc. Int.

Symp. on Software Testing and Analysis (ISSTA), Toronto, ON,

Canada,

Jul. 2011, pp. 199–209. doi: 10.1145/2001420.2001445

[6] T. Matsumoto, Y. Watanobe, and K. Nakamura, "A Model

with Iterative Trials for Correcting Logic Errors in Source

Code," Appl. Sci., vol. 11, no. 11, p. 4755, May 2021. doi:

10.3390/app11114755

[7] Z. Xu and V. S. Sheng, "LecPrompt: A Prompt-Based

Approach for Logical Error Correction with CodeBERT," arXiv

preprint arXiv:2410.08241, Oct. 2024. [Online]. Available:

https://arxiv.org/abs/2410.08241

[8] A. M. Zin, S. A. Aljunid, Z. Shukur, and M. J. Nordin, "A

Knowledge-Based Automated Debugger in Learning System," in

Proc. Int. Workshop on Automated and Algorithmic Debugging

(AADEBUG), 2000, Universiti Kebangsaan

Malaysia.

[9] P. S. Kochhar, X. Xia, D. Lo, and S. Li, "Practitioners’

expectations on automated fault localization," in Proc. 25th

ACM Int. Symp. Software Testing and Analysis (ISSTA),

Saarbrücken, Germany, Jul. 2016, pp. 165–

176. [Online].Available:

https://dl.acm.org/doi/10.1145/2931037.2931051

[10] Q. Zhang, C. Fang, Y. Ma, W. Sun, and Z. Chen, "A Survey

of Learning-based Automated Program Repair," ACM Trans.

Softw. Eng. Methodol., vol. 32, no. 3,Article 1, 2023. [Online].
Available: https://dl.acm.org/doi/10.1145/2931037.2931051

[11] P. Mahbub, M. M. Rahman, O. Shuvo, and A. Gopal,”

Bugsplainer: Leveraging Code Structures to Explain Software

Bugs with Neural Machine Translation," in Proc. 2023 IEEE Int.

Conf. Software Maintenance

[12] X. Chen, M. Lin, N. Schärli, and D. Zhou, "Teaching Large

Language Models to Self-Debug," arXiv preprint

arXiv:2304.05128, Apr. 2023. [Online]. Available:

https://arxiv.org/abs/2304.05128

[13] W. L. Johnson and E. Soloway, "Intention-Based Diagnosis

of Programming Errors," in Proc. AAAI-84: National

Conference on Artificial Intelligence, Austin, TX, USA, Aug.

1984, pp. 162–

168. [Online]. Available: https://aaai.org/papers/00162-aaai84-

002-intention-based-diagnosis-of-programming-errors/

[14] H. Eladawy, C. Le Goues, and Y. Brun, "Automated

Program Repair, What Is It Good For? Not Absolutely

Nothing!," in Proceedings of the 46th IEEE/ACM International

Conference on Software Engineering (ICSE), Lisbon, Portugal,

Apr.2024, 1–13. [Online]. Available:

https://doi.org/10.1145/3597503.3639095

[15] J. Bader, A. Scott, M. Pradel, and S. Chandra, , "Getafix:

Learning to Fix Bugs Automatically," Proceedings of the ACM

on Programming Languages, vol. 3, no. 2019. [Online].
Available: https://dl.acm.org/doi/10.1145/3360585

[16] Y. Shi, S. Wang, C. Wan, and X. Gu, "From Code to

Correctness: Closing the Last Mile of Code Generation with

Hierarchical Debugging," arXiv preprint, arXiv:2410.01215,

Oct. 2024. [Online]. Available:

https://arxiv.org/abs/2410.01215

[17] W. R. Murray, "Heuristic and Formal Methods in

Automatic Program Debugging," Department of Computer

Sciences, University of Texas at Austin, Technical Report, 1984.

[18] M. Pradel and K. Sen, "DeepBugs: A Learning Approach

to Name-based Bug Detection," arXiv preprint,

arXiv:1805.11683,
May 2018.[Online].Available: https://arxiv.org/abs/1805.11683

[19] N. Ashrafi, S. Bouktif, and M. Mediani, "Enhancing LLM

Code Generation: A Systematic Evaluation of Multi-Agent

Collaboration and Runtime Debugging for Improved Accuracy,

Reliability, and Latency," arXiv preprint, arXiv:2505.02133,
May 2025. [Online]. Available: https://arxiv.org/abs/2505.02133

[20] W. Epperson, G. Bansal, V. Dibia, A. Fourney, J. Gerrits, E.

Zhu, and S. Amershi, "Interactive Debugging and Steering of

Multi- Agent AI Systems," in Proceedings of the CHI Conference

on Human Factors in Computing Systems (CHI ’25), Yokohama,

Japan, Apr.–May 2025, pp. 1–15. [Online]. Available:

https://doi.org/10.1145/3706598.3713581

https://ijsrem.com/
https://arxiv.org/abs/2403.16354
https://link.springer.com/article/10.1007/s10664-024-10594-x
https://arxiv.org/abs/2410.08241
https://dl.acm.org/doi/10.1145/2931037.2931051
https://dl.acm.org/doi/10.1145/2931037.2931051
https://arxiv.org/abs/2308.12267
https://doi.org/10.1145/3597503.3639095
https://dl.acm.org/doi/10.1145/3360585
https://arxiv.org/abs/2410.01215
https://arxiv.org/abs/1805.11683
https://arxiv.org/abs/2505.02133
https://doi.org/10.1145/3706598.3713581

