

A Review on Automated Techniques for Fault Location in HVDC Systems

¹Ramesh Dudve, ²Shalini Goad

¹M.Tech Scholar, Department of Electrical and Electronics, Oriental University, Indore ²Assistant. Professor, Department of Electrical and Electronics, Oriental University, Indore

Abstract-In the present era of deregulation and competition, demand from every energy supplier is to have good continuity, dependability and reliability. Fault location can play a vital role in achieving this aim. As uninterrupted power supply is the prime demand by all consumers. However, faults in power system will leads to the interruption in power supply and it will make system vulnerable towards system outrage/collapsing and will lead to damage various electrical peripheral of switch gear/ electrical equipment. Hence all faults are required to be detected and clear as soon as possible to restart power supply to consumer. Having accuracy knowledge of fault location will come very handy in reducing system outrage time and they're by improving continuity and reliability of system. Various esearches has been done previously towards finding accurate result. In this paper presents a comprehensive survey on the existing work done in the domain of machine learning assisted fault location in HVDC systems.

Keywords: HVDC, Fault Location, Machine Learning, Mean Square Error, Accurayc,

I. INTRODUCTION

Transmission system plays the vital role in connecting generation station to load. It has the responsibility to supply continuous power from one and two other. Any type of damage to transmission line will lead to an interruption in power supply but in the present era of power system deregulation providing good power quality with continuous supply is main its main priority of all electric utility companies. Hence for this reason focus should be paid in the field of system protection and a proper planning is expected to deal with any unwanted situation.

Relay and circuit breakers play key part in preventing system during any fault condition. Faults are responsible for creating system malfunctioning and their immediate diagnosis is expected is expected to increase reliability.

Normally distance relays are used for locating fault. The working of distance relay is based upon the measured value of impedance between fault point and relay location (that is ratio of voltage and current between these two points). Now this should be giving accurate results, but due to the presence of series capacitor banks for compensation problem will somehow tarnish the accuracy of relay.

Capacitor banks are used because they help in balancing reactive power in transmission line thus helping in increasing line loadability, reducing line losses and increase in system stability.

ANN are computing systems or technique that mimic the learning processes of the brain to discover the relations between the variables of a system. They process input data information to learn and obtain knowledge for forecasting or classifying patterns etc. type of work. ANN consists of number of simple processing elements called neurons. All information processing is done within this neuron only. A network of connected artificial neurons can be designed, and a learning algorithm can be applied to train it [5]. Signals (Input data) are passed between neurons over connection linksand Each connection link has an associated weight, which in a neural network, multiplies the signal transmitted. The weights represent information being used by the network to solve a problem. Then the weighted sum is operated upon by an activation function (usually nonlinear), and output data are conveyed to other neurons. The weights are continuously altered while training to improve accuracy and generalize abilities

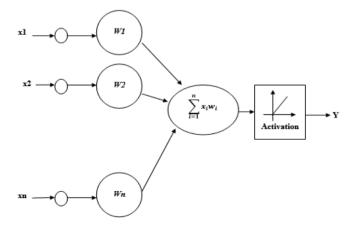


Fig.1 Mathematical Equivalent of Neural Network

The ANN which contains multiple hidden layers and is used for extremely complex pattern recognition problems. Artificial Neural Networks (ANN) are one of the most effective techniques for time series or regression problems. The output of the neural networks is given by:

 $y = f(\sum_{i=1}^{n} x_i w_i + \varphi) \tag{1}$

Here, y is the output x are the inputs w are the weights φ is the bias f stands for the activation function

The commonly logic or activation functions used are the sigmoid, log sigmoid, tangent-sigmoid, rectified linear (ReLu), step or hard-limiting function etc. The mathematical model for a neural networks is depicted in figure 1.

Neural Network Training Stage

In this stage we will feed input data to input layer of present designed model and target is fitted to output layer. We have used LM and BR training algorithm for training. It is this stage in which model is prepared and value of weights are optimized for better performance according to input and target data samples.

Neural Network Testing and validation stage

At this stage, the second part of dataset is used. Although only inputs are provided to already trained neural network and output is calculated from neural networks. These is then compared to original target fault distance to observe the closeness between the two.

II. PREVIOUS WORK

This section highlights the previous work done in the domain:

Rohani et al. proposed a fault location method consists of three major sections. In the first section, HH transform is applied to extract new features from current signal. In the second part, ANFIS uses the extracted features to estimate the fault location in transmission lines. Learning algorithm determines the accuracy and efficiency of each machinelearning algorithm. In the third section of the developed system, enhanced version of particle swarm optimization (PSO) algorithm named chaotic dynamic weight PSO (CDWPSO) algorithm is implemented as learning algorithm to train the ANFIS. The developed fault detection and location system was tested on a VSC-HVDC system with 250 km length and the obtained results using MATLAB simulations have shown that combination of new features, and CDWPSObased ANFIS has high accuracy in fault detection and location in VSC-HVDC systems. High fault location accuracy, robust performance of neuro-fuzzy system, optimal training of ANFIS, extraction of novel effective features from current

signal and fault location only with six features are the main contribution of the developed system.

Keshri et al. proposed support vector machine (SVM) based classification approach for Fault estimation in HVDC transmission system. SVM based method is comparatively a novel method that is based on computational as well as theory of statistical learning. Along with the input space vector is made into a dot product of high dimension that is called a feature space in SVM theory. Therefore, the optimal hyperplane has to be consider greater ability of classification in the feature space. Thus the optimal hyper-plane is to be determined by exploring the theory of optimization, and the critical information providing via the theory of statistical learning. Therefore, SVM approach has got the ability to counter a large featured space vector. So that the proposed approach has ability to assist in the area of fault classification as there is no restriction on the number of features.

Somsundaran Vasanath et al. have proposed a technique for the estimate of the location of the faults in HHDC lines by the dint of the artificial neural network model after the design of the system on PS-CAD based model. It was shown that the system has a better power quality compared to the ac counterpart with lesser losses, however the fault location was much more daunting due to the long continuity of the t-line. The system uses a 200km T-Line with the performance to be the mean square error. The paper shows that the proposed system attains a mean square error of 20.5886km.

Jenifer Mariam et al. have presented a method of detecting fault location of \pm 500 kV HVDC transmission system using artificial neural network (ANN). Author has modelled and simulated \pm 500 kV bipolar HVDC transmission line over PSCAD/EMTDC software. Author has proposed a model developed using ANN in MATLAB environment, trained and tested using one sided voltage and current magnitude of HVDC transmission line for various fault location. Author has simulated HVDC line model for LG fault at distance of every 2 kilometer of transmission and noted the data corresponding to that. From this model has observed a result with an accuracy of 2-kilometer distance. Model is developed for a HVDC bipolar transmission line of \pm 500 kV and 936 KM.

Sunil Singh et al. have developed a fault location estimation technique for a 300 km, 400 kV transmission line. Author has performed fault analysis at various location of this transmission line in MATLAB environment and the data obtained during simulation at various fault location is stored. This data is than transformed using wavelet analysis for the sole purpose of feature extraction which than can be supplied to ANN for prediction of fault location. After obtaining results from ANN, author came to conclusion DWT and ANN model together are very efficient in predicting exact location of fault with very high accuracy.

Ankita Nag et al. have proposed an ANN based protective scheme for the hybrid transmission system both overhead and underground. Author has discussed various advantages of AI

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 06 ISSUE: 04 | APRIL - 2022

IMPACT FACTOR: 7.185

ISSN: 2582-3930

has over primitive location detecting techniques like one based on phasor based method which usually utilizes fundamental component of signal and other is traveling wave based method which works on the basis of value of reflected wales. Author has developed and simulated15 kilometer, 132 kV, 50 hz transmission line with 3-kilometer underground cable and 12kilometer overhead lines for a LG fault. After training and testing author came to conclusion that the output is very accurate compare to other techniques.

Qingqing Yang et al. have developed a model for DC microgrid fault detection and fault location using artificial neural network. The DC microgrid is modeled in PSCAD/EMTDC to simulate various faults. Author has discussed the importance of microgrid for present day power system in which penetration of renewable energy is increasing day by day leading to more unpredicted grid behavior and hence making control strategies more complicated. A total of 40 neurons are taken in input layer consisting of 20-20 data from both sending end and receiving end of dc microgrid. Author has obtained results from trained model with an accuracy of one percent error which is very accurate considering distance.

Nabamita Roy et al. have presented a technique for detecting fault, classifying it had then forecasting fault location. Various techniques author has used in this work is s-transform and wavelet transform for feature extraction purpose. Values of this features is used for both classification and locating fault in this work. Author has concluded that above following techniques includes BPNN techniques has developed a model which has great speed of computation and very high accuracy. Author has utilized value of current and voltage parameter values for solving about problem and obtained error of maximum value of 4.35 percent.

Liang Yuansheng et al. have discuss a noble algorithm to detect fault location. Author has performed a mix of travelling wave theory and Bergeron times domain fault location method. The value of voltage and current from both sides is taken as input parameters. In this study a self-adopted filter is also utilized which has ultimately improved performance of the algorithm. After the simulation and performing all tests related to fault at different location, author came to conclusion that this method is efficient for faults location detection for unsynchronized two end measurements on HVDC lines.

Pu Liu et al. have presented an excellent HVDC transmission system model which comprise of all components including transformer, converters, filters, reactor, transmission tower and transmission line. The model is designed and simulator in PSCAD/EMTDC software. This study is done on the benchmark model for \pm 500 kV HVDC system that is CIGRE benchmark. On simulating it is concluded that this CIGRE benchmark model can accurately simulate HVDC transmission system accurately for \pm 500 kV DC transmission line and that this model can be used for any further research related to high voltage dc transmission system.

S. F. Alwash et al. have developed an algorithm for identification of all shunt type fault location. This work mainly presented a scheme where author has used impedance method for fault location. This method is tested for IEEE 34 bus distribution system designed and simulated in PSCAD/EMTDC software. In the study author has computed a method which has capability to identify faults location irrespective of type of shunt fault. In this work while designing model for fault location estimation for both distributed generation and capacitive effect of lines are considered.

Jae-Do Park et al. have proposed a DC microgrid system's fault location technique is proposed. This study describes a technique which includes a ring type bus. This work describes the importance of dc in not only transmission system but evenly in distribution system. In this work author has used intelligent electronic devices for the controlling and monitoring all nodes. The author has successfully implemented proposed algorithm/technique both in hardware and simulation experimentally.

M Ramesh et al. have presented an overview of various intelligent techniques for detecting fault in HVDC. In study author has discussed drawbacks of primitive fault detection techniques in HVDC. Then author has provided an overview to various artificial intelligent techniques in view to identify fault of HVDC transmission system. The study concluded that the rule based linear fuzzy logic controller can be used to achieve the desired fault detection of the HVDC link. This controller has a benefit that they don't require a mathematical model to estimate control input under disturbance conditions.

EisaBashier M. et al. showed that in power system are always exposed to abnormal conditions, which are the reason for the damage of transmission line and other electrical equipment's of power system. These abnormalities are termed as faults. These faults are required to be detected and classified for better performance of transmission line. In this paper author has presented a Back-Propagation technique of Artificial Neural Network as an alternative for transmission line fault detection, classification and isolation. Author has performed the study by using MATLAB software and Neuroshell 2 software.RMS value of phase current and phase voltage as input to neural network.

JialeSuonan et al. have presented a novel method of locating fault which can outperform commonly used travelling wave technique. The proposed technique is performed in time domain and is simulated using EMTDC software. This paper has utilized Bergeron model of HVDC transmission line to check performance of proposed fault location method. This algorithm was built on a distributed parameter model and thus can be directly implemented in the domain based on current and voltage of both ends of transmission line.

The parameters which can be used to evaluate the performance of the ANN design are given by:

L

INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

VOLUME: 06 ISSUE: 04 | APRIL - 2022

IMPACT FACTOR: 7.185

ISSN: 2582-3930

- 1. Mean Absolute Error (MAE)
- 2. Mean Absolute Percentage Error (MAPE)
- 3. Mean square Error (MSE)

The above mentioned errors are mathematically expressed as:

$$MAE = \frac{1}{N} \sum_{t=1}^{N} |Y_t - \hat{Y}_t|$$
(2)
Or

$$MAE = \frac{1}{N} \sum_{t=1}^{N} |e_t|$$
(3)

$$MAPE = \frac{100}{N} \sum_{t=1}^{N} \frac{|Y_t - \hat{Y}_t|}{V_t}$$
(4)

$$MSE = \frac{1}{N} \sum_{t=1}^{N} e_t^2$$
 (5)

Here,

N denotes the number of samples in prediction.

- *Y* is the predicted value of the variable.
- \hat{Y}_t is the actual value of the variable.
- *e* is the error value in each prediction.

The accuracy is generally computed as:

$$Accuracy = 100 - error(\%) \tag{6}$$

Low values of the error metrics are desirable for the estimation of faults.

III. CONCLUSION

It can be concluded from the previous work that the, faults in power system will leads to the interruption in power supply and it will make system vulnerable towards system outrage/collapsing and will lead to damage various electrical peripheral of switch gear/ electrical equipment. Hence all faults are required to be detected and clear as soon as possible to restart power supply to consumer. Having accuracy knowledge of fault location will come very handy in reducing system outrage time and they're by improving continuity and reliability of system. Various researches have been done previously towards finding accurate result. In this work, location detection using the mathematical neural network technique is presented. The goal of the work is to prepare a model which can somehow manage to give accurate fault location on HVDC line thus helps in improving the system performance.

REFRENCES

[1] R. Rohani and A. Koochaki, "A Hybrid Method Based on Optimized Neuro-Fuzzy System and Effective Features for Fault Location in VSC-HVDC Systems," in IEEE Access, vol. 8, pp. 70861-70869, 2020. DOI 10.1109/ACCESS.2020.2986919.

[2] J. P. Keshri and H. Tiwari, "Fault Classification in VSC-HVDC Transmission System using Machine Learning Approach," 2019 8th International Conference on Power Systems (ICPS), 2019, pp. 1-6. DOI doi: 10.1109/ICPS48983.2019.9067699.

[3] Somsundar Vasanth, Yew Ming Yeap, Abhisek Ukil, "Fault Location Estimation for VSC-HVDC System Using Artificial Neural Network",IEEE Explore: 2018. DOI doi: 10.1109/TENCON.2016.7848050.

[4] Jenifer Mariam Johnson and Anamika Yadav, "Fault Location Estimation in HVDC transmission line using ANN" First International Conference on Information and Communication Technology for Intelligent Systems: Volume 1, Smart Innovation, Systems and Technologies, Volume 50, pp 205-211, Springer, 2016.

DOI https://doi.org/10.1007/978-3-319-30933-0_22

[5] Sunil Singh, D. N. Vishwakarma, "ANN and Wavelet Entropy based Approach for Fault Location in Series Compensated Lines", International Conference on Microelectronics, Computing and Communications (MicroCom), 2016.

DOI: 10.1109/MicroCom.2016.7522557

[6] Ankita Nag and Anamika Yadav, "Fault Classification using Artificial Neural Network in Combined Underground Cable and Overhead Line", 1st IEEE International Conference on Power Electronics. Intelligent Control and Energy Systems (ICPEICES-2016), 2016. DOI: 10.1109/ICPEICES.2016.7853664

[7] Qingqing Yang, Jianwei Li, Simon Le Blond, Cheng Wang, "Artificial Neural Network Based Fault Detection and Fault Location in the DC Microgrid", Energy Procedia, Volume 103, pp 129 – 134, ScienceDirect, 2016. DOI: https://doi.org/10.1016/j.egypro.2016.11.261

[8] Nabamita Roy &Kesab Bhattacharya, "Detection, Classification, and Estimation of Fault Location on an Overhead Transmission Line Using S-transform and Neural Network", Electric Power Components and Systems, Volume 43(4), pp 461–472, Taylor & Francis, 2015.

DOI: http://dx.doi.org/10.1080/15325008.2014.986776

[9] Liang Yuansheng, Wang Gang, and Li Haifeng, "Time-Domain Fault-Location Method on HVDC Transmission Lines Under Unsynchronized Two-End Measurement and Uncertain Line Parameters", IEEE Transactions on Power Delivery 1, Volume 30, Issue 3, pp 1031 – 1038, 2015.

DOI: 10.1109/TPWRD.2014.2335748

[10] Pu Liu, Renfei Che, Yijing Xu, Hong Zhang, "Detailed Modeling and Simulation of ±500kV HVDC Transmission System Using PSCAD/EMTDC", IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2015.

DOI: 10.1109/APPEEC.2015.7446227

[11] S. F. Alwash, V. K. Ramachandaramurthy, and N. Mithulananthan, "Fault Location Scheme for Power Distribution System with Distributed Generation", IEEE Transactions on Power Delivery, Volume 30, Issue 3, pp 1187 – 1195, 2014.

DOI: 10.1109/TPWRD.2014.2372045

[12] Jae-Do Park, Jared Candelaria, Liuyan Ma, and Kyle Dunn, "DC Ring-Bus Microgrid Fault Protection and Identification of Fault Location", IEEE Transactions On Power Delivery, Volume 28, Issue 4,pp 2574 – 2584, 2013. DOI: 10.1109/TPWRD.2013.2267750 INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT (IJSREM)

Volume: 06 Issue: 04 | April - 2022

IMPACT FACTOR: 7.185

ISSN: 2582-3930

[13] M Ramesh, A. Jaya Laxmi, "Fault Identification in HVDC using Artificial Intelligence – Recent Trends and Perspective", International Conference on Power, Signals, Controls and Computation, IEEE,2012.

DOI: 10.1109/EPSCICON.2012.6175256

[14] EisaBashier M. Tayeb,Orner AI Aziz AlRhirn, "Transmission Line Faults Detection, Classification and Location using Artificial Neural Network",International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), IEEE,2012. DOI: 10.1109/ICUEPES.2011.6497761

[15] JialeSuonan, Shuping Gao, Guobing Song, Zaibin Jiao, and Xiaoning Kang, "A Novel Fault-Location Methodfor HVDC Transmission Lines", IEEE Transactions on Power Delivery, Volume 25, Issue 2, pp 1203 – 1209, 2010.

DOI: 10.1109/TPWRD.2009.2033078