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ABSTRACT 

The rapid evolution of semiconductor technologies has fueled a significant surge in research on hybrid artificial intelligence (AI) 

systems, particularly for circuit-level optimization integrated with machine learning (ML). These systems address complex challenges 

in electronic design by leveraging multiple AI methodologies, such as neural networks, reinforcement learning, and statistical 

modeling. This review presents a comprehensive analysis of recent advancements in this domain, focusing on trends, methodologies, 

and global contributions. Between 2015 and 2024, research output grew exponentially, with publications rising from 2 in 2015 to 635 

in 2024, underscoring increasing academic and industrial interest. Bibliometric analysis highlights leading sources, with fields like 

distributed computing and human-centered computing exhibiting the highest citation impacts. Prominent authors and influential 

publications reflect the intellectual foundations of this field. Countries like China, Saudi Arabia, and the United States dominate 

contributions, emphasizing global collaboration. Hybrid AI systems excel in optimizing analog and mixed-signal circuits through 

techniques such as Bayesian optimization, neural networks, and co-simulation with CAD/EDA tools, significantly enhancing 

efficiency and accuracy. Key applications include automated circuit sizing, fault diagnosis, and RF/microwave circuit modeling. 

Challenges such as data integration, computational overhead, and variability in manufacturing demand innovative solutions. Future 

research directions prioritize improving model interpretability, reducing computational costs, and integrating hybrid AI with emerging 

trends like IoT and edge computing. This review bridges theoretical innovations with practical implementations, contributing to the 

advancement of AI-driven integrated circuit design and optimization. 

I. INTRODUCTION 

The application of Artificial Intelligence (AI) in circuit-level 

optimization has transformed how electronic designs are 

conceived and developed. With the increasing complexity of 

integrated circuits (ICs) in the era of advanced semiconductor 

technologies, traditional methods of optimization have 

struggled to keep pace with performance and efficiency 

demands. AI, particularly machine learning (ML), offers the 

potential to revolutionize this domain by enabling intelligent, 

data-driven decision-making. Hybrid AI systems, which 

integrate multiple AI approaches such as ML, deep learning 

(DL), and expert systems, have emerged as a robust solution 

for optimizing circuit performance, minimizing power 

consumption, and reducing design time. 

Hybrid AI systems leverage the strengths of various 

algorithms to address the multifaceted challenges of IC design. 

These systems combine rule-based methods, statistical 

models, and ML techniques to achieve optimization goals 

effectively. For instance, while rule-based systems can quickly 

identify constraints and boundaries, ML algorithms excel at 

discovering patterns and predicting optimal 

conFigureurations. This synergy enables a more 

comprehensive approach to circuit-level optimization, 

encompassing aspects such as layout design, timing analysis, 

and power management. Recent advancements highlight the 

ability of hybrid systems to balance trade-offs, such as 

performance versus energy consumption, more effectively 

than standalone methods. 

Machine learning algorithms are central to hybrid AI systems 

due to their capability to analyze vast datasets generated during 

IC design processes. Algorithms such as support vector 

machines (SVMs), decision trees, and neural networks are 

increasingly used to predict performance metrics, identify 

bottlenecks, and suggest design improvements. ML techniques 

also play a pivotal role in automating routine tasks, enabling 

designers to focus on higher-level optimizations. Moreover, 

reinforcement learning (RL) has demonstrated exceptional 

potential in dynamic optimization scenarios, allowing systems 

to adapt and improve over time based on iterative feedback. 

Despite their promise, hybrid AI systems face several 

challenges in circuit-level optimization. One of the primary 

hurdles is the integration of diverse data sources and 

algorithms to ensure seamless operation. Variability in 

manufacturing processes and the stochastic nature of 

electronic behavior further complicate optimization efforts. 

Additionally, the computational overhead of training 

sophisticated ML models can be significant, requiring careful 

balancing of accuracy and efficiency. Addressing these 

challenges requires innovative approaches to hybrid system 

design, including the development of lightweight algorithms 

and efficient data preprocessing techniques. 

As the demand for high-performance, energy-efficient 

electronics continues to grow, the role of hybrid AI systems in 

IC design is set to expand. Emerging trends such as edge 

computing, Internet of Things (IoT), and autonomous systems 

underscore the need for scalable and adaptable optimization 
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solutions. The integration of AI with traditional electronic 

design automation (EDA) tools presents an exciting frontier, 

promising to redefine industry standards and capabilities. 

Future research is expected to focus on improving 

interpretability, enhancing generalization, and reducing the 

computational costs of hybrid AI systems, ensuring their 

widespread adoption in the semiconductor industry. 

This literature review seeks to explore the advancements, 

challenges, and future directions of hybrid AI systems in 

circuit-level optimization, with a focus on their integration 

with machine learning algorithms. By bridging the gap 

between theoretical innovation and practical implementation, 

the study aims to contribute to the evolving landscape of AI-

driven IC design. 

1.1 Artificial Intelligence & Machine Learning Main 

Concepts and Techniques 

A. General Terminology  

Artificial intelligence and Machine Learning (ML) are terms 

used to describe algorithms that can learn patterns without 

direct human involvement. Generally, these algorithms are 

trained, meaning that they learn patterns from some dataset, 

then they are used for inference. There are several common 

ways to train a machine learning model e.g. supervised, 

unsupervised, semi-supervised, and Reinforcement Learning 

(RL). 

1) Supervised Learning: Supervised learning is when the 

correct corresponding outputs, called labels, are known for 

every input. This is helpful to train a model to recognize 

specific useful patterns. Supervised learning allows models to 

achieve high accuracy in many tasks, such as classification or 

regression, when enough data is present. The largest drawback 

of supervised learning is that it either requires the training 

dataset to already have properly labeled data or it requires a 

significant amount of work to create and maintain a properly 

labeled dataset which is both time-consuming and is hard to 

achieve. Additionally, the designers need to be careful when 

choosing their training data. If this subset is not representative 

of the entire set, the model may output inconstant results 

during inference. 

2) Unsupervised Learning: In contrast to supervised learning, 

unsupervised learning does not require labeled data. This 

means that less effort is required to obtain proper data, but in 

exchange, it can be harder to train the model to create the 

desired output. A powerful approach with unsupervised 

learning is to cluster the data. Clustering can lead to finding 

similarities between the features of various inputs to help 

classification or data extraction. 

3) Semi-Supervised Learning: Semi-supervised learning, as 

the name implies, is a hybrid between the previous two types 

of learning. Generally, this approach first uses unsupervised 

learning on a large set of unlabeled data to learn robust 

patterns. Then, using the labeled data, the model is trained to 

use those learned patterns to output relevant data. This 

approach, if implemented correctly, can achieve the best of 

both worlds. It does not need a vast set of labeled data, yet the 

training can still be directed. However, additional effort is 

needed to make sure that both parts of the network properly 

converge. 

4) Reinforcement Learning: Reinforcement learning is a 

version of machine learning where a software agent, a program 

with the ability to learn, is rewarded for certain actions. Even 

though RL models are trained for a specific set of 

specifications and their reuse is not guaranteed, a major benefit 

of them over supervised learning is that optimal solutions to 

problems do not need to be known beforehand. For instance, 

Wang et al. use RL to optimize the circuit parameters. They 

“reward” the model when it outputs a circuit with the required 

specifications and low power consumption and area. 

5) AI Model Verification and Performance Evaluation: 

Designers must exercise caution when training models due to 

the potential for underfitting and overfitting.  Under fitting 

happens when the model has not recognized all of the general 

patterns that exist in the training data. To fix this issue, the 

model can be trained longer on the data in order to reach a local 

minimum or even the global minimum. However, if the model 

is too simple to learn all of the patterns, then further training 

will not be beneficial. In this case, a larger or more complex 

model is needed in order to get better results. On the other 

hand, overfitting occurs when the model learns to identify non-

generalizable patterns within the training data. For instance, a 

model that detects human faces would be overfitting if it could 

only detect faces indoors. This might happen because all of the 

training data with faces came from pictures taken indoors. 

Adding more diverse training data can help reduce this 

problem. Overfitting occurs more readily in larger, more 

complex models since they can identify and use more features 

compared to simpler models. To combat this, several tricks 

have been proposed to reduce this issue in various types of 

models, but there is no perfect solution to stop overfitting. 

B. Common AI & ML Models  

1) Support Vector Machines: Many different types of 

artificial intelligence and machine learning models have been 

tested over the years. One such model, Support Vector 

Machine (SVM) is a supervised learning model that is mostly 

used for classification or regression problems. For 

classification, SVMs operate by finding an optimal hyperplane 

to separate the features of two or more classes. An SVM can 

be seen separating two classes in Figure. 1. SVMs are used for 

regression by including a distance measure in the loss function. 

SVMs are widely praised at the start of the twenty-first century 

for their resilience to overfitting when compared to other ML 

techniques such as neural networks. Today SVM models can 

still achieve state-of-the-art performance in certain circuit 

design applications such as a seizure detection sensor. 
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Figure.1 An image showing a Support Vector Machine 

(SVM) separate two different classes (red dots and green 

starts) with two different features 

2) Artificial Neural Networks: Another type of ML model, 

artificial neural networks, are designed to imitate how real 

neurons transmit and interpret data. Groups of neurons, or 

nodes, that are not connected with one another are called 

layers. Multiple layers can be used to allow complex non-

linear patterns to be learned as shown in Figure. 2. The output 

or activation, of a single neuron in an ANN can be represented 

with the following equation. 

                     (1) 

where k is the number of activations from the previous layer 

that are connected with this node. Each of these activations, x, 

is multiplied by a unique learned weight w, then all of these 

products are summed together. Next, a learned constant bias b 

is added to the sum before the result is sent into a non-linear 

function f. Many non-linear functions can be used including 

the Rectified Linear Unit (ReLU), the sigmoid function, and 

the hyperbolic tangent. ANNs have broad applications in NLP, 

computer architecture and circuit design. 

 

Figure.2 An image showing an Artificial Neural Network 

(ANN) with several intermediate, hidden, layers 

3) Deep Neural Networks: With the advent of more 

computational power and efficient training methods, neural 

networks began to get larger and deeper. A new term was 

coined for networks with tens to hundreds of layers, Deep 

Neural Networks (DNN). The layers in between the input and 

output layers are called hidden layers because their values are 

hidden to the outside world. This leads to DNNs being treated 

as black boxes where inputs are converted into corresponding 

outputs. The standard implementation of a DNN has dense 

connections between the layers, meaning that every node in 

every layer connects to every node in the next layer. However, 

other implementations exist with various benefits. One 

problem with traditional dense DNNs is how quickly the 

memory requirement increases with the model size. Because 

of this, the maximum size of a traditional DNN is still limited. 

A simple method to reduce the memory requirement would be 

to connect nodes in layer K to only a subset of the nodes in 

layer K + 1.  

4) Convolutional Neural Networks: Another method is to 

instead have a moving window of weights. In this approach, a 

small group of weights moves across the entire image, often 

with a stride of 1. Several of these groups, which are called 

filters, are used in order to identify many different types of 

features. This approach is known as a Convolutional Neural 

Network (CNN). CNNs have multiple layers to break down 

complex patterns into more manageable ones. A pooling layer 

is often used in conjunction with a CNN. Pooling layers 

condense a model-defined amount of nearby data into a 

representation that requires less space. A common type of 

pooling is max-pooling. In this type, only the maximum value 

within each subset of data is propagated to later layers. Pooling 

layers help reduce computation complexity as well as help 

reduce overfitting. Despite the wide applications of CNNs, 

there are many problems that deal with data that are in a non-

Euclidean structure such as chemical molecules, social 

networks, and functional networks of the brain. However, 

CNNs inputs are required to be tensor e.g. images that are 

modeled as 2-D structure. 

II. RESEARCH METHOD 

This review explores hybrid artificial intelligence (AI) systems 

integrating circuit-level optimization with machine learning 

algorithms, combining a systematic analysis of publication 

trends, source domains, leading authors, top documents, and 

global contributions. The methodology includes a bibliometric 

analysis of scholarly articles published between 2015 and 

2024, retrieved from diverse databases focusing on 

engineering, computer science, and AI. Data Collection: 

Relevant publications were identified based on keyword 

searches in prominent academic databases. Data points such as 

publication year, citations, authorship, document impact, and 

country contributions were meticulously recorded. Analysis 

Techniques: Quantitative techniques, including citation 

analysis and co-authorship mapping, were employed. 

Temporal trends in publications were visualized to identify 

growth patterns, and domain-specific impact was assessed by 

analyzing citation means across key disciplines. Co-authorship 

and scientific mapping techniques illuminated collaboration 

networks and research focus areas. Interpretation: Insights 

from bibliometric and visualization tools were interpreted to 

uncover research hotspots, influential contributors, and 

emerging trends. This structured approach provides a 

comprehensive overview of hybrid AI systems for circuit-level 

optimization, bridging technical advancements with academic 

recognition. 
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Table 1. Year of Publication 

Year Publication 

2015 2 

2016 5 

2017 11 

2018 39 

2019 83 

2020 156 

2021 162 

2022 184 

2023 250 

2024 635 

 

 

Figure 3. Year of Publication 

The publication trend shows a steady and significant increase 

from 2015 to 2024. In 2015, there were only 2 publications, 

and this number gradually rose to 5 in 2016, 11 in 2017, and 

39 in 2018. The growth accelerated sharply in 2019 with 83 

publications, and by 2020, the number surged to 156. The most 

notable increase occurred from 2020 to 2024, with 

publications rising from 156 to 635, reflecting a growing 

interest in this research area. This trend highlights the 

increasing academic focus on hybrid artificial intelligence 

systems, particularly for circuit-level optimization. and 

machine learning applications. The surge in publications 

underscores the expanding role of these systems in addressing 

complex engineering problems, particularly in electronics and 

computational systems. It also reflects the broader adoption of 

AI-driven optimization methods to tackle evolving challenges 

in technology. Overall, the data suggests that the integration of 

machine learning with circuit optimization is becoming a 

pivotal area of research, with substantial growth in academic 

contributions in recent years.

Table 2. Source of relevant published articles 

Sr. No. Source Publications Citations 
Citations 

mean 

1 Information and Computing Sciences 1240 47192 38.06 

2 Engineering 806 26018 32.28 

3 Data Management and Data Science  418 18221 43.59 

4 Electronics, Sensors and Digital Hardware  224 7035 31.41 

5 Electrical Engineering  219 6865 31.35 

6 Machine Learning 202 7781 38.52 
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7 Distributed Computing and Systems Software  181 11008 60.82 

8 Artificial Intelligence  175 7353 42.02 

9 Cybersecurity and Privacy  142 5157 36.32 

10 Communications Engineering  121 5679 46.93 

11 Computer Vision and Multimedia Computation  108 2520 23.33 

12 Human-Centred Computing  85 4934 58.05 

13 Theory Of Computation  71 3411 48.04 

14 Control Engineering, Mechatronics and Robotics  58 956 16.48 

15 Engineering Practice and Education  46 573 12.46 

The table provides insights into publications and citations 

across various research domains, highlighting their academic 

impact and relevance. Information and Computing Sciences 

lead with 1,240 publications and 47,192 citations, yielding a 

mean citation of 38.06, indicating significant scholarly 

influence. Engineering, with 806 publications and a mean 

citation of 32.28, reflects steady research activity. Data 

Management and Data Science stand out with a higher citation 

mean of 43.59 from 418 publications, showcasing impactful 

contributions. Distributed Computing and Systems Software 

demonstrates exceptional influence with a citation mean of 

60.82 from 181 publications. Similarly, Human-Centred 

Computing achieves a notable mean citation of 58.05, despite 

having only 85 publications. Other fields such as Artificial 

Intelligence (mean citation: 42.02) and Communications 

Engineering (46.93) further reflect growing academic 

attention. Lower citation means are observed in Control 

Engineering, Mechatronics, and Robotics (16.48) and 

Engineering Practice and Education (12.46), suggesting 

emerging areas with room for growth. Overall, the data 

highlights diverse levels of research activity, with a strong 

focus on impactful and high-growth domains like computing, 

data science, and human-centered research.

Table 3. Leading Authors in the Relevant Field 

Sr. No. Name Publications Citations Citations Mean 

1 Khursheed Aurangzeb  9  74 8.22 

2 Rajamanickam Narayanamoorthi  8  131 16.38 

3 Musaed A Alhussein  8  73 9.13 

4 Yazeed Yasin Ghadi  6  89 14.83 

5 Anand Nayyar 6  336 56 

6 Muhammad Shafique 6  192 32 

7 Jalil Piran  6  713 118.83 

8 Ajith Abraham 6  123 20.5 

9 Sudeep Tanwar 6  244 40.67 

10 Gulshan Sharma 5  140 28 

11 Abdullah Baz  5  83 16.6 

12 Mahammad Abdul Hannan  5  9 1.8 

13 Naif Al Mudawi  5  101 20.2 

14 Farman Ali 5  125 25 

15 Sajal Kumar Das  5  301 60.2 
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Figure 4. Co-authorship scientific mapping: Overlay Visualization 

The table and Figureure highlights the most prolific authors in 

the field, emphasizing their publication count, total citations, 

and average citation per publication. Jalil Piran stands out with 

an impressive citation mean of 118.83 from 6 publications, 

showcasing exceptional influence. Similarly, Sajal Kumar Das 

achieves a high citation mean of 60.2 from 5 publications, 

reflecting impactful research contributions. Anand Nayyar and 

Sudeep Tanwar also demonstrate significant academic impact 

with citation means of 56 and 40.67, respectively, from 6 

publications each. Muhammad Shafique (32) and Ajith 

Abraham (20.5) further indicate consistent research activity 

and influence. Conversely, some authors, such as Mahammad 

Abdul Hannan (mean citation: 1.8) and Khursheed Aurangzeb 

(8.22), exhibit lower citation means, indicating potential 

growth opportunities in their research impact. Overall, the data 

highlights a diverse range of contributions from leading 

authors, with significant disparities in citation means reflecting 

varying levels of influence and recognition in the academic 

community.

 

Table 4. Top 15 Mostly Cited Documents in The Relevant Field. 

Sr. No. Documents Citations Total link Strength 

1 Alsabah (2021) 298 16 

2 Nawaz (2019) 447 12 

3 Barih (2020) 242 11 

4 Pham (2020) 642 10 

5 Huang (2019) 394 10 

6 Amin  (2021) 50 9 

7 Ayaz (2019) 798 9 

8 Haraz  (2024) 0 8 

9 Rasheed  (2020a) 1091 8 

10 Alhaj  (2023) 9 8 
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Figure 5. Scientific mapping of the article: Overlay Visualization 

The table and Figureure highlights the top 15 documents with 

the highest citation counts and their corresponding total link 

strength, indicating their impact and connectedness within the 

academic community. Rasheed (2020a) leads with an 

impressive 1,091 citations and a total link strength of 8, 

showcasing its pivotal role in the field. Ayaz (2019) follows 

closely with 798 citations and a link strength of 9, reflecting 

its significant scholarly influence. Similarly, Pham (2020) and 

Nawaz (2019) have garnered 642 and 447 citations, 

respectively, indicating their widespread recognition. 

Documents such as Alsabah (2021) (298 citations, link 

strength: 16) and Huang (2019) (394 citations, link strength: 

10) also demonstrate strong academic impact. Interestingly, 

Haraz (2024) has a link strength of 8 but has yet to receive 

citations, suggesting emerging relevance. Overall, this data 

underscores the varying degrees of influence among these 

documents, highlighting their contribution to advancing 

knowledge and fostering interconnected research in the field

Table 5. Countries Contributing to The Relevant Study Area 

Sr. No. Country Documents Citations Total link Strength 

1 Saudi Arabia 244 7702 468 

2 Pakistan 144 5894 279 

3 United States 203 9086 271 

4 India 208 7620 268 

5 United Kingdom 132 8503 247 

6 China 295 12188 236 

7 Malaysia 134 6550 199 

8 South Korea 119 4393 172 

9 United Arab Emirates 78 3482 159 

10 Egypt 79 1836 156 

11 Australia 82 7186 121 

12 Canada 88 3290 115 

13 Spain 51 1631 89 

14 Italy 68 1601 83 

15 Finland 33 1492 63 

 

http://www.ijsrem.com/
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Figure 6. Scientific Mapping of Countries: Network Visualization. 

The table and Figure presents the contributions of various 

countries to the relevant study area, showcasing the number of 

documents, citations, and total link strength, which indicates 

the level of collaboration and research impact. China leads 

with 295 documents and the highest citation count of 12,188, 

signifying its dominant role in the field. Saudi Arabia follows 

closely with 244 documents and 7,702 citations, also achieving 

the highest total link strength of 468, suggesting strong 

international collaboration. The United States ranks third with 

203 documents and 9,086 citations, emphasizing its significant 

influence in global research. Other countries such as India (208 

documents, 7,620 citations) and the United Kingdom (132 

documents, 8,503 citations) also make considerable 

contributions. Pakistan (144 documents, 5,894 citations) and 

Malaysia (134 documents, 6,550 citations) further strengthen 

the research landscape. Smaller contributors like Finland (33 

documents, 1,492 citations) and Spain (51 documents, 1,631 

citations) indicate that while their research output is lower, 

they still play a role in advancing the field. Overall, the data 

underscores the global nature of research in this area, with 

significant contributions from Asia, North America, and 

Europe, highlighting the importance of international 

collaboration.

III. RELATED WORK 

3.1 Integrated Circuit Design Process Overview  

Integrated circuit (IC) design is a highly complex multi-step 

process involving numerous stages from concept to final 

product manufacturing. Generally, this process can be roughly 

divided into three main parts: front-end design (FE), back-end 

design (BE), and verification (Chong et al. 2018). The front-

end design mainly includes specification formulation, logic 

design and function verification. In the specification 

development stage, the design team defines the functions, 

performance indicators and application scenarios of the chip. 

The logic design phase uses hardware description languages 

(HDL), such as Verilog or VHDL, to write code to describe 

the behavior and structure of circuits. The HDL code is then 

transformed into a gate-level netlist by logical synthesis, and 

functional verification is performed at this stage to ensure that 

the design meets expectations (Chovan and Uherek 2018). 

Back-end design focuses on layout design, physical 

verification, and manufacturing documentation. Layout is the 

core link, in which layout involves assigning the spatial 

location of various components of the circuit on the silicon 

chip, and routing determines the connection path between 

these components. Subsequently, physical verification checks 

whether the design meets criteria such as Electrical Rule 

Check (ERC), Design Rule Check (DRC), etc. (Bogaerts et al. 

2019). Finally, the generated GDSII file is used to guide the 

actual fabrication of the chip. 

3.2 Machine Learning for Circuit Topology Design 

Automation 

Typically, topology design is the first step of analog circuits 

design, followed by the determination of device sizes and 

parameters. The process is time-consuming, and unsuitable 

topology will lead to redesign from the very beginning. 

Traditionally, topology design relies on the knowledge and 

experiences of expert designers. As the scale and demand of 

analog circuits are increasing, CAD tools are urgently needed 

http://www.ijsrem.com/
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by engineers. Despite this, automation tools for topology 

design are still much less explored due to its high degree of 

freedom. Researchers have attempted to use ML methods to 

speed up the design process. Some researchers deal with 

topology selection problem, selecting the most suitable 

topology from several available candidates. Li et al. focus on 

extracting well-known building blocks in circuit topology. 

Recently, Rotman and Wolf use RNN and hypernetwork to 

generate two-port circuit topology. 

Topology Selection: For common-used circuit functional 

units, like amplifiers, designers may not need to design from 

the beginning. Instead, it is possible to choose from a fixed set 

of available alternatives. It is a much simpler problem than 

designing from scratch. Early in 1996, Orzáez et al., Silgado 

et al. put forward a fuzzy-logic based topology selection tool 

called FASY. They use fuzzy logic to describe relationships 

between specifications (e.g., DC gain) and alternatives and use 

backpropagation to train the optimizer. More recent research 

uses CNN as the classifier. They train CNN with circuit 

specifications as the inputs and the topology indexes as the 

labels. The main problem with the topology selection methods 

is that the data collection and the training procedure are time-

consuming. Therefore, topology selection is efficient only 

when repetitive designs are needed such that a trained model 

can be reused. 

Topological Feature Extraction: One challenge of topology 

design automation is to make algorithms learn the complex 

relationships between components. To make these 

relationships more understandable, researchers focus on 

defining and extracting features from circuit topology. Li et al.  

present algorithms for both supervised feature extraction and 

unsupervised learning of new connections between known 

building blocks. The algorithms are also designed to find 

hierarchical structures, isolate generic templates (patterns), 

and recognize overlaps among structures. Symmetry 

constraint are one of the most essential topological features in 

circuits. Liu et al.  propose a spectral analysis method to detect 

system symmetry with graph similarity. With a graph 

representation of circuits, their method is capable of handling 

passive devices as well. Kunal et al. propose a GNN-based 

methodology for automated generation of symmetry 

constraints. It can hierarchically detect symmetry constraints 

in multiple levels and works well in a variety of circuit designs. 

Topology Generation: The previously discussed 

investigations are not directly generating a topology. A recent 

study makes the first attempt to generate circuit topology for 

given specifications. Their focus is limited to two-port circuits. 

They utilize an RNN and Hypernetwork to solve the topology 

generation problem and report better performance than the 

traditional methods when the inductor circuit length 𝑛 ≥ 4. 

3.3 Analog and Mixed-Signal Circuit Optimization 

AMS circuit designers first, decide the circuit topology then 

optimize the corresponding design parameters e.g. component 

sizing, and finally generate the layout. A significant amount of 

effort has been put into optimizing components sizing because 

of the large effect that it has on a circuit’s performance and 

power usage. 

1) Problem formulation: The AMS design circuit sizing 

optimization problem can be formulated as follows. 

minimize 𝑓1(𝑥), . . . , 𝑓𝑚(𝑥) 

subject to: 𝑐𝑖(𝑥)  <  0, ∀𝑖 ∈  {1, . . . , 𝑁𝑐},          (2) 

where x ∈ Rd denotes d design variables e.g. width and length 

of MOS transistors, and 𝑓𝑙(𝑥) ∀𝑙 ∈  {1, . . . , 𝑚} are the 

Figureure of Merit (FOM) of the AMS circuits. Each FOM can 

be deterministic or noisy depending on the design 

specification. Nc represents the total number of constraints and 

𝑐𝑖(𝑥) corresponds to the i-th constraint e.g. 𝑥𝑗 ∈  [𝑝 −  𝑗 , 𝑝 +

 𝑗 ]. When 𝑚 ≠  1, usually there is no best design as objectives 

can be conflicting and it is unlikely to optimize all of them 

simultaneously. The goal then would be concluding the best 

trade-off between a set of solutions. 

2) Classical approaches: The classical AMS circuit 

optimization approaches can be classified into the model-

based (e.g. geometric programming, SVM, ANN, Gaussian 

Process (GP), etc. and simulation-based methods (e.g. 

Simulated Annealing (SA), PSO, EA, and gradient-based local 

search with Multiple Starting Points (MSP) which has a better 

convergence rate than the others. Analytical manually derived 

or regression models with simulated data are leveraged to build 

global models of the FOM in the model-based approaches, 

while the optimization is driven directly by the circuit 

simulations for simulation-based methods. The model 

reusability and low computational cost, especially in the case 

of using Electro-Magnetic (EM) components, are the main 

advantages of model-based approaches. However, the 

accuracy of these models are not usually high as the number of 

design parameters are usually large and object and constraint 

functions are highly nonlinear. 

Recently, to combat these drawbacks, hybrid methods that 

combine both models have been proposed for analog circuits 

as well as mm-wave and Radio Frequency (RF) circuits. These 

hybrid methods run simulations during the optimization 

procedure to update online models gradually, instead of using 

pre-built offline models. Initially, the model is constructed by 

the data gathered from random sampling and it guides the 

selection of the next point towards more optimized 

performance. 

A. Bayesian-Based Approaches 

The Bayesian optimization method after initial sampling, 

constructs the probabilistic surrogate model of the objective 

function, which is refined incrementally based on the new data 

that optimizes the acquisition function e.g. Expected 

Improvement (EI), Lower Confidence Bound (LCB), 

Probability of Improvement (PI). The model uncertainty is 

evaluated to balance the exploration, i.e. the next point tends 

to explore the unknown regions with high uncertainty in the 

surrogate model, and exploitation, i.e. the next point tends to 

be the optimum with high probability of prediction by the 

surrogate model, during the optimization [94]. The de facto 

surrogate model used in BO is the Gaussian process model 

which reduces the required number of circuit simulations and 

has closed-forms for both its model prediction and model 

http://www.ijsrem.com/
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uncertainty. In a GP, letting 𝑓 ∶  𝑋 →  𝑅 be a black-box 

indicating the performance function, for any finite samples  

{𝑥1 … … 𝑥𝑛} 𝜖 𝑥𝑛, the vector [𝑓(𝑥1) … … 𝑓(𝑥𝑛) ]T follows joint 

multivariate Gaussian distribution i.e. 

 

∼  𝑁(µ, 𝐾), where µ is an n × 1 mean vector and K is an 𝑛 × 𝑛 

covariance matrix. The GP can be fully characterized by its 

mean function, m(x), and its co-variance function 𝑘(𝑥1, 𝑥2) 

i.e. µ𝑖 =  𝑚(𝑥𝑖), 𝐾𝑖𝑗 =  𝑘(𝑥𝑖 , 𝑥𝑗 ) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ∈

 {1, . . . , 𝑛}. 𝐾𝑖𝑗 denotes the i−th row j−th column covariance 

matrix element. 

Let training set 𝐷 =  {𝑋, 𝑦}, 𝑤ℎ𝑒𝑟𝑒 𝑋 = {𝑥1 … … . . 𝑥𝑛}. 𝑦 =

 {𝑓(𝑥1) … … 𝑓(𝑥𝑛)}, 𝑚 =  [𝑚(𝑥1) … … 𝑚(𝑥𝑁)]T , given a new 

point, 𝑥 ∗, 

 

Moreover, the function value, 𝑦 ∗ =  𝑓(𝑥 ∗ ), and y follow 

the joint Gaussian distribution. The mean µ𝑦 ∗ |𝑦 and the 

variance 𝜎 2 𝑦 ∗ |𝑦 can be viewed as the prediction, and the 

confidence of the prediction respectively. 

(2) 

A Gaussian noise ϵ ∼ N(0, 𝜎𝑛
2) should be added to 𝑓(𝑥) in 

order to avoid overfitting of the simulation model where σ 2 n 

is the variance of the Gaussian noise. If we take noise into 

consideration, Equation (2) can be rewritten as: 

 

Acquisition functions optimally balance the exploration and 

exploitation. The improvement of y can be formulated as 

        (3) 

where τ is the minimal value of found 𝑓(𝑥). In the GP model, 

the expectation of improvement can be written as: 

 

where D denotes the given training set, θ is the vector of hyper-

parameters, Φ(.) is the Cumulative Distribution Function 

(CDF) of the standard normal distribution, and φ(.) is the 

Probability Distribution Function (PDF) of the standard 

normal distribution. 

B. Multiple Starting Point Approach 

MSP optimization generally begins by randomly selecting 

large amounts of starting points that cover the design space. 

This first step is called the global phase. Afterward, in the local 

phase, an efficient local search such as Sequential Quadratic 

Programming (SQP) is applied to each starting point found in 

the global phase. MSP can successfully approximate the global 

optimum by choosing the best local optimum. Yang et al. 

improve the inherent large MSP computation time by 

proposing smart MSP. A heuristic-biased starting point 

selection is implemented in the global phase to find the starting 

points that are likely to be close to optimums instead of using 

randomly selected points. Furthermore, an intermediate phase 

is added where sparse regression is applied to predict the 

circuit performances around the starting points. Moreover, in 

the local phase, model optimums are used as the starting points 

for SQP and coupled with Probabilistic-TABU (P-TABU) 

approach to improve the efficiency of local searches. For 

evaluating their approach, they optimize a variety of circuits 

such as an amplifier, a charge pump, a Voltage Control 

Oscillator (VCO), etc. in different technology nodes. 

C. Neural Network Based Approaches 

In the conventional circuit sizing approaches, designers or 

EDA tools try to find the circuit parameters in an iterative loop 

while using a simulator in each iteration to evaluate the design. 

In order to avoid time-consuming simulations, several studies 

have used ANN models to replace and complement the SPICE 

simulator with an approximated model. They implement the 

simulator in later stages just to maintain the accuracy. Even 

though using an ANN instead of a simulator saves time 

considerably, the training set of such an ANN model should 

cover the entire design space which consumes a lot of 

resources. On the other hand, Lourenc¸o et al., as it is 

illustrated in Figure. 7, train an ANN model to directly size 

and optimize the circuit for given specifications instead of 

invoking the simulator many times in an iterative loop to 

achieve the optimized sizing. Although they use circuit sizing 

solutions from previous optimizations as the training set, they 

are able to optimize circuit sizes for specifications outside the 

ones in the training dataset.  

 

Figure. 7 The different methods of AMS circuit sizing: a) 

Conventional optimization-based sizing (inverse 

approach) b) Artificial Neural Networks (ANNs) (direct 

approach) 

To have a better NN model, Lourenc¸o et al. take into account 

the following considerations for selecting the ANN 

http://www.ijsrem.com/
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hyperparameters e.g. number of layers, number of nodes in 

each layer, etc. First, in order to have a rich encoding, the 

number of nodes in each layer is increased in the first layers 

then is decreased toward the output layer. Second, to find a less 

complicated model, it is better to design it for having a low 

error model during the training and compensate the overfitting 

using L2 regularization. Third, for achieving a model which 

gives the best cross-validation score, it is necessary to explore 

the hyperparameter space. Two general approaches are grid 

search which considers all combinations of the specified 

hyperparameters and random search which takes samples from 

a hyperparameter space with a specified distribution. In their 

ANN approach, the circuit specifications are given to input 

nodes and output nodes determine the circuit sizing. 

Although it successfully predicts the analog IC sizing for the 

target performance, its cost for providing training data is still 

too high, which makes it impractical. Pan et al. propose a 

performance exploration method to tackle the major 

evolutionary-based approaches shortcoming, low accuracy, 

while significantly speeding up the runtime. For this purpose, 

they apply Bayesian regression to better model the device 

variables and use an SVM to increase the model performance 

space. In other words, they replace the performance evaluation 

process with SVM predictions. However, they leverage 

supervised learning which requires a large dataset.  

This dataset is difficult to obtain because most analog IPs are 

not available to the public. In order to evaluate their approach, 

they compare the specifications of an operational amplifier and 

a radio-frequency distributed amplifier e.g. voltage gain, DC 

power, bandwidth, etc. optimized by their method with. Wang 

et al. leverage RL which learns to efficiently optimize the 

transistor parameters automatically without any prior 

knowledge about circuit design rules. In each iteration, after 

observations, including monitoring DC operating points, AC 

magnitude, and phase responses, they change the circuit 

parameters based on the simulator results. Then, a reward 

would be received to optimize the desired FOM. They 

compare their approach for optimizing an amplifier and meet 

the specifications constraints such as the specified bandwidth, 

gain, power, area, etc. with other methods such as a human 

expert, etc. The results show that the other compared methods 

either are not able to meet the constraints at the same runtime 

or they have a less efficient design in comparison to. 

Hakhamaneshi et al.  find the optimal size of analog circuits 

by predicting the feasibility of a design using a DNN classifier. 

They propose a framework that in each iteration utilizes an 

evolutionary algorithm to create new candidate designs and 

leverage a DNN classifier to recognize “bad” new offspring by 

comparing with a reference design that is chosen from the 

previous “good” population. By passing just these high quality 

samples to a layout-aware design methodology such as BAG, 

it achieves more than a 200×runtime improvement in 

comparison to just an evaluation method without the DNN 

classifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Examples of AMS Circuit Sizing Optimization Methods 

Reference 
AI 

Method 

Surrogate Model 

& Acquisition 

Function 

Applications & 

Advantages 

Test Results (# 

Design 

Variables) 

Advantage 

http://dx.doi.org/1

0.1109/TCSI.2017.

2768826  

BO Online GP & WEI 

Handling multi-objective 

optimizations and 

optimization constraints 

3 − 36 
Higher accuracy, fewer 

training numbers 

https://proceedings

.mlr.press/v80/lyu

18a/lyu18a.pdf  

BO 
GP & Multi-

functions 

Multi-objective 

acquisition function 

selection, parallelized BO 

10 − 12 
Higher accuracy, fastest 

convergence rate 

http://dx.doi.org/1

0.1109/TCAD.201

7.2778061  

BO GP & EI Yield optimization 6 − 24 
Higher accuracy, fewer 

training numbers 

http://www.ijsrem.com/
http://dx.doi.org/10.1109/TCSI.2017.2768826
http://dx.doi.org/10.1109/TCSI.2017.2768826
http://dx.doi.org/10.1109/TCSI.2017.2768826
https://proceedings.mlr.press/v80/lyu18a/lyu18a.pdf
https://proceedings.mlr.press/v80/lyu18a/lyu18a.pdf
https://proceedings.mlr.press/v80/lyu18a/lyu18a.pdf
http://dx.doi.org/10.1109/TCAD.2017.2778061
http://dx.doi.org/10.1109/TCAD.2017.2778061
http://dx.doi.org/10.1109/TCAD.2017.2778061
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http://dx.doi.org/1

0.23919/DATE.20

19.8714788  

BO & 

DNN 
GP & WEI 

Low computation 

complexity, handling 

optimization constraints 

10 − 36 
Higher accuracy, fewer 

training numbers 

http://dx.doi.org/1

0.1145/3316781.3

322468  

EA & 

DNN 
- High sample efficiency 21 Much faster runtime 

https://doi.org/10.1

109/ASP-

DAC58780.2024.1

0473920  

MSP - Significantly fast 11 − 36 
Fewer training numbers, 

faster runtime 

https://doi.org/10.1

145/3316781.3322

467  

BR & 

SVM 
- Short runtime - 

Higher accuracy, much 

faster runtime 

https://doi.org/10.4

8550/arXiv.1812.0

2734  

RL - High sample efficiency - Higher accuracy 

https://www.prince

ton.edu/~nverma/

VermaLabSite/Pub

lications/2015/Zha

ngHuangWangVer

ma_CICC2015.pdf  

SVM - 
Relaxing the circuit 

performance for an ADC 
- - 

Abbreviation list: BO: Bayesian Optimization, GP: Gaussian Process, WEI: Weighted Expected Improvement, EI: Expected 

Improvement, DNN: Deep Neural Network, EA: Evolutionary Algorithms, MSP: Multiple Starting Points, BR: Bayesian Regression, 

RL: Reinforcement Learning, SVM: Support Vector Machine, ADC: Analog-to-Digital Converter. 

3.4 Optimization techniques for analog CMOS and RF 

microwave circuits 

In recent years, synthesizing and designing high performance 

analog and RF circuits and systems with advanced 

optimization tools have received increasing attention. These 

optimization techniques are performed for improving and 

meeting design specifications such as wide band frequency, 

high efficiency, and linear gain performance. This section 

briefly addresses precise studies of powerful and efficient 

optimization techniques that suppress experience and trial 

methods in designing. 

 

Figure 8. General structure of an iterative optimization 

loop for analog/ RF circuit designs 

3.4.1 Functional Surrogate Modeling  

Functional surrogate modeling techniques are functions for 

predicting the output responses of designs, and are generally 

applied for modeling the microwave components due to the 

fast simulation in high-level circuit designs. These techniques 

aim to solve the problems of multi-objective functions lead to 

finding the optimal responses. The basic of multi-objective 

functions are as (4): 

                  (4) 

where 𝑓(𝑥) is a vector with m objective functions, g(x) is a 

vector with k constraints, and x is a vector with n design 

variables on the search space X. When 𝑚 > 1; in this case 

multi-objective optimization can be applied.  

A surrogate model-aware search mechanism (SMAS) for 

sizing design variables in mm-wave integrated circuits (ICs) is 

presentedin https://doi.org/10.1109/TCAD.2013.2284109 and 

https://doi.org/10.1109/DATE.2009.5090756 . This method is 

applied as it can provide an automated efficient optimization 

of IC designs for solving the problems of dependency on 

designer experiences and consumed designing time. As 

another example of using surrogate modeling, inverse 

surrogate model https://doi.org/10.1109/TMTT.2015.2490662 

and fast electromagnetic-based (EM-based) parameter tuning 

approach for redesigning of miniaturized circularly polarized 

(CP) antennas are presented in. In this method, the geometry 

parameter scaling in low-cost EM-analysis with the lower 

operating frequency of the CP antenna are reported that are 

controlled in terms of both the impedance and the axial ratio 

bandwidth. EM-based surrogate model for generating the 

layout of RF IC blocks that is ready-to-fabricate, is reported in 

https://doi.org/10.1109/TCAD.2018.2834394 . In sizing 

optimization, it mixes EM-characterized integrated inductors 

with parasitic extraction from layout, results in reliable device 

http://www.ijsrem.com/
http://dx.doi.org/10.23919/DATE.2019.8714788
http://dx.doi.org/10.23919/DATE.2019.8714788
http://dx.doi.org/10.23919/DATE.2019.8714788
http://dx.doi.org/10.1145/3316781.3322468
http://dx.doi.org/10.1145/3316781.3322468
http://dx.doi.org/10.1145/3316781.3322468
https://doi.org/10.1109/ASP-DAC58780.2024.10473920
https://doi.org/10.1109/ASP-DAC58780.2024.10473920
https://doi.org/10.1109/ASP-DAC58780.2024.10473920
https://doi.org/10.1109/ASP-DAC58780.2024.10473920
https://doi.org/10.1145/3316781.3322467
https://doi.org/10.1145/3316781.3322467
https://doi.org/10.1145/3316781.3322467
https://doi.org/10.48550/arXiv.1812.02734
https://doi.org/10.48550/arXiv.1812.02734
https://doi.org/10.48550/arXiv.1812.02734
https://www.princeton.edu/~nverma/VermaLabSite/Publications/2015/ZhangHuangWangVerma_CICC2015.pdf
https://www.princeton.edu/~nverma/VermaLabSite/Publications/2015/ZhangHuangWangVerma_CICC2015.pdf
https://www.princeton.edu/~nverma/VermaLabSite/Publications/2015/ZhangHuangWangVerma_CICC2015.pdf
https://www.princeton.edu/~nverma/VermaLabSite/Publications/2015/ZhangHuangWangVerma_CICC2015.pdf
https://www.princeton.edu/~nverma/VermaLabSite/Publications/2015/ZhangHuangWangVerma_CICC2015.pdf
https://www.princeton.edu/~nverma/VermaLabSite/Publications/2015/ZhangHuangWangVerma_CICC2015.pdf
https://doi.org/10.1109/TCAD.2013.2284109
https://doi.org/10.1109/DATE.2009.5090756
https://doi.org/10.1109/TMTT.2015.2490662
https://doi.org/10.1109/TCAD.2018.2834394
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designs with circuit layouts. figure 9 shows the optimization 

flow for the design of a circuit by using the surrogate model. 

For modeling microwave components, there are several 

functional surrogate modeling methods that some of them are: 

neural network (NN) technique 

https://doi.org/10.1109/TMTT.2015.2504099 , support vector 

machine http://dx.doi.org/10.1109/TMAG.2007.892480 , and 

polynomial-based surrogate modeling 

http://dx.doi.org/10.1109/TMTT.2016.2623902 . In the 

following, we will describe the NN method briefly that is 

applied in various circuit designs. 

 

Figure 9. Circuit Sizing Using Functional Surrogate 

Modeling 

1. Neural network technique Recently, automated circuit 

designs https://doi.org/10.1016/j.mejo.2018.11.015 and 

https://doi.org/10.1109/ICECS.2016.7841150  have attracted 

more attention as manual attempts become increasingly hard 

due to the scaling of IC technology. Machine learning (ML) is 

a subset of artificial intelligence that learns from experiences 

and builds a mathematical model through sampling data and 

provides an automated optimization platform. For getting a 

good view of ML, in 

https://doi.org/10.1109/TCAD.2012.2187207 , the memetic 

machine learning-based differential evolution (MMLDE) 

method is presented for the design of a millimeter-wave (mm-

wave) frequency RF amplifier. The optimization problem of 

the system is solved using a surrogate model operating online 

with applying the evolutionary computation to the resulting 

system https://doi.org/10.1109/TCAD.2007.907284 and 

https://doi.org/10.1109/TCAD.2011.2162067  that the method 

is formed based on the present data in the optimization process. 

This method presents well efficiency optimization for RF IC 

designs; however, it provides much lower computational cost. 

As Figure. 10 shows ML divides into three groups of 

supervised, unsupervised, and reinforcement learning. Each 

group of learning can be modeled by using the artificial neural 

network (ANN) 

http://dx.doi.org/10.1109/TSP49548.2020.9163468 , i.e., a 

shallow neural network with one or two hidden layers, or the 

deep neural network (DNN) 

https://doi.org/10.1109/TCSI.2020.3008947 , i.e., a network 

with more than two  hidden layers.  

 

Figure 10. Groups of Machine Learning Algorithms 

ANN/DNN networks can model the non-linear behavior of 

circuits by using input and output data that extracted from 

designs and provide automated environments for predicting 

design parameters that meet the design specifications. Figure 

4 shows the utilization of neural networks in predicting the 

required data and estimating targeted performances. The 

performance of the circuit is predicted by replacing the trained 

NN instead of a simulated system in the optimization loop, 

thus reducing the design time substantially.  

 

Figure 11. Neural network method for optimizing and 

modeling circuits. 𝒎 ≤  𝟐 and 𝒎 > 𝟐 represent ANN and 

DNN networks 

The execution time issue is faster in this case as the new 

performance and output result are predicted from the previous 

data without performing simulation 

https://doi.org/10.1109/SMACD.2019.8795293 . Neural 

networks are very effective tools used in various design steps 

of analog and RF circuits 

http://www.ijsrem.com/
https://doi.org/10.1109/TMTT.2015.2504099
http://dx.doi.org/10.1109/TMAG.2007.892480
http://dx.doi.org/10.1109/TMTT.2016.2623902
https://doi.org/10.1016/j.mejo.2018.11.015
https://doi.org/10.1109/ICECS.2016.7841150
https://doi.org/10.1109/TCAD.2012.2187207
https://doi.org/10.1109/TCAD.2007.907284
https://doi.org/10.1109/TCAD.2011.2162067
http://dx.doi.org/10.1109/TSP49548.2020.9163468
https://doi.org/10.1109/TCSI.2020.3008947
https://doi.org/10.1109/SMACD.2019.8795293
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https://doi.org/10.1109/TIE.2008.2003319 and 

https://doi.org/10.1109/IJCNN.2017.7966126 and 

http://dx.doi.org/10.23919/ICACT48636.2020.9061564 . 

They are as a ’black-box’ modeling and are exerted in 

modeling of on-chip inductors 

https://doi.org/10.1109/IJCNN.2005.1556269 , semiconductor 

devices https://doi.org/10.1007/s10825-017-0984-9 , 

conventional analog circuit building blocks 
https://doi.org/10.1007/978-3-642-39162-0 and 

https://doi.org/10.1109/SOCPAR.2010.5686736 , analog IC 

sizing https://doi.org/10.1109/SMACD.2019.8795293 and 

https://doi.org/10.1007/978-3-030-35743-6_4 , and in crucial 

RF circuit blocks such as power amplifiers 

https://doi.org/10.1109/MIXDES.2007.4286202 , RF front-

end receivers https://doi.org/10.1007/s11277-020-07162-z , 

low noise amplifiers 

https://doi.org/10.3103/S1060992X16040111 , voltage-

controlled oscillators 

https://doi.org/10.1109/ACCESS.2019.2905136 and 

https://doi.org/10.1109/MELCON.2004.1346871 , and 

multiple-input multiple-output (MIMO) systems 

https://doi.org/10.1109/LWC.2019.2944179 and 

https://doi.org/10.1002/jnm.2160 . 

3.4.2 Co-simulation method and/or combination of EDA 

and CAD tools 

Any analog/RF circuit consists of three design levels as: (i) 

system-level (Higher Level), (ii) circuit-level (Middle Level), 

and (iii) layout-level (Lower Level). Figure 12 demonstrates 

three design levels for power amplifier design for illustrating 

the definitions of levels. For simulating and analyzing, 

software tools such as ADS, NI AWR, Cadence, ANSYS 

HFSS, MATLAB, CST, and TCAD are frequently used at each 

design level by the designers. The design optimization 

algorithms of the software tools could not converge and 

provide satisfying results when the dimension of processed 

data is high, especially with multi-objective optimization. 

Reliability and speed of the optimization algorithms should be 

considered for large scaled designs, having several active 

components and using mixed signals. 

To tackle these problems and have reliable designs, CAD and 

EDA tools can be used together that collaboration of tools can 

compensate the deficits of each other 

https://doi.org/10.1109/SMACD.2016.7520737 and 

https://doi.org/10.1109/NEMO.2015.7415067 . Reliability 

optimization for power amplifier design is done in 

https://doi.org/10.1109/COMCAS.2017.8244816  based on 

the electric and thermal co-simulation method. In this method, 

thermal outputs are returned back to the circuit design and 

reliability with accuracy results are considered. Following 

describes in detail the collaboration of other different tools for 

optimizing various circuits. 

 

Figure 12. Various design levels include system-level, 

circuit-level, and layout-level for circuit designs 

ADS with HFSS: The electromagnetic-based process for 

optimizing three-dimensional layout of GaN-HEMT power 

amplifier IC is presented in 

https://doi.org/10.1109/TEMC.2018.2820202 . The 

optimization is performed to reduce the electromagnetic 

compatibility /electromagnetic emission for the IC. ADS with 

MATLAB: With a combination of these tools, power 

amplifiers are optimized automatically lead to time-efficient 

designs https://doi.org/10.1109/MMS.2018.8611955 and 

https://doi.org/10.23919/ELECO47770.2019.8990407 . In 

these works, ADS tool is working in the background, and 

MATLAB manages automated optimizations. In 

https://doi.org/10.1109/MMS.2018.8611955 , the values of 

components are iterated (i.e.,decreasing/increasing) 

automatically and in 

https://doi.org/10.23919/ELECO47770.2019.8990407, an 

automated optimization process is performed for achieving 

suitable topology for matching networks by exerting the 

bottom-up optimization process. ADS with TCAD: For 

extracting effective nonlinear X-parameter model [19], in 

https://doi.org/10.1109/MWSYM.2019.8700869  a powerful 

collaboration between TCAD and ADS is presented results in 

designing amplifiers. ADS with SIMSIDES: MATLAB 

optimizer is embedded into the SIMSIDES (SIMulink-based 

SIgma-DElta Simulator) for designing sigma-delta modulators 

https://doi.org/10.1109/TCSII.2018.2820900 . By getting use 

of available optimizations in MATLAB, the current version of 

SIMSIDES http://imse-cnm.csic.es/simsides/  is improved 

results in a user-friendly interface that is able to choose the 

appropriate algorithm for maximizing the performance and 

also setting design variables easily. 

IV. ML IN ANALOG CIRCUIT MODELING  

SVMs and ANN-based approaches are commonly employed 

to obtain the functional models of analog circuits. SVMs are 

usually preferred in analog circuit modeling since they do not 

get easily stuck at local minima and suffer from the curse of 

dimensionality when the data points are determined 

considering the dimensions. In 

http://dx.doi.org/10.1109/ICECS.2004.1399700 , the authors 

http://www.ijsrem.com/
https://doi.org/10.1109/TIE.2008.2003319
https://doi.org/10.1109/IJCNN.2017.7966126
http://dx.doi.org/10.23919/ICACT48636.2020.9061564
https://doi.org/10.1109/IJCNN.2005.1556269
https://doi.org/10.1007/s10825-017-0984-9
https://doi.org/10.1007/978-3-642-39162-0
https://doi.org/10.1109/SOCPAR.2010.5686736
https://doi.org/10.1109/SMACD.2019.8795293
https://doi.org/10.1007/978-3-030-35743-6_4
https://doi.org/10.1109/MIXDES.2007.4286202
https://doi.org/10.1007/s11277-020-07162-z
https://doi.org/10.3103/S1060992X16040111
https://doi.org/10.1109/ACCESS.2019.2905136
https://doi.org/10.1109/MELCON.2004.1346871
https://doi.org/10.1109/LWC.2019.2944179
https://doi.org/10.1002/jnm.2160
https://doi.org/10.1109/SMACD.2016.7520737
https://doi.org/10.1109/NEMO.2015.7415067
https://doi.org/10.1109/COMCAS.2017.8244816
https://doi.org/10.1109/TEMC.2018.2820202
https://doi.org/10.1109/MMS.2018.8611955
https://doi.org/10.23919/ELECO47770.2019.8990407
https://doi.org/10.1109/MMS.2018.8611955
https://doi.org/10.23919/ELECO47770.2019.8990407
https://doi.org/10.1109/MWSYM.2019.8700869
https://doi.org/10.1109/TCSII.2018.2820900
http://imse-cnm.csic.es/simsides/
http://dx.doi.org/10.1109/ICECS.2004.1399700
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propose the use of SVMs to model analog circuits. As a kernel, 

the authors choose Gaussian Radial Basis Functions. The 

regression method utilized is ²-SV regression. This modeling 

is applied to a Source Coupled FET Logic (SCFL) buffer, a 

resistive mixer, and a GaAs ring oscillator. The generated 

models are validated through SPICE simulations. SVMs are 

also the preferred method for modeling in 

http://dx.doi.org/10.1002/widm.1132 ; however, the aim is not 

to create a full mapping from the input space to the output 

space, but to identify infeasible regions and prune them. A 

committee of SVM classifiers is utilized to exclude a large 

portion of the entire design space, and only the feasibility 

region and its neighbors are sampled. 
http://dx.doi.org/10.1007/s12541-012-0096-1  The feasibility 

design space is defined by the so-called geometry constraints, 

which include not only device sizing constraints, but also 

constraints on voltage and current source values, functional 

constraints which are in terms of node voltages and branch 

currents, and performance constraints. An active learning 

approach is employed to train the classifier, where very few 

samples are taken from the large infeasible space, and most of 

them are concentrated around the boundaries. This is achieved 

by checking sample candidates against a committee of 

classifiers and discarding those candidates rejected by all. The 

classifier is tested on two examples, an operational trans 

conductance amplifier (OTA) and a mixer. 
https://doi.org/10.3390/electronics12183833   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Summary of modeling of Analog/RF device and systems with ML techniques 

Reference 
Application-

Device 
Method(s) Contributions 

http://dx.doi.org/10.1109/ICECS.2004.1399700  
Analog Circuits-

GaAs transistor 

SVMs (²-SV 

regression) 

Robust and accurate modeling of GaAs 

transistors and circuits 

http://dx.doi.org/10.1109/DAC.2003.1219160  
Analog Circuits-

CMOS 
SVMs 

Efficient active learning scheme for 

feasible design space selection 

http://dx.doi.org/10.1109/SMACD.2019.8795295  
AMS circuits-

CMOS 

ANN 

(TDNN) 

Robust modeling of power consumption 

for AMS circuits 

http://dx.doi.org/10.1109/TCAD.2010.2043759  Analog-n/d 
ANN (Back 

propagation) 

A generic modeling of power 

consumption for heterogeneous systems 

http://dx.doi.org/10.1109/TMTT.2003.809179  

RF-microwave 

components and 

MESFET 

ANN 

(several) 

Review of ANN-based CAD for 

microwave designs 

http://dx.doi.org/10.1002/1099-

047X(200101)11:1%3C4::AID-

MMCE2%3E3.0.CO;2-I  

RF-microwave 

components, 

HMT and 

MESFETs 

ANN 

(several) 

Review of model development and 

nonlinear modeling of microwave devices 

http://dx.doi.org/10.1109/TMTT.2003.820897  
RF-CPW 

components 

ANN (EM 

based) 

Efficient modeling of CPW components 

for accurate performance estimations 

https://oa.mg/work/2108514954  

RF-UC-PBG 

rectangular 

waveguide 

ANN (RBF-

MLP) 

Efficient modeling of RF devices for 

nonlinear microwave applications 

http://dx.doi.org/10.1109/TMTT.2022.3197751  RF-MESFET 

ANN 

(WNN-

MLP) 

Faster design of large signal hard-

nonlinear power transistors and circuits 

http://www.ijsrem.com/
http://dx.doi.org/10.1002/widm.1132
http://dx.doi.org/10.1007/s12541-012-0096-1
https://doi.org/10.3390/electronics12183833
http://dx.doi.org/10.1109/ICECS.2004.1399700
http://dx.doi.org/10.1109/DAC.2003.1219160
http://dx.doi.org/10.1109/SMACD.2019.8795295
http://dx.doi.org/10.1109/TCAD.2010.2043759
http://dx.doi.org/10.1109/TMTT.2003.809179
http://dx.doi.org/10.1002/1099-047X(200101)11:1%3C4::AID-MMCE2%3E3.0.CO;2-I
http://dx.doi.org/10.1002/1099-047X(200101)11:1%3C4::AID-MMCE2%3E3.0.CO;2-I
http://dx.doi.org/10.1002/1099-047X(200101)11:1%3C4::AID-MMCE2%3E3.0.CO;2-I
http://dx.doi.org/10.1109/TMTT.2003.820897
https://oa.mg/work/2108514954
http://dx.doi.org/10.1109/TMTT.2022.3197751
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ANN-based modeling approaches have become more 

pronounced in recent years. ANN can also be used to improve 

the accuracy of the behavioral models of transistor level 

design, where some specifications such as, power 

consumption, area overhead, etc. are not taken into account 

during the behavioral simulations of the systems. 

http://dx.doi.org/10.1109/SMACD.2019.8795295  presents a 

novel methodology for ANN aided inclusion of power 

consumption information of circuits to their purely functional 

models of AMS blocks. Due to the nature of the problem, an 

improved version of the Multilayer Perceptron (MLP) 

approach, which is called time delay neural network (TDNN) 

shown in Figure. 13, is utilized in this study. In this approach, 

the inputs pass through a delay cell and are given as the inputs 

of the network in order to capture the temporal changes. The 

flow of the proposed approach is as follows. First, the 

behavioral model (Verilog-AMS) of the circuit is constructed. 

Meanwhile, transistor level simulations are performed to 

extract signal traces for power calculation. Then, the TDNN is 

trained and the power consumption model is obtained. Once 

the model is obtained, it is translated into the behavioral model 

compatible with the circuit simulators. Finally, the first 

behavioral model is integrated with the power model. As a case 

study, a low power relaxation oscillator is designed and 

simulated both at transistor level and with the augmented 

functional model. According to the reported results, the 

simulation time decreases to 12 s from 168 s while the 

estimation error in energy is only 2.7%. 

 

Figure 13. TDNN Delay Neural Network Model  

A different application of ANN-based modeling is presented 

in http://dx.doi.org/10.1109/TCAD.2010.2043759 , where 

power consumption of analog circuits is modeled and then 

estimated via empirical-based ANN rather than achieving 

performances through the input parameters. The idea behind 

this study is to estimate the mathematical description of the 

power consumption as a function of varied input parameters of 

any analog circuit using neural networks. The proposed 

approach is generic and even suitable for heterogeneous 

systems. https://doi.org/10.1016/S1389-1286(03)00254-8  

Moreover, one can perform online power consumption 

estimations via the proposed strategy. First, analog circuit 

power measurements are performed via a measurement set-up 

including a PC for generating different input patterns and 

saving the power data. Second, the obtained data is used to 

train the ANN to obtain a continuous mathematical function of 

the power consumption. The neural networks include three 

levels: one input, one hidden, and one output layer. The 

activation functions for the hidden layer and the output layer 

are sigmoid and linear, respectively. A backpropagation-based 

training (Levenberg-Marquardt) is employed. Once the power 

model is obtained, it is combined with a data flow-based 

generic functional model of the circuit. 
https://doi.org/10.1049/wss2.12052  Hence, both circuit 

performances and the instantaneous power consumption are 

obtained, which makes possible to estimate circuit 

performance without performing any empirical measurements. 

By combining this framework with digital power consumption 

estimation techniques, the power consumption of 

heterogeneous systems can be predicted. A wireless sensor 

system is provided as the case study, where the main focus is 

to estimate the power consumption of analog parts (a 

temperature sensor, an amplifier, an analog to 7 digital 

converters, and a wireless transceiver.) 
https://doi.org/10.1016/j.heliyon.2024.e40415  According to 

the results, the maximum and the average estimation errors are 

3.06% and 1.53%, respectively. 

V. ML IN RF CIRCUIT MODELING  

Neural networks have been used for RF and microwave 

modeling and design, where ANN-based passive/active 

component/circuit models are then employed at higher design 

levels. Thus, an accurate response of the whole system can be 

obtained within shorter durations compared to the expensive 

conventional approaches. In 

http://dx.doi.org/10.1109/TMTT.2003.809179 , ANN for 

RF/microwave modeling and design is discussed from theory 

to practice. The authors state that neural networks are 

attractive alternatives to conventional methods such as 

numerical modeling methods, which could be computationally 

expensive, or analytical methods which could be difficult to 

obtain for new devices, or empirical modeling solutions whose 

range and accuracy may be limited. They provide examples 

where neural networks are used to model signal propagation 

delays of a VLSI interconnect network in printed circuit boards 

(PCBs), coplanar waveguide (CPW) discontinuities, and 

MOSFETs, all from previous works in the literature. Finally, 

they illustrate the use of CPW models to optimize microwave 

circuits. The same authors present a detailed study on 

modelling issues and ANN-based nonlinear modelling 

techniques in http://dx.doi.org/10.1002/1099-

047X(200101)11:1%3C4::AID-MMCE2%3E3.0.CO;2-I  

including small/large signal modeling of transistors and 

dynamic recurrent neural network (RNN) modeling of circuits. 

Practical microwave examples are used to illustrate the 

reviewed modeling techniques. 

Another method of modeling CPW circuit components by 

ANN is based on electromagnetic (EM) simulations 

http://dx.doi.org/10.1109/TMTT.2003.820897 . CPW 

transmission lines (frequency dependent Zo and ²r e), 900 

bends, short-circuit stubs, open-circuit stubs, step-in width 

discontinuities, and symmetric T-junctions are individually 

modeled through EM-based ANN. To train the models, a 

number of EM simulations that exhibit meaningful 

input/output relationships, which directly affect the model 

accuracy. A multilayer feedforward ANN consisting of three 

layers (one input, one hidden, and one output), which utilizes 

http://www.ijsrem.com/
http://dx.doi.org/10.1109/SMACD.2019.8795295
http://dx.doi.org/10.1109/TCAD.2010.2043759
https://doi.org/10.1016/S1389-1286(03)00254-8
https://doi.org/10.1049/wss2.12052
https://doi.org/10.1016/j.heliyon.2024.e40415
http://dx.doi.org/10.1109/TMTT.2003.809179
http://dx.doi.org/10.1002/1099-047X(200101)11:1%3C4::AID-MMCE2%3E3.0.CO;2-I
http://dx.doi.org/10.1002/1099-047X(200101)11:1%3C4::AID-MMCE2%3E3.0.CO;2-I
http://dx.doi.org/10.1109/TMTT.2003.820897
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the error-backpropagation learning algorithm, is used. The 

developed models are then employed to design a CPW folded 

double-stub filter and a 50- 3-dB power-divider circuit, 

without performing expensive EM simulations. The proposed 

framework is also available for the other component of 

microwave/RF design. 

Since EM-based ANN approaches need a relatively long 

training phase for accurate modeling, the efficiency can be 

low. https://doi.org/10.1002/9781119847717.ch5  presents a 

solution for modeling of RF devices with Radial Basis 

Function(RBF)/MLP modular structure, where the efficient 

Resilient Backpropagation (Rprop) algorithm is used during 

the training phase. The authors use a well-known plan, "divide 

and conquer", where the propose framework is provided in 

Figure. 6. The complicated design problem is divided in sub-

problems, distributed over the neural networks of the modular 

structure. 

 

Figure 14. The proposed framework in 

http://dx.doi.org/10.1080/00207217.2014.989924  

ANN. The RBF/MLP structure modules are organized in order 

to take advantage of the local and global approximation 

characteristics of the RBF and MLP neural networks, where 

the RBF network is a local approach while the MLP network 

is a global approach and acts as an output network, since it 

improves the generalization capacity of the modular structure. 

The uniplanar compact-photonic bandgap (UC-PBG) 

rectangular waveguide and a patch antenna with PBG substrate 

are used to demonstrate the developed approach. Compared to 

the single usage of RBF and MLP, the combination of them 

(modular model) presents a major generalization capacity, 

which is independent of the number of hidden neurons. 

Wavelet neural networks are chosen over simple MLP and 

Gaussian radial basis (GRB) function networks In 

https://openurl.ebsco.com/contentitem/doi:10.1002/(sici)1099

-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-

a?sid=ebsco:plink:crawler&id=ebsco:doi:10.1002/(sici)1099-

047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a . The 

first example is a transistor modeling example, where 10 

neural networks are used as shown in Figure. 15. 

 

Figure 15. Volterra-ANN device model 

Two of them utilize Vd s and Vg s to obtain Ids and Igs. The 

remaining 8 use Vd s, Vg s, and to yield real and imaginary 

values for Yij . The total number of parameters is 25 each for 

the first two and 76 each for the remaining 8. The 10 neural 

networks are trained separately, on 350 measurement points 

for DC characteristics and 7000 measurement points for Y-

parameters. The results on test points agree perfectly with 

lumped equivalent circuits. For the circuit modeling example, 

4 neural networks were utilized. The 5 inputs are ω and the real 

and imaginary parts of the input and output voltages, whereas 

the outputs are the real and imaginary parts of the input and 

output currents. This type of modeling allows the model to take 

into account input and output loading. Learning was performed 

on 2625 measurement points and results on new data were 

encouraging. The use of more generic neural network-based 

models could overcome the problems associated with lumped 

equivalent electrical circuit models, which are the most 

common models in use. These models offer the advantage of 

being computationally efficient and accurate, but at the 

expense of very complex model parameter extraction carried 

through numerical fitting and optimization as well as the 

requirement to an accurate circuit structure. 

5.1 Machine Learning for IC Circuit Synthesis  

Conventionally, circuit synthesis is described as an automatic 

process in order to determine the dimensions of the devices, 

such that the resultant circuit meet a given target specification 

on a given technology node. Considering the type of 

evaluation, simulation-based approaches is the most prevalent 

ones in terms of accuracy. However, the cost of SPICE-based 

circuit synthesis may be expensive in terms of computation 

time due to the need of running large number simulations (ten 

and even hundreds of thousands) to achieve the targeted 

performances. Hereby, ML-based synthesis approaches have 

become popular to overcome this time efficiency problem. The 

idea behind employing ML in circuit synthesis is to 

replacement of the simulations by the functional model(s) 

generated via ML techniques; thus, the excessive number of 

simulations can be avoided during the synthesis process. A 

summary of reviewed papers related to ML-based IC synthesis 

applications is provided in Table 2. 

 

http://www.ijsrem.com/
https://doi.org/10.1002/9781119847717.ch5
http://dx.doi.org/10.1080/00207217.2014.989924
https://openurl.ebsco.com/contentitem/doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a?sid=ebsco:plink:crawler&id=ebsco:doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a
https://openurl.ebsco.com/contentitem/doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a?sid=ebsco:plink:crawler&id=ebsco:doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a
https://openurl.ebsco.com/contentitem/doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a?sid=ebsco:plink:crawler&id=ebsco:doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a
https://openurl.ebsco.com/contentitem/doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a?sid=ebsco:plink:crawler&id=ebsco:doi:10.1002/(sici)1099-047x(199905)9:3%3C198::aid-mmce6%3E3.0.co;2-a
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Table 7. Summary of ML-Based IC Circuit Synthesis Applications 

Reference Application Method(s) Contribution 

http://dx.doi.org/10.1080/00207217.2014.989924  

Analog 

Circuit 

Synthesis 

ANN 

(GRP+MLP) 

Technology 

independent sizing of 

analog building blocks 

http://dx.doi.org/10.11591/ijece.v6i1.8700  

Analog 

Circuit 

Synthesis 

ANN (MLP) 

Automatic generation 

of training dataset for 

analog circuit sizing 

http://dx.doi.org/10.1109/SOCPAR.2010.5686736  

Analog 

Circuit 

Synthesis 

ANN 

Generation of better 

FOMs for Op-Amps 

via ANN based circuit 

synthesis 

https://doi.ieeecomputersociety.org/10.1109/TVLSI.2024.3452032  

Analog 

Circuit 

Synthesis 

DL+RELU 

Efficient multiple 

performance estimation 

of Op-Amps with DL 

based models 

http://dx.doi.org/10.1109/SMACD.2018.8434896  

Analog 

Circuit 

Synthesis 

ANN 

Examining the effect of 

ANN hyperparameters 

on analog circuit 

synthesis 

http://dx.doi.org/10.1109/ICECS.2014.7050096  
RF Circuit 

Synthesis 
GA+ANN(MLP) 

Efficient synthesis of 

RF circuits via GA 

assisted ANN 

http://dx.doi.org/10.1109/SMACD.2019.8795282  

Analog 

Circuit 

Synthesis 

Polynomial 

Regression + 

ANN 

Generation of reusable 

POFs for analog circuit 

design 

https://users.ece.cmu.edu/~xinli/papers/2016_TCAD_pof.pdf  

Performance 

Space 

Exploration 

ANN based text 

mining +Sparse 

regression 

A global performance 

space search on the 

Internet via knowledge 

harvesting 

https://arxiv.org/pdf/2009.13772 and 

https://dl.acm.org/doi/abs/10.5555/3539845.3540117  

Analog 

Circuit 

Synthesis 

RL (L2DC) 

Efficient sizing of 

analog circuits (25x 

faster than hand design) 

https://doi.org/10.48550/arXiv.2001.01808  

Analog 

Circuit 

Synthesis 

Deep RL 

Efficient layout 

parasitics-aware circuit 

synthesis (40x faster 

than GA) 

VI. ML IN ANALOG IC FAULT TESTING AND 

DIAGNOSIS 

Specification testing and fault diagnosis are of the utmost 

importance for robust circuits and systems. Analog circuit 

testability analysis is significantly more complicated than its 

digital counterpart. The main culprits are the diversity of 

analog circuits with both linear and nonlinear characteristics 

and a multitude of performance metrics that create barriers to 

a standard definition of fault models. Fault diagnosis for 

electronics-rich analog systems with industrial-application is 

usually accomplished by monitoring the deviation of output 

signals in voltage or current caused by the inevitable 

degradation of one or more of its components. The degradation 

arises not only from inherent circuit mechanisms but also from 

improper technician operation or environmental changes, for 

example. 

Researchers in the area of analog IC testing since long turned 

to ML algorithms for the automation of analog specifications 

testing and fault identification 

http://dx.doi.org/10.1109/TCAD.2015.2504329 . Table 8 

summarizes the different ML techniques for IC fault testing 

and diagnosis that are overview within this section. In 

http://dx.doi.org/10.1109/DATE.2010.5457099  a fault-

model-based diagnosis for analog ICs was proposed. The 

method is based  

Table 8. Summary of the ML applications for Analog IC fault testing, diagnosis and calibration. 

Reference Application Method(s) Contributions 

http://dx.doi.org/10.1109/DATE.2010.5457099 and 

https://hal.science/hal-04023648/document  

Fault 

Diagnosis 
SVM 

A defect filter identifies hard and soft faults, 

and, for the soft faults, inverse regression is 

used to locate the fault cause 

http://www.ijsrem.com/
http://dx.doi.org/10.1080/00207217.2014.989924
http://dx.doi.org/10.11591/ijece.v6i1.8700
http://dx.doi.org/10.1109/SOCPAR.2010.5686736
https://doi.ieeecomputersociety.org/10.1109/TVLSI.2024.3452032
http://dx.doi.org/10.1109/SMACD.2018.8434896
http://dx.doi.org/10.1109/ICECS.2014.7050096
http://dx.doi.org/10.1109/SMACD.2019.8795282
https://users.ece.cmu.edu/~xinli/papers/2016_TCAD_pof.pdf
https://arxiv.org/pdf/2009.13772
https://dl.acm.org/doi/abs/10.5555/3539845.3540117
https://doi.org/10.48550/arXiv.2001.01808
http://dx.doi.org/10.1109/TCAD.2015.2504329
http://dx.doi.org/10.1109/DATE.2010.5457099
http://dx.doi.org/10.1109/DATE.2010.5457099
https://hal.science/hal-04023648/document
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http://dx.doi.org/10.1109/TIM.2007.904549  
Fault 

Diagnosis 
ANN 

Wavelet and PCA to reduce dimensionality 

of features 

http://dx.doi.org/10.1109/TIM.2018.2836058  
Fault 

Diagnosis 
ANN 

Dictionary and PCA reduce dimensionality 

of features 

https://doi.org/10.1109/81.974884  
Fault 

Diagnosis 
Fisher DT 

LDA to improve class separability while 

compressing the feature space 

http://dx.doi.org/10.1109/ACCESS.2018.2888950  
Fault 

Diagnosis 

Naive 

Bayes 
Wavelet followed by kLDA 

https://repository.um.edu.mo/handle/10692/108009  
Fault 

Diagnosis 
DBN 

End-to-end learning simplifies the feature 

engineering 

https://doi.org/10.1016/j.measurement.2018.02.044  
Fault 

Diagnosis 
DBN 

End-to-end with integrated random sampling 

for data gathering 

http://dx.doi.org/10.1007/s10836-014-5454-8  

Remaining 

Useful 

Performance 

Kernel 

RVM 

PSO is used to train a RVM that predicts the 

trajectories of the circuits health and predicts 

the remaining useful performance 

https://doi.org/10.1109/tvlsi.2009.2017196  
Test Set 

Compression 
ONN 

NSGA optimization to select the smallest set 

of features sufficient to diagnose the CUT, 

resulting in a cheaper test procedure 

http://dx.doi.org/10.1109/TCSI.2016.2598184  
One-Shot 

Calibration 
ANN 

Post-fabrication calibration to counter 

performance deviation due to fabrication in a 

single calibration step 

https://scholars.duke.edu/publication/1290533  
Post-Layout 

Modeling 
BMF 

Uses cheap pre-silicon simulation data, 

together with a small dataset of fabricated 

circuits for efficient post silicon modeling 

on an ML-based defect filter https://hal.science/hal-

04023648/document that distinguishes failing devices due to 

hard faults, i.e., completely malfunction, or soft faults, i.e., 

failing due to parametric deviations. Two types of diagnosis 

are handled based on the decision of the defect filter, and then 

an SVM-based multi-class ML classifier is used to identify 

which catastrophic fault has occurred, and, inverse regression 

functions to localize and identify the soft faults. This approach 

was demonstrated on an RF LNA. In 

http://dx.doi.org/10.1007/s10836-014-5454-8 , a sparse 

relevance vector machine [84] with Gaussian and polynomial 

kernels is used for fault prognostic and remains useful 

performance estimation. The approach uses AC voltage values 

over time as features to estimate the health degree of the 

circuit. The authors define this health degree as the cosine 

distance between the measured features and those at nominal 

value, and its value decreases from 1 for non-fault circuits as 

the circuit’s elements degrade. The sparse kernel coefficients 

are obtained by minimizing the MSE using particle swarm 

optimization (PSO). https://doi.org/10.1155/2015/931256  

Experiments with a Sallen–Key band pass filter, leapfrog 

filter, and nonlinear rectifier circuit showed that the 

methodology was able to accurately estimate the trajectories 

of the health degrees of the most relevant devices and 

accurately predict the remaining useful performance of the 

circuit. 

CONCLUSION 

1. The integration of hybrid artificial intelligence (AI) 

systems with machine learning (ML) algorithms for 

circuit-level optimization has revolutionized electronic 

design, particularly in analog, RF, and mixed-signal 

circuits. 

2. ML algorithms such as support vector machines (SVMs), 

artificial neural networks (ANNs), and reinforcement 

learning (RL) have proven effective in automating and 

optimizing the design process, significantly expediting 

workflows. 

3. The combination of AI methodologies with conventional 

circuit design tools addresses the rising complexity and 

performance demands in modern integrated circuits (ICs). 

4. Hybrid AI systems excel in optimizing critical design 

metrics such as power consumption, area, and 

performance, offering solutions that outperform 

traditional methods. 

5. Recent advancements in AI-driven tools have improved 

circuit synthesis, fault diagnosis, and testability analysis, 

showcasing the versatility of hybrid systems. 

6. Despite their potential, these systems face challenges, 

including high computational demands for model training 

and the need for effective data integration techniques. 

7. The increasing demand for high-performance, energy-

efficient circuits underscores the expanding role of AI in 

circuit-level optimization. 

8. The convergence of AI and electronic design automation 

(EDA) tools opens new avenues for innovation in 

semiconductor research. 

9. Research will likely focus on improving the 

interpretability, efficiency, and scalability of hybrid AI 

systems, ensuring broader applicability and adoption 

across the industry. 

10. Hybrid AI systems are poised to become integral to 

addressing the challenges of modern IC design, driving 

advancements and shaping the future of the 

electronics industry. 
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