
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40884 | Page 1

A Review on Implementation of UART Using System Verilog

1st Krishna Sridhar
Intern,

 Vishnu Prasad Research institute.

Chennai, India

Kalakrishnasridhar@gmail.com

2nd Ba l a j i G ur u n a t ha n

Senior embedded software engineer, M-

Tech embedded

Vishnu Prasad Research Institute.

Chennai, India

balaji@faradayx.net

Abstract—UART is one of the most utilized protocols in
digital communication systems, which enables efficient serial data
transfer between any devices. This paper discusses the design
and implementing and simulating a UART module that was first
implemented in Vivado without SDK and then changed to EDA
Playground. Challenges faced in Vivado as well as those faced
afterwards in Visual Studio Code with the success afterward in
EDA Playground are discussed as well. The behavioral aspects
of UART, including its functionality, protocol compliance, and
simulation waveforms, are examined to provide a comprehensive
understanding of its operation.

Index Terms—UART, Transmitter, Receiver, System Verilog,
Vivado, Simulation, EDA playground

I. INTRODUCTION

A. UART Overview

UART is an essential serial communication protocol applied in

serial data transmission. Unlike parallel communication, where each

bit of data is simultaneously transmitted over multiple channels,

UART sends one bit per period over a single channel for efficient

transmission in long distances with available resources.

Asynchronous data transfer means no shared clock between the

transmitter and the receiver, but UART provides this on predefined

baud rates.

The UART architecture mainly comprises transmitter, receiver,

and the baud rate generator. A start bit is followed by the data

bits, sometimes including parity bits, with the stop bits, providing

for reliable transmission and detection of error. With this, it is widely

employed in embedded systems, in IoT devices, and industrial

automation systems, because it is simple and strong.

Fig. 1. Basic Frame Structure.

B. Challenges in Vivado and Visual Studio Code

The initial efforts of implementing cheese pattern were done in

Vivado without ether of the SDK for simulation. Despite being the

best tool for FPGA designing – absence of SDK made it complex to

simulate and check the designed work of

the UART thoroughly. Afterwards, the design was ported to Visual

studio code. However, the ecosystem had no inbuilt feature for

simulating and analyzing the waveforms which worsened the

verification stage. This was practiced due to writing and TCL file and

connecting in Vivado through TCL console where the output

generation took much time to process and show the output through

the console.

C. Transition to EDA Playground

To improve the processing speed and output generation the

program to implement it through EDA playground to simulate and

show the output received through transmission and receiving in

Simulation outputs which would improve the code from unessential

data lines or files from the initial implementation is used in the

platform. EDA Playground is an online integrated development

environment for hardware description languages like Verilog, System

Verilog, and VHDL. Users can write, simulate, and debug designs

there without having to set things up locally in detail Also appealing

for prototyping and learning are the simulation tools present,

including Model Sim and Verilator.

D. Objective

The research aims to design and simulate a UART module written

in VHDL, from Xilinx Vivado and Visual Studio Code, to EDA

Playground. This paper entails the design description, simulation

output data and expectation on implementing UART for real as

possible. Furthermore, these issues are evaluated along with the

realization of possible way outs. Documentation of the design

process, simulation results, and behaviors will be used to explain

practical UART implementation and protocol adherence. Challenges

encountered during the process will also be analyzed and

recommendations made for potential improvements will be noted

and shown in the code snippets which will improve the future uses

and integration into applications.

II. METHODOLOGY

A. Implementation in Vivado

1) Design in Vivado without SDK: The initial implementation of

UART in Vivado was done through a block diagram where the

ZYNQ7 processor had two external ports for DDR

http://www.ijsrem.com/
mailto:Kalakrishnasridhar@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40884 | Page 2

and fixed input (Fixed IR). The clock and acknowledgment values

were connected to demonstrate data transmission and reception.

Later, through the design HDL wrapper, the code for the specific

component was generated. The UART transmitter (TX) and UART

receiver (RX) were initiated with required input data values, and

processing output was displayed in the respective modules for

various cases.

The design also included a Baud Rate Generator module, which

assisted the transmitter and receiver in processing the data at the

required speed, ensuring respective output values were displayed as

per user requirements. However, without SDK, there was no

straightforward way to simulate and verify the behavior of the design

itself. Debugging relied only on RTL analysis, which obstructed the

verification of timing and protocol compliance.

2) Challenges in Vivado: While the block diagram approach

facilitated initial hardware connections, the absence of SDK limited

simulation capabilities. Debugging relied on RTL analysis and static

timing checks, which were insufficient for verifying dynamic

behavior.

Fig. 2. Block Diagram

B. Migration to Visual Studio Code

A TCL file was created in Visual studio code where the values of

how each component should work and move has been specified by

the user to improve the values according to the pins connected to

the user to improve the range along with the values which helps us

improve the flexibility of code and its ability to process. There was

no integrated simulation which hindered the process of testing its

capabilities along with output generation.

C. Transition to EDA Playground

1) Transmitter Module: The UART converts the parallel data into

a serial format for transmission. The key components include:

• Data Register: Holds the data to be transmitted.

• Shift Register: Converts parallel data into serial data.

• Control Logic: Generates start and stop bits, ensuring proper

timing.

D. Receiver Module

The UART receiver performs the reverse operation of the

transmitter. It converts the data from serial format to parallel format.

The key components include:

• Start Bit Detection: Identifies the beginning of the data frame.

• Parity Check: Verifies data integrity if parity is enabled.

• Shift Register: Assembles received bits into

complete data words.

E. Simulation Environment

1) Tools and Setup: EDA playground was configured to

use ModelSim for simulation. The code is divided into two

files of Test bench and design which uses System Verilog

to code the modules with input along output formats to

transmit the data and receive the data is the specific or

required sequence. The simulator and library available

through the platform were used to perform the waveform

analysis.

2) Testbench and Setup: The testbench was designed to

receive the data and how the data should be processed

while transmitting along with how the received data

should be read and the output required by the user to be

displayed in the console.

• Generate test vectors for transmitter

• Simulate realistic communication scenarios including

different baud rate and parity configuration.

• Verify data integrity at receiver.

III. OBSERVATIONS AND RESULTS

A. Simulation waveforms

The waveforms show observational insights into how

the data is processed along with the timing when it is

processed and duration taken to show the output in

required unit of seconds. The behavior in various test cases

or configurations could also be noted down on how the

values should be processed and if there any complications

or complexity in input data being processed to show the

output.

• Start bit detection: The data remains in the IDLE

state when the data is about to be transmitted it is

detected but the waveforms.

• Data Transmission: When the data is being transmitted.

Fig. 3. Simulation waveform

B. Functional Verification

The UART module should adhere to user requirements

needed along with transmitting data through various

configurations of the models and its values processing

speed is used to match the outcome specifications.

Functional Verification test include Loop Back test:

Validate end to end communication with single module.

Error Injection: Simulated noise to observe error handling

capability.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 01 | Jan - 2025 SJIF Rating: 8.448 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM40884 | Page 3

C. Performance metrics

This is computed using the accuracy of the data being transmitted

as well as the data that has been received, together with factors of

speed, time consumed in deriving the output, and speed that data has

been processed by the program. It encompasses usage of resources in

making a program operate or manipulate its values. Precise timing

synchronization: The synchronization between transmitter and

receiver. Minimal latency or error occurring in data transmission

Efficient resource usage of the modules in transmitter and receiver.

Fig. 4. Output

IV. DISCUSSION

The UART code will be implemented on the code to improve the

working and its process to match the requirements set by the user.

A. Strength of Implementation

Modularity: Separate module for transmitter, receiver along with

testbench module to access the values which helps in simple

debugging and simplified design Protocol compliance: Following

the UART specification according to its limits and capabilities.

Flexibility: The design to support multiple configurations based on

the UART design in the situation.

B. Challenges Faced

Without SDK: The absence of simulation tools in Vivado to

implement the process limited the verification process. Visual Studio

Code: The lack of native simulation capabilities hindered the

debugging process to show the output. Timing Mismatching: Initial

mismatch in baud rate synchronization requires more fine-tuning.

C. Improvements

Future improvements of the UART design model include: FIFO

Buffers: To handle data burst and reduce latency effects when the

code or its process is being applied in the platform. Error Correction:

Implementing advanced techniques such as error detection and

correction to improve programming parameters. Multi-Protocol

Support: Extending the design to support SPI and I2C protocols in

the upcoming works.

V. CONCLUSION

This work successfully implemented and simulated a UART

module, switching seamlessly from Vivado without an SDK

and Visual Studio Code to EDA Playground. Challenges which

arose in the first instances of environments highlight the

importance of tight integration between simulation tools and

the environment. EDA Playground was effective in utilizing

the platform for hardware prototyping and analysis, thereby

verifying its design successfully. Future work shall be the

enhancement of the robustness and versatility of the design

toward its applicability in complex communication systems.

REFERENCES

[1] ”Digital Design and Computer Architecture” by David
Money Harris and Sarah L. Harris.

[2] UART Protocol Documentation:
https://en.wikipedia.org/wiki/Universal asynchronous transmitter

[3] EDA Playground Documentation: https://www.edaplayground.com
[4] Verilog HDL Documentation: https://www.verilog.com
[5] ModelSim User Guide: https://www.intel.com
[6] Vivado Documentation: https://www.xilinx.com
[7] ”An Observational Study of UART Implementation for

Reliable Communication Systems” by J. Smith et al.,
Journal of Digital Systems Design, 2023.

[8] ”Comparative Analysis of Hardware Prototyping
Platforms: A Case Study on UART” by R. Doe,
International Journal of Embedded Systems Research,
2022.

[9] ”Challenges and Best Practices in Serial Communication
Protocol De- sign” by A. Lee, Proceedings of the Digital
Communication Conference, 2021.

http://www.ijsrem.com/
http://www.edaplayground.com/
http://www.verilog.com/
http://www.intel.com/
http://www.xilinx.com/

