
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 1

A Review on Practical Approach to Data Structures and Algorithms

Ms.Pooja1, Ms.Sukhwinder Kaur2, Ms.Harpreet Kaur3 ,Ms.Mandeep Kaur4

1Ms.Pooja UCCA & Guru Kashi University
2 Ms.Sukhwinder Kaur UCCA & Guru Kashi University

3Ms.Harpreet Kaur UCCA & Guru Kashi University
4Ms.Mandeep Kaur UCCA & Guru Kashi University

---***---
Abstract - Run in keeping with the significance. The first

section of this paper defines the abecedarian terms utilized in

this study's discussion of data structures. Other restrictions,

similar memory operation, which will be pivotal, will affect in

better handling times. The stylish data structures and styles, as

opposed to hacking and killing a many statements with some

smart coding. Abstract data types (ADT) are erected on top of

data structures." The logical form of the data type is defined

by the ADT. The physical shape of the data type is enforced

by the data structure. Some data structures are extremely

specialized to particular tasks, and different types of data

structures are suitable for different feathers of operations. For

case, B- tree indicators are constantly used by relational

databases for data reclamation, whereas hash

Key Words:

1. INTRODUCTION (Size 11, Times New roman)

A storehouse that's used to store and organize data is called a

data structure. It's a system of setting up data on a computer to

make it fluently accessible and over to date. A data structure

is used for further than just data organization. Also, it's

employed for data processing, reclamation, and archiving.

Nearly all software systems and programmers that have been

produced use several introductory and complex forms of data

structures. Thus, we need to be well- clued in data structures.

Types of data structure& algorithms-

LINEAR DATA STRUCTURE

A linear data structure is one in which the data elements are

ordered sequentially or linearly, with each element connected

to its immediate neighbor. A single level is concerned in

linear data structures. As a result of the linear organization of

computer memory, linear data structures are simple to

implement. Array, stack, queue, linked list, etc. are some

examples of it.

 1. Array

An array is a fundamental data structure used to store

elements of the same type. It provides a way to organize and

access data efficiently. Each element in an array is assigned a

positive value called the index, which represents its position

within the array. By using the index, we can easily locate and

retrieve elements from the array. For example, if we need to

store some data, an array can be a suitable choice.

2. Stack

The data structure known as a stack adheres to the principle of

LIFO (Last In, First Out), where the most recently added

element is the first one to be removed. Adding an element to a

stack is called a "push" operation, while removing an element

is called a "pop" operation. This concept can be illustrated by

envisioning a stack of books. To access the book at the bottom

of the stack, all the books above it must be carefully taken off

first.

3. Queue

This structure is almost similar to the stack as the data is

stored sequentially. The difference

is that the queue data structure follows FIFO which is the rule

of First In-First Out where the first added element is to exit

the queue first. Front and rear are the two terms to be used in a

queue.

Enqueue is the insertion operation and dequeue is the deletion

operation. The former is performed at the end of the queue

and the latter is performed at the start end. The data structure

might be explained with the example of people queuing up to

ride a bus. The first person in the line will get the chance to

exit the queue while the last person will be the last to exit.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 2

4. Linked List

The structure that resembles a queue stores data in a

sequential manner. However, unlike a stack, the queue follows

the principle of FIFO (First In, First Out), where the first

element added is the first one to be removed. In a queue, we

use the terms "front" and "rear." The insertion operation is

called "enqueue," which adds an element to the end of the

queue, while the deletion operation is called "dequeue," which

removes an element from the front end. To better understand

this concept, imagine people lining up to board a bus. The

person at the front of the line will be the first to board and exit

the queue, while the person at the end of the line will be the

last one to exit.

Non-linear data structure-

Non-linear data structures are data structures in which the data

elements are not arranged sequentially or linearly. Unlike

linear data structures, non-linear data structures do not involve

a single level, which means that we cannot traverse all the

elements in a single run. Implementing non-linear data

structures can be more challenging compared to linear data

structures. However, non-linear data structures make efficient

use of computer memory when compared to linear data

structures. Examples of non-linear data structures include

trees and graphs.

 1. Trees

A tree data structure is composed of interconnected nodes,

forming a hierarchical relationship resembling that of a parent

and child. The tree structure ensures that each parent-child

node relationship is represented by a connection. There is a

single unique path between the root node and any other node

in the tree. Trees come in different types, such as AVL trees,

binary trees, binary search trees, and more, each characterized

by their specific structures and properties

2. Graphs

Graphs are a type of non-linear data structure that

consists of a set of vertices and edges. The vertices, also

known as nodes, are used to store data, while the edges

represent the relationships between the vertices. Unlike

trees, graphs do not have specific rules for connecting

nodes, allowing for more flexible and diverse

relationships. Graphs are commonly used to represent

real-life problems such as social networks, telephone

networks, and various other interconnected systems.

A practical approach

To approach data structures practically, follow these steps:

1. Understand the Fundamentals: Gain a clear

understanding of basic data structures such as arrays,

linked lists, stacks, queues, trees, and graphs. Learn their

properties, operations, and time complexities.

2. Choose a Programming Language: Select a

programming language suitable for data structure

implementations, such as Python, Java, C++, or C#.

3. Implement Data Structures: Start implementing

data structures based on your understanding. Begin

with simpler structures like arrays and linked lists,

and gradually move on to more complex ones. Write

code for creating, manipulating, and accessing data

within these structures.

4. Master Essential Operations: Ensure you can

implement essential operations for each data

structure. For example, focus on inserting, deleting,

and accessing elements in an array, or traversal

algorithms in trees.

5. Analyze Time and Space Complexities:

Understand the time and space complexities of

operations on data structures. This knowledge helps

evaluate algorithm efficiency and choose the

appropriate structure for specific scenarios.

 6. Solve Problems and Practice: Apply your

knowledge to solve programming problems and

algorithmic challenges. Practice on websites like

LeetCode, HackerRank, or Code Signal to reinforce

your understanding and enhance problem-solving

skills.

7. Explore Advanced Data Structures: Once

comfortable with basics, explore advanced structures

like heaps, hash tables, tries, AVL trees, or red-black

trees. Understand their use cases, implementation

details, and associated algorithms.

 8. Consider Real-World Applications: Study how data

structures are used in real-world applications. For

example, understand how hash tables are utilized in

databases or how graphs power social networks. This

provides practical insights and performance

optimization opportunities.

 9. Learn from Existing Libraries: Study and utilize

 existing data structure libraries available in your chosen

 programming language. These libraries often offer

 efficient and optimized implementations, saving you

 time and effort.

 10. Continuously Improve: Stay updated with the latest

 advancements in data structures and algorithms. Attend

 workshops, read books, and follow online resources to

 enhance your skills and stay current with industry

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 06 | June - 2023 SJIF Rating: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com | Page 3

 trends.

 By following these steps, you can develop a practical

approach to data structures and effectively utilize them to

solve real-world problems.

Conclusion

This paper provided an introduction to the basics of data

structures, but it's important to note that there is much more to

explore in this field. We have laid a solid foundation to build

upon. Data structures extend beyond just Stacks, Queues, and

Linked Lists; it encompasses a vast area of study. Additional

data structures include Maps, Hash Tables, Graphs, Trees, and

more. Each data structure has its own advantages and

disadvantages, and it should be selected based on the specific

requirements of the application at hand.

A computer science student should possess knowledge of the

fundamental data structures along with their associated

operations. Many high-level and object-oriented programming

languages, such as C#, Java, and Python, come equipped with

built-in implementations of these data structures. However, it

is still crucial to understand how these data structures work

internally. Dynamic data structures necessitate dynamic

storage allocation and reclamation. This can be done explicitly

by the programmer or implicitly by the language itself.

Understanding the fundamentals of storage management is

vital because these techniques greatly influence the behavior

of programs. The underlying concept revolves around

maintaining a pool of memory elements that can be utilized to

store components of dynamic data structures as needed.

Allocated memory can be returned to the pool when it is no

longer required, allowing it to be reused efficiently.

References-

1.Introduction to Algorithms" by Thomas H. Cormen,

Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein

2.Book of “Data structures “through C G. S Baluja

3.Algorithms, Part I" and "Algorithms, Part II" by

Robert Sedgewick and Kevin WaynPieren Garry

Department of computer science New York

University.

4.Paul Xavier department of algorithms in c msterdam.

5. Surendra kumar Ahuja IIt delhi department of

computer science delhi .

6.Nick jones department of data mining Australia.

7.Wikipedia sequential search

http://www.ijsrem.com/

