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ABSTRACT: The transition towards Intelligent Traffic 

Systems (ITS) is inevitable in future. Accurate travel time 

estimation is vital for the effectiveness of modern public 

transportation systems. It plays a central role in 

applications such as real-time passenger information, 

transit planning, and traffic management. With increasing 

urbanization and demand for efficient mobility, transit 

agencies are turning to data-driven models to improve 

service reliability. One valuable data source is the General 

Transit Feed Specification (GTFS), which standardizes 

public transportation schedules and associated geographic 

information. When integrated with statistical modeling 

techniques, GTFS features can significantly enhance the 

precision of street-level travel time estimations. This paper 

presents a comprehensive review of statistical models for 

forecasting street level travel time employing GTFS 

features, along with associated challenges that the sector 

faces. 
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I. Introduction 

In the era of smart cities and intelligent transportation 

systems, accurate estimation of street-level travel time 

has become increasingly important. It plays a key role in 

route planning, public transit scheduling, and providing 

real-time information to commuters. One of the most 

widely adopted data formats for transit systems is the 

General Transit Feed Specification (GTFS), which offers 

a standardized framework for sharing transit schedule 

and geographic information [1]. GTFS data, when 

combined with robust statistical models, can be a 

powerful tool for estimating travel time in urban transit 

networks. GTFS datasets include both static and real-

time components. The static feed provides information 

about routes, trips, stops, stop times, calendars, and 

agencies [2]. Real-time extensions of GTFS (GTFS-RT) 

can offer vehicle positions, service alerts, and trip 

updates such as delays or early arrivals. These features 

make GTFS highly valuable for modeling travel time 

between stops, particularly at the street level where fine-

grained predictions are necessary. GTFS features such as 

stop sequences, scheduled arrival times, distances, and 

headways between vehicles serve as the foundation for 

building statistical models [3]. 

 

Fig.1 Share of Modes of Transport in ITS 

(Source: 

https://www.grandviewresearch.com/industry-

analysis/intelligent-transportation-systems-industry  

Figure 1 depicts the Global ITS market in which the 

Roadway has the maximum share [4]. A variety of 

statistical models have been used for travel time 

estimation. One of the most common is the linear 

regression model, which attempts to find a straight-line 

relationship between travel time and factors such as stop 

distance, scheduled time, and traffic conditions. While 

easy to implement and interpret, linear models can be 

overly simplistic and fail to capture the nonlinear 

relationships common in urban traffic dynamics. For this 

reason, more advanced techniques such as Generalized 

Linear Models (GLMs) have been adopted. GLMs allow 

for a wider range of distributions, making them better 

suited for skewed travel time data, such as using the 

Gamma distribution for continuous, positive-valued 

durations [5]. 

http://www.ijsrem.com/
https://www.grandviewresearch.com/industry-analysis/intelligent-transportation-systems-industry
https://www.grandviewresearch.com/industry-analysis/intelligent-transportation-systems-industry
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Fig.2 The ITS Global Market in Billion USD 

Source: 

https://www.polarismarketresearch.com/industry-

analysis/intelligent-transport-system-market 

By region, the study provides the intelligent 

transportation system market insights into North 

America, Europe, Asia Pacific, Latin America, and the 

Middle East & Africa. North America held the largest 

market share in 2024 due to its advanced transportation 

infrastructure, high vehicle penetration, and significant 

investments in smart city projects. The region has been 

at the forefront of adopting advanced technologies such 

as real-time traffic management, vehicle-to-everything 

(V2X) communication, and predictive analytics [6]. The 

US dominated the market within the region, driven by 

robust government initiatives and funding for 

modernizing transportation systems. Programs such as 

the ITS deployment initiatives by the Federal Highway 

Administration’s and the presence of key industry 

players further accelerated the growth of the market in 

the region. The growing adoption of electric and 

autonomous vehicles in the US, supported by a 

comprehensive network of charging stations and 

intelligent traffic systems, further contributes to the 

region’s leadership [7]. 

The intelligent transportation system market in Asia 

Pacific is expected to witness a significant CAGR over 

the forecast period due to rapid urbanization, increasing 

population, and significant government investments in 

smart transportation infrastructure. Countries such as 

China and India are leading this growth due to their 

extensive focus on reducing traffic congestion, 

improving road safety, and lowering environmental 

impact. China stands out as a dominant country in the 

region, driven by its ambitious smart city initiatives, 

widespread deployment of advanced traffic management 

systems, and integration of AI-driven solutions. The 

region's focus on enhancing public transportation, 

including high-speed rail systems and intelligent bus 

networks, further drives demand for intelligent 

transportation systems [8]. 

Time series models, including AI & ML models, are also 

employed to model temporal patterns in travel times. 

These models are especially effective in capturing 

periodic trends and short-term variations, which are 

common in transit systems influenced by rush hours and 

day-of-week effects [9]. However, they often require 

large historical datasets and can be sensitive to missing 

or noisy data. Another statistical approach is the use of 

Mixed-Effects Models, which include both fixed effects 

(such as time of day or day of the week) and random 

effects (such as variations between different drivers or 

bus lines). These models are ideal for capturing 

hierarchical or nested structures in transit data [10]. 

II. Forecasting Street Level Traffic Time  

To forecast future travel time trends, it is necessary to 

model it in terms of a time series model as [11]: 

𝑻𝒓𝒂𝒗𝒆𝒍 𝑻𝒊𝒎𝒆

= 𝒇(𝒕𝒊𝒎𝒆, 𝒐𝒕𝒉𝒆𝒓 𝒈𝒐𝒗𝒆𝒓𝒊𝒏𝒈 𝒗𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 

  (1) 

                                 

Based on type, the intelligent transportation system 

market is categorized into advanced traveler information 

system (ATIS), advanced traffic management system 

(ATMS), advanced transportation pricing system 

(ATPS), advanced public transportation system (APTS), 

and emergency medical system (EMS). The advanced 

traffic management system (ATMS) segment held the 

largest market share in 2024 due to its crucial role in 

optimizing traffic flow and mitigating congestion in 

increasingly urbanized environments. The growing 

adoption of ATMS solutions arises from their ability to 

leverage real-time data, predictive product analytics, and 

adaptive signal control to enhance road network 

efficiency and reduce travel times. Urban centers 

worldwide have prioritized ATMS technologies to 

address the escalating challenges of population growth, 

vehicle density, and environmental concerns. 

Governments and municipalities have invested heavily 

in these systems to improve traffic safety, minimize fuel 

consumption, and lower carbon emissions, aligning with 

goals of sustainability and smart city development [12]. 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 08 | Aug - 2025                                SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                                         

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51761                                                 |        Page 3 
 

III. Existing Statistical Models 

 

The statistical machine learning models used for 

forecasting are presented in brevity in this section [13]-

[14]: 

 

Support Vector Machine (SVM):   

Before the advent of deep learning, traditional machine 

learning models such as Support Vector Machines 

(SVM), Decision Trees, Random Forests, and K-Nearest 

Neighbors (KNN) were widely used for satellite object 

detection. These models typically relied on handcrafted 

features, such as texture, edges, and spectral indices, to 

distinguish between different objects.  

 

The SVM classifies based on the hyperplane. 

The selection of the hyperplane H is done on the basis of 

the maximum value or separation in the Euclidean 

distance d given by: 

 

𝒅 = √𝒙𝟏
𝟐 + ⋯ … … . 𝒙𝒏

𝟐                          (2) 

Here, 

x represents the separation of a sample space variables 

or features of the data vector, 

n is the total number of such variables 

d is the Euclidean distance 

 

 

 
Fig.3 The SVM Model 

 

Figure 3 depicts the SVM Model. 

 

The (n-1) dimensional hyperplane classifies the data into 

categories based on the maximum separation. For a 

classification into one of ‘m’ categories, the hyperplane 

lies at the maximum separation of the data vector ‘X’. 

The categorization of a new sample ‘z’ is done based on 

the inequality: 

 

𝒅𝒙
𝒛 = 𝑴𝒊𝒏(𝒅𝑪𝟏

𝒛 , 𝒅𝑪𝟐
𝒛 … 𝒅𝑪𝟐=𝒎

𝒛 )                     (3) 

 

Here, 

𝑑𝑥
𝑧 is the minimum separation of a new data sample 

from ‘m’ separate categories 

𝑑𝐶1
𝑧 , 𝑑𝐶2

𝑧 … 𝑑𝐶2=𝑚
𝑧  are the Euclidean distances of the 

new data sample ‘z’ from m separate data categories.  

 

 

For instance, SVMs are effective for binary classification 

tasks, such as distinguishing between urban and rural 

areas, while Random Forests are used for multi-class 

classification problems, such as land cover mapping. 

However, these models struggle with complex patterns 

in high-resolution imagery and require extensive feature 

engineering, which limits their scalability and accuracy 

 

ARIMA:  

In an autoregressive integrated moving average model 

commonly known as the ARIMA model assumes that the 

future value of a variable can be linearly modelled as a 

function previous samples of the variables and errors of 

prediction. 

 

𝒚𝒕 = 𝜽𝟎 + 𝝋𝟏𝒚𝒕−𝟏 + 𝝋𝟐𝒚𝒕−𝟐 + 𝝋𝒑𝒚𝒕−𝒑 +

⋯ … … … . 𝜽𝒒𝜺𝒕−𝒒                                            (4) 

 

Here, 

𝑦𝑡 is the value of the output variable at time ‘t’ 

𝜀 is the prediction error 

𝜃 𝑎𝑛𝑑 𝜑 are called the model parameters 

𝑝 𝑎𝑛𝑑 𝑞 are called the orders of the model 

 

One of ARIMA's key strengths lies in its ability to handle 

both stationary and non-stationary data. While the 

ARIMA model assumes the input time series is 

stationary (i.e., its statistical properties like mean and 

variance remain constant over time), it incorporates 

differencing techniques to convert non-stationary data 

into a stationary format. This makes it highly adaptable 

for real-world datasets that often exhibit trends or 

seasonality. 

 

Neural Networks: 

Owing to the need of non-linearity in the separation of 

data classes, one of the most powerful classifiers which 

http://www.ijsrem.com/
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have become popular is the artificial neural network 

(ANN). The neural networks are capable to implement 

non-linear classification along with steep learning rates. 

The neural network tries to emulate the human brain’s 

functioning based on the fact that it can process parallel 

data streams and can learn and adapt as the data changes. 

This is done through the updates in the weights and 

activation functions. 

 

 
Fig.4 The ANN Model 

 

Figure 4 depicts the ANN model.  

The input-output relation of a CNN is given by: 

 

𝒚 = 𝒇(∑ 𝒙𝒊𝒘𝒊 + 𝒃)𝒏
𝒊=𝟏                               (5) 

Here, 

x denote the parallel inputs 

y represents the output 

w represents the bias 

f represents the activation function 

 

The neural network is a connection of such artificial 

neurons which are connected or stacked with each other 

as layers. The neural networks can be used for both 

regression and classification problems based on the type 

of data that is fed to them. Typically the neural networks 

have 3 major conceptual layers which are the input layer, 

hidden layer and output layer. The parallel inputs are fed 

to the input layer whose output is fed to the hidden layer. 

The hidden layer is responsible for analysing the data, 

and the output of the hidden layer goes to the output layer. 

The number of hidden layers depends on the nature of 

the dataset and problem under consideration. If the 

neural network has multiple hidden layers, then such a 

neural network is termed as a deep neural network. The 

training algorithm for such a deep neural network is often 

termed as deep learning which is a subset of machine 

learning. Typically, the multiple hidden layers are 

responsible for computation of different levels of 

features of the data. 

 

Long Short Term Memory (LSTM): 

 

The  LSTM networks are a specialized type of recurrent 

neural network (RNN) designed to process and predict 

data sequences by learning long-term dependencies. 

Unlike traditional RNNs, which suffer from vanishing or 

exploding gradient problems during training, LSTMs 

incorporate a unique architecture with gates and memory 

cells that help retain important information over long 

periods. 

 

The LSTM primarily has 3 gates: 

1) Input gate: This gate collects the presents inputs and 

also considers the past outputs as the inputs. 

2) Output gate: This gate combines all cell states and 

produces the output. 

3) Forget gate: This is an extremely important feature of 

the LSTM which received a cell state value governing 

the amount of data to be remembered and forgotten. 

 
Fig.5 The LSTM Model 

 

Figure 5 depicts the LSTM model. 

 

The relation to forget by the forget gate is given by: 

 

𝒇 = 𝝈(𝑾𝒇[𝒉𝒕−𝟏, 𝒙𝒕] + 𝒃𝒊)                  (6) 

Here, 

𝑓 denotes forget gate activation 

𝑤𝑓 are forget gate weights. 

ℎ𝑡−1 Denotes Hidden state from the previous time step 

𝑥𝑡 is present input. 

𝑏𝑖 is the bias 

 

 

The advantages of LSM are: 

http://www.ijsrem.com/
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Capturing Long-Term Dependencies: LSTMs maintain 

long-term memory using the cell state, unlike traditional 

RNNs. 

Mitigating Vanishing/Exploding Gradients: Gates help 

regulate gradient flow, enabling stable training over long 

sequences. 

Versatility: Useful for several time series prediction 

problems. 

 

However, the major challenge happens to be the problem 

of overfitting. 

 

Convolutional Neural Networks (CNNs): The family 

of CNNs are the backbone of modern satellite object 

detection. CNNs automatically learn hierarchical 

features from raw images, eliminating the need for 

manual feature extraction.  The Convolutional Neural 

Networks (CNNs) can automatically extract hierarchical 

characteristics from images, they have become the 

mainstay for image classification applications. These 

neural networks perform exceptionally well in 

applications like picture identification because they are 

specifically made for processing organised grid data. 

Convolutional, pooling, and fully linked layers are 

among the layers that make up a CNN's architecture. 

Convolutional layers identify patterns in the input image 

by applying filters, hence identifying local features. By 

reducing spatial dimensions, pooling layers preserve 

significant information. High-level features are 

integrated for categorization in fully connected layers. 

 
 

Fig.6 The CNN Model  

 

Figure 6 depicts the CNN model. 

 

The convolution operation is given by: 

𝒙(𝒕) ∗ 𝒉(𝒕) = ∫ 𝒙(𝝉)𝒉(𝒕 − 𝝉)𝒅𝝉
∞

−∞
         (7) 

Here, 

x(t) is the input 

h(t) is the system under consideration. 

y is the output 

*is the convolution operation in continuous domain 

For a discrete or digital counterpart of the data sequence, 

the convolution is computed using: 

 

𝒚(𝒏) = ∑ 𝒙(𝒌)𝒉(𝒏 − 𝒌)∞
−∞                    (8) 

Here 

x(n) is the input 

h(n) is the system under consideration.  

y is the output 

*is the convolution operation in discrete domain 

 

 

In this approach, the back propagation based neural 

network model has been used. A backpropagation neural 

network for traffic speed forecasting typically consists of 

an input layer, one or more hidden layers, and an output 

layer. The number of nodes in the input layer 

corresponds to the features used for prediction, The 

hidden layers contain nodes that learn and capture the 

intricate patterns within the data, while the output layer 

provides the predicted traffic speed. The training of a 

backpropagation neural network involves the iterative 

application of the backpropagation algorithm. During the 

training process, historical data is used to feed the 

network, and the algorithm calculates the error between 

the predicted and actual energy demands. This error is 

then propagated backward through the network, 

adjusting the weights and biases of the connections to 

minimize the prediction error. This iterative process 

continues until the network converges to a state where 

the error is minimized. Successful backpropagation 

neural network models for traffic speed forecasting can 

be integrated into energy management systems.  

 

IV. Previous Work 

 

A summary of noteworthy contribution in the domain is 

presented here: 

 

Ukam et al. [16] proposed that the nature of paratransit 

services makes for increased uncertainty in trip time, 

leading to reported unreliability and dissatisfaction by 

the users. While providing travel information has proved 

helpful in formal bus services and has been 

recommended for paratransit setup, little is reported 

about efforts at providing information to paratransit 

users. This study focused on one strand of possible travel 

information that can be provided – Travel Time. An 

artificial neural network (ANN)-based model was 

developed to predict paratransit travel times, geared 

towards providing information to improve user 

http://www.ijsrem.com/
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experiences. The developed model was tested on a real-

world paratransit bus route (minibus taxi) in Kumasi. A 

travel time survey that employed a mobile phone 

application was used to collect data onboard the vehicles 

on the study route. Two ANN models were trained. The 

first used only historical datasets, while the second 

incorporated real-time information. The results show 

that the model in which real-time information was 

included performed better than that trained with only 

historical data. The developed models were compared 

with a historical average model and a regression-based 

model, and the results showed that the ANN models 

outperformed the others. The study showed that the 

nature of paratransit services and the limitations of 

continuous data collection, notwithstanding, travel times 

of paratransit trips can be predicted to a reasonable level 

of accuracy, as can be relied upon in providing 

information to the users. 

 

Maass et al. [17] proposed that estimating temporal 

patterns in travel times along road segments in urban 

settings is of central importance to traffic engineers and 

city planners. In this work, authors propose a 

methodology to leverage coarse-grained and aggregated 

travel time data to estimate the street-level travel times 

of a given metropolitan area. The main focus is to 

estimate travel times along the arterial road segments 

where relevant data are often unavailable. The central 

idea of our approach is to leverage easy-to-obtain, 

aggregated data sets with broad spatial coverage, such as 

the data published by travel analysis, as the fabric over 

which other expensive, fine-grained datasets, such as 

loop counter and probe data, can be overlaid. The 

proposed methodology uses a graph representation of the 

road network and combines several techniques such as 

graph-based routing, trip sampling, graph sparsification, 

and least-squares optimization to estimate the street-

level travel times. Using sampled trips and weighted 

shortest-path routing, we iteratively solve constrained 

least-squares problems to obtain the travel time 

estimates.  

 

Akhtar et al. [18] proposed that traffic congestion 

prediction has led to a growing research area, especially 

of machine learning of artificial intelligence (AI). With 

the introduction of big data by stationary sensors or 

probe vehicle data and the development of new AI 

models in the last few decades, this research area has 

expanded extensively. Traffic congestion prediction, 

especially short-term traffic congestion prediction is 

made by evaluating different traffic parameters. Most of 

the researches focus on historical data in forecasting 

traffic congestion. However, a few articles made real-

time traffic congestion prediction. This paper 

systematically summarises the existing research 

conducted by applying the various methodologies of AI, 

notably different machine learning models. The paper 

accumulates the models under respective branches of AI, 

and the strength and weaknesses of the models are 

summarised. 

 

Chen et al. [19] proposed that the estimation of urban 

arterial travel time distribution (TTD) is critical to help 

implement Intelligent Transportation Systems (ITS) and 

provide travelers with timely and reliable route guidance. 

The state-of-practice procedure for arterial TTD 

estimation commonly assumes that the path travel time 

follows a certain distribution without considering link 

correlations. However, this approach appears 

inappropriate since travel times on successive links are 

essentially dependent along signalized arterials. In this 

study, a copula-based approach is proposed to model 

arterial TTD by accounting for spatial link correlations. 

First, TTDs on consecutive links along one arterial in 

Hangzhou, China are investigated. Link TTDs are 

estimated through the nonparametric kernel smoothing 

method. Link correlations are analyzed in both 

unfavorable and favorable coordination cases. Then, 

Gaussian copula models are introduced to model the 

dependent structure between link TTDs. The parameters 

of Gaussian copula are obtained by Maximum-

Likelihood Estimation (MLE). Next, path TTDs 

covering consecutive links are estimated based on the 

estimated copula models. The results demonstrate the 

advantage of the proposed copula-based approach, 

compared with the convolution without capturing link 

correlations and the empirical distribution fitting 

methods in both unfavorable and favorable coordination 

cases. 

 

Sun et al. [20] proposed the design and implement a 

door-to-door travel time estimation framework, which 

aims to analyze the potential competitiveness of on-

demand air taxis in Europe when competing with 

existing transportation modes: car, railway and 

traditional air transportation. The grid cell-based 

framework, opposed to previous studies, allows for fine-

grained, high-resolution estimation of travel time lower-

bounds between any points in the region of interest. 

Region-specific results on domination points and 

competition transitions of all modes are obtained and 

reported. The work helps to understand the 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

                         Volume: 09 Issue: 08 | Aug - 2025                                SJIF Rating: 8.586                                     ISSN: 2582-3930                                                                                                                         

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM51761                                                 |        Page 7 
 

competitiveness of on-demand air taxis through the lens 

of door-to-door travel time estimation. keyword: On-

demand air mobility; Competition range; Grid-based 

framework. 

 

 

The accuracy of prediction is computed as: 

 

𝑨𝒄 = 𝟏𝟎𝟎 − 
𝟏𝟎𝟎

𝑴
∑

𝑬−𝑬𝒊|

𝒊
𝑵
𝒊=𝟏  %             (9)            

 

Here, 

n is the number of errors 

i is the iteration number 

E is the actual value 

𝐸𝑖 is the predicted value 

 

V Challenges with Statistical Modelling for 

Predicting Street Level Travel Time: 

 

Accurate traffic time prediction at the street level is vital 

for efficient urban mobility, traffic management, and 

real-time navigation systems. While statistical models 

such as linear regression, autoregressive models, and 

generalized linear models have been widely used for this 

purpose, they face several critical challenges. These 

limitations hinder their effectiveness in capturing the 

complexity and dynamics of real-world traffic, 

especially in dense urban environments with high 

variability [21] . 

 

One of the primary challenges lies in the assumptions of 

linearity and stationarity inherent in many statistical 

models. Linear regression, for example, assumes a linear 

relationship between independent variables (like 

distance, time of day, or weather) and travel time, which 

often oversimplifies reality. Urban traffic is inherently 

nonlinear due to complex interactions among vehicles, 

signal systems, and unpredictable human behavior.  

 

Another major issue is the inability to capture spatial 

dependencies effectively. Street-level travel time is 

influenced by the status of neighboring roads, 

intersections, and regional traffic flow. Traditional 

statistical models typically treat data points 

independently and struggle to incorporate spatial 

correlations unless explicitly modeled, which is both 

technically demanding and computationally expensive. 

As a result, these models often lack the granularity and 

sensitivity required for hyper-local predictions. 

 

Data quality and availability also pose significant 

challenges. Street-level traffic prediction demands high-

resolution data, such as timestamps, GPS locations, and 

vehicle trajectories, often supplemented by GTFS feeds 

or sensor networks. Statistical models are sensitive to 

missing, noisy, or inconsistent data, and imputation 

techniques may not always preserve the underlying 

temporal or spatial structure. Incomplete datasets lead to 

biased or inaccurate predictions, especially in areas with 

sparse sensor coverage or poor reporting infrastructure 

[22]. 

 

Moreover, statistical models struggle with incorporating 

dynamic and external factors such as accidents, weather 

changes, special events, or roadwork, which can cause 

abrupt deviations in travel time. While such events have 

a substantial impact on traffic flow, modeling them 

statistically requires complex feature engineering and 

often results in models that are rigid or overfitted. Unlike 

machine learning models, traditional statistical 

techniques are less adaptable to real-time anomalies or 

sudden changes in traffic patterns. 

 

Scalability and computational complexity present 

additional limitations. Although statistical models are 

often praised for their simplicity, applying them to large-

scale, high-dimensional datasets—especially in 

metropolitan areas with thousands of road segments—

can become computationally intensive. Furthermore, 

updating these models in real-time or integrating them 

into live traffic management systems is often impractical 

without significant pre-processing and tuning [23]. 

 

 

VI. CONCLUSION 

It can be concluded that data analysis for or Street 

Level Travel Time Estimation Using GTFS Features 

and model interpretability is critically essential. 

Model ineroperatibility versus performance trade-

offs must be considered. While statistical models offer 

high interpretability, they often sacrifice predictive 

accuracy in favor of simplicity. For modern urban 

traffic systems where precision and responsiveness 

are crucial, this trade-off limits their application. 

Emerging alternatives like deep learning models can 

outperform statistical models in many scenarios but 

do so at the cost of transparency and explainability. 

This paper presents a comprehensive review on the 

need for statistical models, their pros and cons along 

with a summary of the most recent noteworthy 

contribution in the field of research.  

http://www.ijsrem.com/
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