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Abstract - Physics-Informed Neural Networks (PINNs) are 

neural networks (NNs) that encode model equations such as 

Partial Differential Equations (PDE) and physical laws as a 

component of the neural network. PDEs, fractional equations, 

integral-differential equations, and stochastic PDEs are now 

solved using PINNs. This novel methodology evolved as a 

multi-task learning framework in which a NN must fit observed 

data while decreasing a PDE residual. According to the study, 

the majority of research has focused on customizing the PINN 

using various activation functions, gradient optimization 

techniques, neural network structures, and loss function 

structures. Despite the wide range of applications for which 

PINNs have been used, advancements are still possible by 

demonstrating their ability to be more feasible in some 

contexts, most notably theoretical issues that remain 

unresolved. 
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INTRODUCTION 

Machine learning techniques demonstrate impressive results 

for a range of highly complex tasks, especially where an 

accurate mathematical representation of the problem cannot be 

obtained. Applications include image recognition, robotics, 

weather forecasting, and others [1]. In power systems, decision 

trees and neural networks have been shown to solve 

computational problems both in dynamics and optimization at 

a fraction of the time required by traditional approaches, being 

up to three order of magnitude faster. 

Up to this point, however, machine learning methods applied 

to power systems (and other physical systems) were largely 

agnostic to the underlying physical model. This made them 

heavily dependent on the quality of the training data, it required 

large training datasets, and oftentimes complex neural network 

structures. Despite recent efforts for efficient creation of 

datasets with encouraging results [7], [8], generating the 

required training dataset size still requires substantial 

computational effort. In this work, inspired by [9], [10], we 

reduce the dependency on training data and complex neural 

network structures by exploiting inside the neural network 

training the underlying physical laws described by power 

system models. 

This is the first work, to our knowledge, that proposes 

physics-informed neural networks for power system 

applications. It introduces a neural network training 

framework that can exploit the underlying physical laws and 

the available power system models both for steady-state and 

dynamics. Following recent approaches reported in [9], [10], 

we incorporate the power system differential and algebraic 

equations. 

 

METHODOLOGY 

A. Physical Model for Power System Dynamics 

B. Power system dynamics, in their simplest and most 

common form, are described by the swing equation, 

neglecting transmission losses and bus voltage deviations. 

For each generator k, the resulting system of equations can 

then be represented. 

C. Single Machine Infinite Bus (SMIB) System: The 

single machine infinite bus system, shown in Fig. 1, has 

been widely used to understand and analyze the 

fundamental dynamic phenomena occurring in power 

systems. As the focus of this paper is on the introduction 

of physics-informed neural networks for power systems, 

we will use this system as a guiding example. Note though 

that our proposed framework is general. Future work will 

focus on larger, more complex systems. The swing 

equation (1) for the SMIB system is given by: 

      m1δ̈ + d1δ̇  + B12V1V2 sin(δ) − P1 = 0 

In the rest of this paper, we will show how physics-informed 

neural networks can accurately estimate both rotor angle δ and 

frequency δ˙ while P1 varies within [Pmin, Pmax], and can 

identify uncertain parameters such as m1 and d1. 

D. Physics-Informed Neural Networks 

E. In the following, we explain the general architecture of 

physics-informed neural networks, and detail its 

application to the SMIB system. Feed-forward neural 

networks are composed of the input layer, fully connected 

hidden layers having a non-linear activation function at 

each neuron, and the output layer. Between each layer a 

weight matrix W and bias b is applied. 

F. General structure of a physics-informed neural network: it 

predicts the output u (t, x) given inputs x and t. Then, using 

automatic differentiation [11] of the same neural network, 

the partial derivatives of u (t, x) are computed, and f (t, x) 

is evaluated. The parameters λ are either assumed to be 

known, or are optimized as part of the neural network 

training. During training, the neural network weights and 

biases are adjusted according to loss function (5), which 
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minimizes the deviation of both output prediction u (t, x) 

from ground truth and f (t, x) from 0. 

The work in [10] introduced a framework for physics-

informed neural networks which we will rely on in the 

following. Considering physical laws during training allows to 

bound the space of admissible solutions to the neural network 

parameters, which translates to a lower requirement in both 

the amount of training data and neural network size. 

Following notation similar to Ref. [10], the general form  of 

the functions that the physics-informed neural network can 

approximate is; 

∂t = −N [u; λ], x ∈ Ω, t ∈ [0, T] 

where u (t, x) is the solution and N [u; λ] is a nonlinear operator 

connecting the state variables u with the system parameters λ. 

The term t denotes time and x the system input. The domain Ω 

can be bounded based on prior knowledge of the dynamical 

system and [0, T] is the time interval within which the system 

evolves. The model parameters λ can be constant or unknown. 

In case λ is unknown, the problem of approximating function 

(3) becomes a problem of system identification, where we seek 

parameters λ for which the expression in (3) is satisfied. To 

enforce the physical law describing the dynamical system we 

define the physics-informed neural network f (t, x). 

Note that if the system parameters λ are known the nonlinear 

operator N [u, λ] simplifies to N [u]. A neural network is used 

to predict u (t, x) based on the inputs t and x. To determine f (t, 

x), we use automatic differentiation [11] of the components of 

the neural network predicting u (t, x). Based on this, we 

compute the   required derivatives of u (t, x) with respect to time 

t and system inputs x. As a result, the neural network 

predicting f (t, x) has the same parameters compared to the 

neural network predicting u (t, x), but different activation 

functions. The shared parameters of the two neural networks 

are optimized  by minimizing the loss function. 

Number of collocation points and training data influence the 

prediction accuracy and the computational time to optimize 

the loss function. The error MSEu enforces the boundary 

conditions of the independent variables x and MSEf enforces 

the physics of the dynamical system imposed by the condition 

(3), i.e. it penalizes deviations of the predicted physical law. 

Given a training data set and known system parameters λ, 

we seek to find the parameters (weights and biases) of the 

neural networks which minimize (5). If the parameters λ are 

unknown, we train for the same objective but consider the 

system parameters as additional variables. 

Physics-informed neural networks capturing power system 

dynamics: 

We show how physics-informed neural networks can 

be used to chanical power P1. We assume that the 

system parameters λ: = m1, d1, B12 are known and the 

voltages V1 and V2 are fixed. As a result, the system 

input is defined as x:  = P1.  In contrast with conventional 

numerical solvers, which require the conversion of higher-

order ordinary differential equations (ODEs) to first-order 

in order to solve them (by introducing additional 

variables), physics-informed neural networks can directly 

incorporate higher-order ODEs, as we show in (7). 

Incorporating (2) to the neural network, function (4) is given 

                      u(t, x) := δ(t, P1), 

 fδ(t, P1) = m1δ̈ + d1δ̇  + B12V1V2 sin(δ) − P1 

   Data-driven discovery of inertia and damping coefficients: 

Information about power system parameters such as system inertia 

is of significant importance for system operators to prevent large 

frequency deviations and maintain frequency stability. As 

described in [16], due to varying generation of converter-

connected renewable energy sources, the inertia level of power 

systems becomes uncertain and has to be estimated (or predicted) 

at regular time intervals [17]. Physics-informed neural networks 

can be used to address the problem of system identification and 

data-driven discovery of partial differential equations. For this 

case, we define m1 and d1 as unknown parameters in (7). The 

structure of the physics-informed neural network remains the 

same, with the only difference that a subset of the system 

parameters λ are now treated as additional variables when 

minimizing (5) during neural network training. 

SIMULATION 

   Simulation Setup 

Besides an initial training set, to assess the neural 

network performance we also need an extensive test data 

set. To create the training and test data sets we use the 

numerical solver ode45 in MATLAB with a time step of 

0.1s and time interval T = [0, 20s], resulting in 201 time 

steps for each trajectory. The voltage magnitudes V1 and V2 

are equal to 1 p.u. and B12 = 0.2 p.u. In our first case study, 

we assume system inertia and damping are known, and that 

the system is not at an equilibrium. Assuming an uncertain 

active power input in the range P1 = [0.08, 0.18] and initial 

values for δ and ω equal to 0.1 rad and 0.1 rad/s, we generate 

100 trajectories. As a result, our entire test and training 

dataset consists of 20′100 samples. 

In our second case study, inertia and damping are also 

unknown parameters. Given scattered observed data about 

active power, frequency and angle measurements, our goal 

is to identify the parameters m1 and d1 of (7), as well as to 

obtain the trajectory of δ. Considering that the levels of 

inertia and damping vary, we assign 10 different values to 

m1 and d1 that lie within the range of [0.1, 0.4] and [0.05, 

0.15], respectively. To this end, for each of the 10 pairs m1, 

d1 we generate 40 trajectories. 

A. Data-driven solution of frequency dynamics through 

physics-informed neural networks 

B. The following parameters were selected to obtain the 

lowest L2 error on the test data: we select a set of Nu = 

40 randomly distributed initial and boundary data across 

the entire spatiotemporal domain, Nf = 8′000 collocation 

points, and a 5-layer neural network with 10 neurons per 

hidden layer. Observe that compared to conventional 

neural network approaches, we only need a very small 

amount of samples (Nu = 40). Increasing Nu in our 

simulations, led to over-fitting to the training data. 

Training took 223 seconds and the relative L2 error 

between exact and predicted solutions on the 11′600-

points test dataset is 1.34 10−2. Fig. 3 depicts the 

comparison between the predicted and the actual 

trajectory of the angle δ(t) and the frequency ω(t). The best 
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and worst δ, ω estimation during different active power 

inputs P1 in terms of L2 error on both. 

C.  Predicting both angle δ and frequency ω as separate 
neural network outputs: 

Within our investigations, we also attempted to train a 
physics-informed neural network that considers δ and ω 

as separate outputs, essentially setting fω = δ̇ , ω and fδ = 
m1ω̇ + d1ω + B12V1V2 sin(δ) P1. 

To obtain the lowest L2 error in this case, we had to select 

again a set of Nu = 40 randomly distributed initial and boundary 

data. Considering that δ(t) and ω(t) are predicted as separate 

outputs, the relative L2 errors between the exact and predicted 

solutions are 9.43 10−2 and 1.51 10−1, respectively, and are 

higher than for the NNδ structure. It becomes obvious that the 

neural network architecture with the single output δ (and 

subsequent numerical differentiation to determine ω) is 

preferable in terms of training time and predictive accuracy. 

At the first occurrence of an acronym, spell it out followed 

by the acronym in parentheses, e.g., charge-coupled diode 

(CCD). 

D. Data-driven discovery of inertia and damping 
coefficients through physics-informed neural networks 

E. In this subsection, we evaluate the performance of the 
physics-informed neural network to predict system inertia 
and damping from observed trajectories. In this case study, 
we assume that m1 and d1 are unknown, and instead we have 
a set of limited training data points t, P1, δ. Contrary to the 
usual practice of first training a neural network and then 
using it, our objective here is exploit the physics-informed 
neural network training procedure to determine m1 and d1. 
To illustrate the effectiveness of this approach, we perform 
this analysis for 10 different pairs of m1, d1 and evaluate the 
average predictive accuracy. We select a set of Nu = 100 
randomly distributed points across the spatiotemporal 
domain from the exact solutions of (2) for each inertia level. 
A 5-layer neural network with 30 neurons per hidden layer 
is trained for each inertia level with the corresponding 
trajectories in order to predict the system parameters and 
δ(t). The resulting average errors for predicting m1 and d1 
over the 10 different cases are 0.74% and 1.28%, 
respectively. The average training time of the neural 
network to identify the system parameters was less than 60 
seconds. This means that with a limited training dataset, and 
within 60 seconds, we can accurately predict the inertia and 
damping level of a system. Considering that the swing 
equation (2) is often used to approximate the aggregate 
dynamic behavior of large power systems, these results 
demonstrate that physics-informed neural network show 
substantial potential to not only accurately derive δ and ω 
but also predict both system inertia and damping. Last but 
not least, the relative L2 errors between the exact and 
predicted solutions for the phase angle are less than 10−1 
over the 10 different cases of m1, d1. This shows the potential 
of physics informed neural networks to be used as a dynamic 
state estimator, when the model parameters are unknown. 

 

 

 

 

DISCUSSION AND OUTLOOK 

This work introduces for the first time in power systems 
a neural network training procedure that explicitly considers 
the underlying differential and algebraic equations 
describing power system behavior. This unlocks a series of 
opportunities in power systems, as physics-informed neural 
networks may be able to accurately determine the solution of 
differential algebraic sets of equations several orders of 
magnitude faster than traditional methods relying on 
numerical integration. Still, to unlock this potential, there are 
several challenges to be addressed. 

Number of training data: Besides the limited number of 
training data, physics-informed neural networks as 
described in this paper need to generate a substantial number 
of collocation points. In our case studies, we used Nu = 40 
points as input data and Nf = 8′000 collocation points. 
It is expected that for larger systems, a much larger 
number of collocation points will be necessary, which 
will result to a longer training time. In our future work, 
we plan to investigate methods using Runge-Kutte 
integration schemes such as the ones proposed in [10] which 
can eliminate the need for collocation points. 

Scalability: Although the swing equation is a good first 

approximation for first-swing instability, and single- machine 

infinite-bus systems are still used as aggregate models of large 

power systems, we still need to explore what are the 

computational needs if we were to apply these methods in 

large scale power systems and how to address the associated 

challenges related to the neural network training. Particularly, 

the comparison with numerical solvers and approximation 

techniques like polynomial fits will serve as a benchmark. 

Range of applications: As shown in this paper, physics-
informed neural networks can determine two orders of 
magnitude faster the rotor angle and frequency at any time 
instant for uncertain power inputs. At the same time, they can 
accurately identify uncertain parameters such as inertia and 
damping. Future applications must also assess cases that 
include both stable and unstable equilibria, a wide range of 
different dynamic phenomena, including small-signal 
stability, voltage stability and converter dynamics [18], 
discrete events, such as protection actions, as well as power 
system optimization, among numerous others. In our 
simulation study, we observed high accuracy for a single 
stable swing prediction, but for different regimes such as 
multiple oscillations or unstable conditions, different physics-
informed neural networks might have to be trained. We also 
need to examine if such neural networks can capture discrete 
events, such as protection actions, or if we need to develop a 
hybrid approach, using physics-informed neural networks as 
a numerical solver only during the continuous dynamics 
before and after a discrete event. For power system 
applications, physics-informed neural networks can (and 
should) be combined with neural network verification 
methods, see [19]. In this way, they would no longer be 
considered a black box, but instead we would be able to 
extract formal guarantees for their behavior. 
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Understanding deep learning: In addition to enhancing 

the trainability and generalization of ML models, physical 

principles are also being used to provide theoretical insight 

and elucidate the inner mechanisms behind the surprising 

effectiveness of deep learning. For example, in REFS the 

authors  use the jamming transition of granular media to 

understand the double-descent phenomenon of deep learning 

in the over-parameterized regime. Shallow NNs can also be 

viewed as interacting particle systems and hence  can be 

analyzed in the probability measure space with mean-field 

theory, instead of the high-dimensional parameter space. 

Another work rigorously constructed an exact mapping from 

the variational renormalization group to deep learning 

architectures based on restricted Boltzmann machines. 

Inspired by the successful density matrix renormalization 

group algorithm developed in physics, REF proposed a 

framework for applying quantum-inspired tensor networks to 

multi-class supervised learning tasks, which introduces 

consider- able savings in computational cost. Reference 

studied the landscape of deep networks from a statistical 

physics viewpoint, establishing an intuitive connection 

between NNs and the spin-glass models. In parallel, 

information propagation in wide DNNs has been studied 

based on dynamical systems theory, providing an analysis of 

how network initialization determines the propagation of an 

input signal through the network, hence identifying a set of 

hyper-parameters and activation functions known as the ‘edge 

of chaos’ that ensure information propagation in deep 

networks. 

 

APPLICATIONS 

In this section, we discuss some of the capabilities of 

physics-informed learning through diverse applications. 

Our emphasis is on inverse and ill posed problems, which 

are either difficult or impossible to solve with conventional 

approaches. We also present several ongoing efforts on 

developing open-source software for  scientific ML. 

Observational biases 

Observational data are perhaps the foundation of the 

recent success of ML. They are also conceptually  the 

simplest mode of introducing biases in ML. Given 

sufficient data to cover the input domain of a learning 

task, ML methods have demonstrated remarkable power 

in achieving accurate interpolation between the dots, 

even for high-dimensional tasks. For physical systems in 

particular, thanks to the rapid development of sensor 

networks, it is now possible to exploit a wealth of 

variable fidelity observations and monitor the evolution 

of complex phenomena across several spatial and 

temporal scales. These observational data ought to reflect 

the underlying physical principles that dictate their 

generation, and, in principle, can be used as a weak 

mechanism for embedding these principles into an ML 

model during its training phase. Examples include NNs 

proposed in REFs. However, especially for over-

parameterized deep learning models, a large volume of 

data is typically necessary to reinforce these biases and 

generate predictions that respect certain symmetries and 

conservation laws. In this case, an immediate difficulty 

relates to the cost of data acquisition, which for many 

applications in the physical and engineering sciences 

could be prohibitively large, as observational data may 

be generated via expensive experiments or large-scale 

computational models. 

Inductive biases 

Another school of thought pertains to efforts focused 

on designing specialized NN architectures that implicitly 

embed any prior knowledge and inductive biases 

associated with a given predictive task. Without a doubt, 

the most celebrated example in this category are 

convolutional NNs which have revolutionized the field of 

computer vision by craftily respecting invariance along the 

groups of symmetries and distributed pattern 

representations found in natural images Additional 

representative examples include graph neural networks 

(GNNs) equivariant networks, kernel methods such as 

Gaussian processes and more general PINs with kernels 

that are directly induced by the physical principles that 

govern a given task. Convolutional net- works can be 

generalized to respect more symmetry groups, including 

rotations, reflections and more general gauge symmetry 

transformations. This enables the development of a very 

general class of NN architectures on manifolds that depend 

only on the intrinsic geometry, leading to very effective 

models for computer vision tasks involving medical 

images, climate pattern segmentation  and others. 

Translation-invariant representations can also be 

constructed via wavelet-based scattering transforms, 

which are stable to deformations and preserve high-

frequency information Another in many-body systems. A 

similar example is the equivariant transformer networks, a 

family of differentiable mappings that improve the 

robustness of models for predefined continuous 

transformation. 

Hybrid approaches 

     The aforementioned principles of physics-informed 

ML have their own advantages and limitations. Hence, it 

would be ideal to use these different principles together, 

and indeed different hybrid approaches have been 

proposed. For example, non-dimensionalization can 

recover characteristic properties of a system, and thus it is 

beneficial to introduce physics bias via appropriate non-

dimensional parameters, such as Reynolds, Froude or 

Mach numbers. Several methods have been proposed to 

learn operators that describe physical phenomena for 

example, DeepONets have been demonstrated as a 

powerful tool to learn nonlinear operators in a supervised 

data-driven manner. What is more exciting is that by 

combining DeepONets with physics encoded by PINNs, it 

is possible to accomplish real-time accurate predictions 

with extrapolation in multiphysics applications such as 

electro-convection and hypersonic. However, when a low-

fidelity model is available, a multi-fidelity strategy can be 

developed to facilitate the learning of a complex system. 

For example, REF. combines observational and learning 

biases through the use of large-eddy simulation data and 

con- strained NN training methods to construct closures 

for lower-fidelity Reynolds-averaged Navier–Stokes 

models of turbulent fluid flow. Additional representative 

use-cases include the multi-fidelity NN used in REF. to 

extract material properties from instrumented indentation 

data, the PINs in REF. used to discover constitutive laws 

of non-Newtonian fluids from rheological data, and the 
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coarse-graining strategies proposed in REF. Even if it is 

not possible to encode the low-fidelity model into the 

learning directly, the low-fidelity model can be used 

through data augmentation — that is, generating a large 

amount of low-fidelity data via inexpensive low-fidelity 

models, which could be simplified mathematical models 

or existing computer codes, such as REF. Other 

representative examples include FermiNetsand graph 

neural operator methods. It is also possible to enforce the 

physics to an NN by embedding a network into a 

traditional numerical method (such as finite element). This 

approach was applied to solve problems in many different 

fields, including nonlinear dynamical systems 

computational mechanics to model constitutive relations, 

subsurface mechanics stochastic inversion and more. 

Connections to kernel methods 

Many of the presented NN-based techniques have a 

close asymptotic connection to kernel methods, which 

can be exploited to produce new insight and 

understanding. For example, as demonstrated in REFs, 

the training dynamics of PINNs can be understood as a 

kernel regression method as the width of the network 

goes to infinity. More generally, NN methods can be 

rigorously interpreted as kernel methods in which the 

underlying warping kernel is also learned from data. 

Warping kernels are a special kind of kernels that were 

initially introduced to model non-stationary spatial 

structures in geostatistics and have been also used to 

interpret residual NN models. Furthermore, PINNs can 

be viewed as solving PDEs in a reproducing kernel 

Hilbert space spanned by a feature map (parametrized by 

the initial layers of the network), where the latter is also 

learned from data. Further connections can be made by 

studying the intimate connection between statistical 

inference techniques and numerical approximation. 

Existing works have explored these connections in the 

context of solving PDEs and inverse problems optimal 

recovery and Bayesian numerical analysis Connections 

between kernel methods and NNs can be established even 

for large and complicated architectures, such as 

attention-based transformers, whereas operator-valued 

kernel methods could offer a viable path of analyzing and 

interpreting deep learning tools for learning nonlinear 

operators. In summary, analyzing NN models through the 

lens of kernel methods could have considerable benefits, 

as kernel methods are often interpretable and have strong 

theoretical foundations, which can subsequently help us 

to understand when and why deep learning methods may 

fail or succeed. 

Connections to classical numerical methods 

Classical numerical algorithms, such as Runge–Kutta 

methods and finite-element methods, have been the main 

workhorses for studying and simulating physical systems 

in silico. Interestingly, many modern deep learning models 

can be viewed and analyzed by observing an obvious 

correspondence and specific connections to many of these 

classical algorithms. In particular, several architectures 

that have had tremendous success in practice are 

analogous to established strategies in numerical analysis. 

Convolutional NNs, for example, are analogous to finite 

different stencils in translation- ally equivariant PDE 

discretization and share the same structures as the 

multigrid method; residual NNs (ResNets, networks with 

skip connections) are analogous to the basic forward Euler 

discretization of linear finite-element method Such 

analogies can provide insights and guidance for cross-

fertilization, and pave the way for new ‘mathematics-

informed’ meta-learning architectures. For example, REF. 

pro- posed a discrete-time NN method for solving PDEs 

that is inspired by an implicit Runge–Kutta integrator: 

using up to 500 latent stages, this NN method can allow 

very large time-steps and lead to solutions of high 

accuracy. 

Tackling high dimensionality 

     Deep learning has been very successful in solving high-

dimensional problems, such as image classification with 

fine resolution, language modelling, and high-dimensional 

PDEs. One reason for this success is that DNNs can break 

the curse of dimensionality under the condition that the 

target function is a hierarchical composition of local 

functions. For example, in REF. the authors reformulated 

general high-dimensional parabolic PDEs using backward 

stochastic differential equations, approximating the 

gradient of the solution with DNNs, and then designing 

the loss based on the discretized stochastic integral and the 

given terminal condition. In practice, this approach was 

used to solve high-dimensional Black–Scholes, Hamilton–

Jacobi–Bellman and Allen–Cahn equations GANs have 

also proven to be fairly successful in generating samples 

from high-dimensional distributions in tasks such as 

image or text generation. As for their application to 

physical problems, in REF the authors used GANs to 

quantify parametric uncertainty in high-dimensional 

stochastic differential equations, and in REF. GANs were 

used to learn parameters in high-dimensional stochastic 

dynamics. These examples show the capability of GANs 

in modelling high-dimensional probability distributions in 

physical problems. Finally, in REFs  it was demonstrated 

that even for operator regression and applications to PDEs, 

deep operator networks (DeepONets) can tackle the curse 

of dimensionality associated with the input space. The 

third source of uncertainty refers to the limitation of the 

learning models— for example, the approximation, 

training and generalization errors of NNs — and is usually 

hard to rigorously quantify. In REF. a convolutional 

encoder–decoder NN is used to map the source term and 

the domain geometry of a PDE to the solution as well as 

the uncertainty, trained by a probabilistic supervised 

learning procedure with training data coming from finite-

element methods. Notably, a first attempt to quantify the 

combined uncertainty from learning was given in REF. 

using the dropout method of REF. and, due to physical 

random- ness, using arbitrary polynomial chaos. An 

extension to time-dependent systems and long-time 

integration was reported in REF.42: it tackled the 

parametric uncertainty using dynamic and bi-orthogonal 

modal decomposition of the stochastic PDE, which are 

effective methods for long-term integration of stochastic 

systems. 
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Application to geophysics 

     Physics-informed learning has also been applied to 
various geophysical inverse problems. The work in REF, 
estimates subsurface properties, such as rock permeability 
and porosity, from seismic data by coupling NNs with full-
waveform inversion, subsurface flow processes and rock 
physics models. Furthermore, in REF, it was demonstrated 
that by combining DNNs and numerical PDE solvers as we 
discussed in the section on hybrid approaches, physics-
informed learning is capable of solving a wide class of 
seismic inversion problems, such as velocity estimation, 
fault rupture imaging, earthquake location and source–
time function retrieval. 

Software 

To implement PINNs efficiently, it is advantageous 

to build new algorithms based on the current ML 

libraries, such as TensorFlow, PyTorch, Keras and JAX 

Several software libraries specifically designed for 

physics-informed ML have been developed and are 

contributing to the rapid development of the field 

(TABLE 1). At the present time, some of the actively 

developed libraries include DeepXDE SimNet, PyDEns 

NeuroDiffEqNeuralPDE SciANN  and ADCME. 

Because Python is the dominant programming language 

for ML, it is more convenient to use Python for physics-

informed ML, and thus most of these libraries are 

written in Python, except the NeuralPDE   and ADCME, 

which are written in Julia. All these libraries use the 

automatic differentiation mechanism provided in other 

software such as TensorFlow. Some of these libraries 

(such as DeepXDE and SimNet) can be used as a solver, 

that is, users only need to define the problem and then 

the solver will deal DeepXDE not only solves integer-

order ODEs and PDEs, but it can also solve integro-

differential equations and fractional PDEs. DeepXDE 

supports complex domain geometries via the technique 

of constructive solid geometry, and enables the user 

code to stay com- pact, resembling closely the 

mathematical formulation. DeepXDE is also well-

structured and highly configurable, since all its 

components are loosely coupled. 

Which model, framework, algorithm to use? 

With a growing collection of methodologies and software 
tools, a series of questions naturally arises: given a 
physical system and/or governing law and some 
observational data, which ML framework should one use? 
Which training algorithm to choose? How many training 
samples to consider? Although at present there are no 
rule-of-thumb strategies for answering these questions, 
and some degree of experience is required to set up a 
physics-informed ML model properly, meta-learning. 
The choices intimately depend on the specific task that 
needs to be tackled. In terms of providing a high-level 
taxonomy, we note that PINNs are typically used to infer 
a deterministic function that is compatible with an 
underlying physical law when a limited number of 
observations is available (either initial/boundary 
conditions or other measurements). The underlying 
architecture of a PINNs model is determined by the nature 
of a given problem: multi-layer perceptron architectures 
are generally applicable but do not encode any specialized 
inductive biases, convolutional NN architectures are 
suitable for gridded 2D domains, Fourier feature 

networks are suitable for PDEs whose solution exhibits 
high frequencies or periodic boundaries, and recur- rent 
architectures are suitable for non-Markovian and time-
discrete problems. 

CONCLUSIONS 

We've seen how machine learning provides a new way of 

conducting scientific research by emphasizing data-driven 

learning. By incorporating existing physical principles into 

machine learning, we can create more powerful models that 

learn from data and build on our existing scientific 

knowledge. We have introduced physics-informed neural 

networks, a new class of universal function approximators 

that is capable of encoding any underlying physical laws that 

govern a given data-set, and can be described by partial 

differential equations. In this work, we design data-

driven algorithms for inferring solutions to general nonline

ar partial differential equations, and constructing 

computationally efficient physics-informed surrogate 

models. The resulting methods showcase a series of 

promising results for a diverse collection of 

problems in computational science,and open  the  path  for  

endowing  deep learning with the powerful capacity of 

mathematical physics to model the world around us. As deep 

learning technology is continuing to grow rapidly both in 

terms of methodological and algorithmic developments, we 

believe that this is a timely contribution that can benefit 

practitioners across a wide 

range of scientific domains.  Specific applications that can r

eadily enjoy these benefits include, but are not limited to, 

data-driven forecasting of physical processes, model 

predictive control, multi-physics/multi-scale modelling and 

simulation. 
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