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Abstract: 

 

This study aims to present artificial intelligence and its important subfields in machine learning methods. 

It also covers the function of these subfields in many healthcare sectors, including bioinformatics, gene 

detection for cancer diagnosis, epilepsy seizure, and brain-computer interface. Additionally, it discusses 

how deep learning is used to interpret medical images for conditions like tumours, gastrointestinal 

disorders, and diabetic retinopathy. Finally, this essay highlights the practical challenges that must be 

resolved before AI approaches can be applied more widely 

 

 

1 Introduction 

Artificial intelligence (AI) is the process through which a computer learns on its own without being 

explicitly programmed or instructed. It has a sense of decision-making and the development of algorithms 

from the imputed data since it is a branch of computer science that is simultaneously engaged in the 

learning process through commands and instructions. We also define artificial intelligence (AI) as a 

computer's capacity to transform input from an outside source into machine-understandable form, learn 

from that data, and keep going until the learning process meets a certain objective or goal through flexible 

adaptation. It creates AI tools that can manage both organised and unstructured data. Unstructured data, 

on the other hand, must first be processed before AI can utilise it for analysis. Structured data, on the 

other hand, can be used directly for analysis by AI. Machine learning (ML) is one of the artificial 

intelligence tools that is used most frequently. Numerous techniques, including logistic regression, linear 

discriminant analysis, random forest, support vector machine, k-nearest neighbour classifiers, cluster 

analysis, current deep learning, reinforcement learning, decision trees, etc., are used in machine learning 

to handle the data. ML employs either supervised or unsupervised learning techniques for its learning 

processes. However, a different kind of learning strategy known as semi-supervised learning has emerged 

in recent years.  

Most machine learning methods make use of supervised learning. Any novice ML practitioner will start 

off using these kinds of methods. As the name suggests, supervised learning instructs the computer to 

build a model using the available dataset in order to have the intended programme. We split the entire 

dataset into training and testing datasets when using supervised learning. The training dataset is used to 

create the machine learning models. Testing datasets are then utilised for accuracy verification and error 

correction, bringing expected results as closely as possible to actual results. It offers a broad range of 

applications, including email management techniques like automatically responding to incoming 

messages, organising mail into folders, detecting spam, and thread summarising. Additionally, it aids with 

computer vision, face and speech recognition, natural language processing, and handwriting recognition. 

which refers to the computer's capacity for language and visual comprehension, signature recognition, etc. 

The supervised learning approaches are further separated into regression and classification based on the 

data obtained. In order to find a meaningful relationship between the dependent and independent 

variables, regression is a valuable statistical predicting tool. A continuous output, or one that is believed 

to be a real number, is predicted using the regression process in machine learning (ML). In contrast, 

expected output from categorization will take the form of discrete data. While feature extraction is a good 

application for the second form of learning, unsupervised learning. We just have the input data with 
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unsupervised learning because there are no expected results. Here, predictions are only reliant on our own 

capacity for learning and discovering patterns in the input data.  

The data are divided into a number of groups that are similar as part of the learning procedure. 

Applications for this kind of machine learning can be found in areas such as astronomical data, speech 

recognition, acoustic factor analysis for reliable speaker verification, the cocktail party problem, etc. 

Clustering and principal component analysis (PCA) are the two primary unsupervised learning 

algorithms. Typically, PCA is used for dimension reduction. When a feature variable has numerous 

dimensions, PCA can project the data onto a small number of principal component directions without 

losing the majority of the data. Before data clustering, PCA is typically used to minimise some of the 

data's dimensions. While the clustering method involves grouping variables that exhibit comparable or 

shared characteristics without needing output data. These methods produce cluster labels for the variable 

that have the highest degree of similarity both within and between clusters. Affinity propagation, mean 

shift, hierarchical clustering, k-mean clustering, Gaussian mixture clustering, and OPTICS are a few 

popular clustering algorithms. A wide range of social sectors, including agricultural, automotive, banking 

and economics, legal professions, healthcare, cybersecurity, military, advertising, art, and many more, are 

affected by machine learning. 

 It is impossible to go into greater detail about its overall relevance. Therefore, we only focus on the 

healthcare sector in our analysis. One of the most important sectors of society, healthcare is required to 

provide a high standard of treatment and services at all times, regardless of cost. Before ML can be used 

in the healthcare industry, preparations must be made so that it can distinguish between different sorts of 

data, link together data of a similar kind, learn from the data, and produce the right results. Clinical 

records, diagnosis reports, screening records, demographic information, pictures, physical examination 

results, medical notes, etc. can all be examples of this data. Diagnostic imaging, genetic testing, 

electrodiagnosis, and other forms of data recognition are used at the diagnosis stage. While other 

significant data sources that can be recognised in the form of an image are medical notes and physical 

examinations. Since most genetic and electrophysiological (EP) data is obtained in an unorganised state, 

it cannot currently be used for analysis. Before being used for analysis, this data needs to be "filtered". 

And by "filtering" we mean transforming this data into an electronic medical record (EMR) form that can 

be read by a computer. Some AI programmes, including clustering algorithms, function well in this 

procedure. 

 

 

2 Applications of machine learning in healthcare 

 

2.1 Bioinformatics 

 

For organising and interpreting biological data, it is referred to as a multidisciplinary branch of biology 

and computer science applications. In recent years, this data has multiplied tremendously. With the aid of 

ML algorithms, this data can be managed and the pertinent information extracted, turning it into 

biological knowledge. This biological information—which includes gene sequences, DNA sequences, 

gene expression, array analysis, combinatorial chemistry, etc.—along with machine algorithms 

established by scientists offer a readily comprehendible picture of human genomics. 

The importance of computational biology, commonly known as bioinformatics, was highlighted by 

Caragea et al. in 2009. It is the creation of algorithms and the mapping of linkages between different 

biological systems utilising biological data. For in-depth research in computational biology, one can also 

consult Guyon et al. (2003), Sajda & Paul (2006), Tarca, Adi L., et al. (2007), and Hou, Shujie et al. 

(2011). Several fascinating books on bioinformatics and ML have been written by the authors such 

Frasconi P, Shamir R (2000), Baldi P, Brunak (2011). 

Deep learning has emerged as a crucial component of machine learning (ML) in recent years. According 

to Li et al. (2019), it can handle non-linear functions within the desired accuracy level and has been used 

to many computing problems. Recent optimisation approaches proposed by Li et al. (2020) rendered the 
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deep neural network the most dependable and effective technique among rival systems. In the field of 

bioinformatics, it aids in the resolution of complex biological issues, such as the prediction of DNA 

binding by Luo et al. (2019), the bio-sequence analysis technique that includes analysis and RNA 

sequence prediction by Park et al. (2017), the prediction of protein structure for amino acid sequence by 

Zuo et al. (2018), and the identification of enhancer-promoter interaction (EPI) by Hong et al. (2020). 

2.1.1 Understanding genomics: DNA classification 

 

One of the key areas of bioinformatics is genomics, where ML tools and techniques are applied to gather 

useful data. The most promising field for ML Mathe' C, Sagot M.-F, Schlex T, et al. (2002) reviews of 

gene prediction algorithms is the gene discovery methodology. Using clustering algorithms of machine 

learning, Cho, Sung-Bae, and Hong-Hee Won (2003) provide a thorough explanation of DNA 

classification by identifying a group of individuals with similar types of genes or the degree to which 

these individuals possess a particular gene using the colour pattern of DNA microarray data. This is a 

classic instance of unsupervised learning because the algorithm provides no prior knowledge about the 

person regarding to which group it belongs. Zucker S. (1995) uses a classification tree to search the 

protein-coding region of human DNA. In order to solve the problem of splice site prediction, Yvan Saeys, 

Sven Degroeve, Dirk Aeyels, et al. (2004) used the optimisation method for feature subset selection. 

Degroeve S, De Baets B, Van de Peer Y, et al. (2002) use various ML approaches to tackle the same 

technique. Pavlovic V, Garg A, and Kasif S. (2004) and Degroeve S, De Baets B, Van de Peer Y. (2002) 

make By incorporating a different source of evidence into the process, gene prediction is made more 

intriguing. 

 

Some helpful ML algorithms that are used to discover regulatory elements and non-coding RNA genes 

were proposed by Bockhorst J, Craven M, Page D, et al. (2003), Stein Aerts, Peter Van Loo, Yves 

Moreau, et al. (2004), and Won K.-J, Pru gel- Bennet A, Krogh (2004). While using the categorization 

paradigm was Carter RJ, Dubchak I, and Holbrook SR. In Bao L. and Cui Y., this method is used once 

again. The prediction of non-synonymous single nucleotide polymorphism's phenotypic consequences 

was made in (2005) by contrasting support vector machine with random forest approaches. 

Numerous optimisation strategies have been suggested to simplify multiple alignment difficulties. 

Simulated annealing is one of these methods, developed by Kim J, Cole JR, and Pramanik S. (1996), the 

iterative approach developed by Hirosawa M, Totoki Y, Hoshida M, et al. (1995), the relaxation 

algorithm developed by Thomas D. Schneider and David N. Mastronarde (1996), and Monte Carlo 

optimisation by Neuwald AF, Liu JS. (2004) as well as the tabu search method developed by Tariq Riaz, 

Yi Wang, and Kuo-Bin Li (2004). 

The study of Shadman Shadab et al. (2020) is one of the most recent contributions on the application of 

deep learning algorithms for DNA-Binding proteins (DBP) discovery. Riccardo Rizzo et al. (2016) also 

completed work of a similar nature. 

 

2.1.2 Analysis of gene expression data: Cancer diagnosis 

 

Cancer can be defined as any unusual growth of cells in the body. There are over approximately 100 

types of cancer found in medical research today. Early detection of cancer can help to prevent declining 

patient’s health and save many lives. Hwag et. al. (2002) in their paper and Luca Silvestrin in his book 

focuses on cancer detection through the classification of patient samples. And with the help of ML 

algorithm such as Bayesian network, Neural trees and Radial basis function (RBF) network, this study 

can be done through analysis of gene expression to classify the cancer type. Wag Yu, et al. (2005) in 

their paper effectively use the process of gene selection for diagnosing cancer. We can also refer to 

Zararsiz, Gokmen, et. al. (2012) for leukemia classification. 
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2.1.3 Detection of Epileptic Seizures 

 

Patients with epilepsy experience unpredictable, repeated seizures that happen suddenly and without any 

prior warning. Consequently, there may be a brief loss of judgement, memory, and coordination. Frequent 

seizures may increase the risk of dying and decrease the likelihood of suffering physical harm. With the 

aid of an Electroencephalogram (EEG), a non-invasive method of measuring brain activity, machine 

learning (ML) techniques can be used to build detectors that, in this case, are capable of identifying the 

onset of seizures fast and accurately, depending on the patient's medical state. 

With the aid of the data available on EEG and rs-fMRI measurements from the ECoG dataset, Hosseini et 

al. (2017) analysed epileptogenicity localisation using a convolutional neural network and offered the 

conclusion as normal p-value 1.85e-14 and p-Seizure value 4.64e-27. With an accuracy rate of 88.67%, 

Acharya et al. (2017) trained CNN for the analysis of seizure detection using the Freiburg EEG DB. 

Using the Freiburg EEG DP and CNN, Mirowski et al. (2008) predicted epileptic episodes and found that 

20 out of 21 individuals had zero false-alarm seizures. 

2.1.4 Evolving signal processing for brain computer interface (BCI) 

 

The brain and a machine that interprets electrical signals from the brain and utilises them to direct some 

external actions, like moving the arm, work together to create a brain computer interface.a prosthetic limb 

or a cursor. It is essential to the support of disabled individuals, multimedia, virtual reality, video games, 

etc. The motor cortex, a reasonably well-understood part of the cortex, is where the muscle-controlling 

commands are sent. Many paralysed patients' brains are capable of producing these commands, but sadly 

the information never reaches the muscles. In this instance, Makeig et al.'s (2012) work on brain 

computer interface brings it into existence. 

Kiral-Kornel et al. (2017) provided power assessments of various processing platforms and employed 

CNN for BCI analysis utilising 6 subjects and up to 1000 individual hand squeezes. In their study of EEG 

decoding and visualisation using CNN, Schirrmeister et al. (2017) employed the BCI Competitive IV 

dataset 2a and measurement data and achieved an accuracy rate of up to 89.8%. With just one subject and 

30 minutes of data, Nurse et al. (2016) calculated the accuracy rate of BCI at 81%. By using the BCI 

Competitive IV Data Set 2b to investigate motor imagery categorization, Lu et al. (2017) increased 

accuracy by roughly 5% when compared to previous approaches. 

 

Three Deep Learning 

Deep learning, sometimes referred to as deep neural learning and the network as a deep neural network 

(DNN), is a subclass of machine learning that contains a network that can learn unsupervised from 

unstructured input. It is the capability of artificial intelligence that closely resembles the structure of the 

human brain and imitates the way the brain processes information for use in object detection, speech 

recognition, language translation, and decision-making. It can learn from both structured and unstructured 

data without assistance from or oversight from humans. Among other things, it can aid in the detection of 

fraud or money laundering. 

 

The development of big data, also known as digital information that has evolved into practically every 

form on the planet, is where deep learning evolution first starts. Search engines, e-commerce sites, social 

media, applications, and many other online resources are among the major providers of big data.Deep 

learning makes sense of the enormous amount of unstructured data that it would typically take a human 

being decades to fully comprehend and extract useful information from. The traditional ML algorithms 

use data analysis in linear ways. While deep learning makes use of artificial neural networks with 

hierarchical tiers that are philosophically and architecturally modelled after the biological nervous system 

of humans. As a result, deep learning algorithms also process the data non-linearly. 
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An early type of neural network called a perceptron that was inspired by the human brain. Frank 

Rosenblett developed this algorithm in 1958 at Cornell Aeronautical Laboratory with funding from the 

US Office of Naval Research. It is a supervised learning ML technique for binary classifiers. It has an 

input layer that can classify linearly separable patterns and is directly coupled to the output layer. As data 

complexity expanded, neural networks were developed. These networks include layered architectures 

with input, output, and one or more hidden layers. Due to the non-linear correlations in the data, these 

hidden layers can handle its complexity. This neural network is connected by the neurons that receive 

input data, process the data, and forward the output to the subsequent layer. 

 

Each neuron adds up the input data and then uses functions to activate the data that has already been 

added up. This output, which can either be the final output or the output that has to be processed at the 

next layer, is then sent to the next layer. As a result, deep learning network has numerous layers of 

neurons that have been built up in a hierarchical way, and it has now been expanded over more than 1000, 

establishing a hierarchical feature representation. Deep learning is able to commit to the memory that 

contains all potential mappings thanks to this level of modelling capacity. But it must act. 

 

a successful training with a large database and the ability to forecast decisions with intelligence at first. 

Convolutional neural networks (CNN), recurrent neural networks (RNN), deep neural networks (DNN), 

multilayer perceptrons (MLP), deep belief networks (DBN), autoencoders, deep Boltzmann machines 

(DBM), deep belief networks (DBN), deep conventional extreme ML (DC- ELM), and many others are 

now used in healthcare research areas. 

 

3 Deep learning 

 

Deep learning has the capacity to create new features, i.e., it is able to create new features in addition to 

identifying and extracting pertinent ones. It is utilised in the healthcare industry to aid doctors by aiding in 

disease diagnosis and model prediction with a specific objective for treatment. Extreme learning models 

(ELM), self-organizing maps (SOM), generative adversarial networks (GAN), recurrent neural networks 

(RNN), radial basis function networks (RBFN), long short-term memory (LSTM), autoencoders, extreme 

learning models (CNN), recurrent neural networks (RNN), radial basis function networks (RBFN), etc. are 

examples of deep learning algorithms that can work with raw data and automatically learn features. The 

majority of deep learning algorithms perform effectively in a range of fields, including robotics, virtual 

assistants, entertainment, healthcare, and picture colouring [122–126]. 

Deep learning has many different uses, from diagnosing diseases to providing individualised care. Deep 

learning algorithms have revolutionised certain fields, including ophthalmology, pathology, cancer 

detection, and radiology. Deep learning revolutionised ophthalmology initially, although pathology and 

cancer detection have more uses and are more widely discussed. 

With an accuracy rate of 83%, Zhai et al. (2017) employed CNN to control neuroproteins utilising data 

from NinaPro Databases (DB) 2 and 3. With the aid of kinematic and EMG data from NinaPro DB, Park et 

al. (2016) trained CNN for movement intention decoding and produced results with an accuracy rate of 

more than 90%. Using measurements from eight healthy participants, Xia et al. (2017) estimated limb 

movements with the use of RNN and suggested that the RNN outperformed other methods for estimating a 

3D trajectory. 18 people performing 7 gestures were used by Allrad et al. (2016) to apply CNN in robotic 

arm steering, with an accuracy of about 97.9%. The accuracy of sleep state recognition determined by 

Fraiwan et al. (2017)'s autoencoder analysis is 80.4%. Huve et al. (2017) compare the neural dynamics of 

CNN and DNN using 180 trials on a single individual and find that DNN performs better than CNN. With 

distinct datasets, Jirayucharoensak et al. (2014) and An et al. (2014) evaluate based emotion recognition 

using deep learning networks and produce results with valence accuracy 49.52% and arousal accuracy 

46.03% levels. 
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3.1 Deep learning in healthcare 

 

Deep learning has the ability to construct new features, i.e., it is not only able to identify and extract 

relevant features but also construct new ones. In healthcare sector, it is used to diagnose the disease as 

well as predict the model with a specific target for treatment to help the physicians. Deep learning 

algorithms like CNN, recurrent neural network (RNN), radial basis function network (RBFN) long short-

term memory (LSTM), autoencoder, extreme learning model (ELM), self-organising maps (SOM), 

generative adversarial network (GAN), etc. can work on raw data, automatic feature learner and consumes 

less processing time. Most of the deep learning algorithms show efficient performance in various 

domains like a virtual assistant, entertainment, healthcare, robotics, image colouring, etc [122-126]. 

 

Applications of deep learning cover a broad range of problems ranging from disease detection to 

personalized treatment. There are some particular areas that are responsible for revolutionising deep 

learning algorithm in ophthalmology, pathology, cancer detection, radiology. Ophthalmology is the first 

to revolutionise deep learning but pathology and cancer detection receive more attention and have 

applications that are quite accurate. 

 

Zhai et al. (2017) used CNN for neuroproteins control using the data from NinaPro Database (DB) 2&3 

with an accuracy rate of 83%. Park et al. (2016) trained CNN for movement intention decoding with the 

help of kinematic and EMG data NinaPro DB and conclude the output with more than 90% accuracy 

rate. Xia et al. (2017) estimate limb movements estimation with the help of RNN using the measurements 

from eight healthy subjects and proposed that the RNN outperformance other methods for estimating a 

3D trajectory. Allrad et al. (2016) apply CNN in robotic arm guidance using 18 subjects performing 7 

gesture with the accuracy approximately 97.9%. Fraiwan et al. (2017) analyse sleep state identification 

using autoencoder and comes up with the accuracy of 80.4%. Huve et al. (2017) track down the neural 

dynamic by comparison of CNN and DNN taking 1 subject 180 trials and conclude that DNN outperform 

CNN. Jirayucharoensak et al. (2014) and An et al. (2014) analyse based emotion recognition using deep 

learning network by taking different dataset and comes up with the result of valence accuracy 49.52% 

and arousal accuracy 46.03% level. 

 

3.2 Deep learning and medical imaging 

 

Any image diagnosis task's fundamental goal necessitates the detection of an anomaly, the measurement 

of its intensity, or the quantification of the aberration. Automated image analysis systems that employ ML 

algorithms have the potential to enhance the quality of the analysis and, consequently, the interpretations. 

There are numerous sites in this field that have a wealth of data at their disposal for doctors. This 

information consists of pathological imaging, genomic sequencing, and radiological imaging, such as X-

rays, CT scans, and MRI scans. Even while deep learning approaches are capable of processing a sizable 

amount of data, there aren't enough tools to convert the entire data set. 

3.2.1 Diabetic Retinopathy (DR) 

 

Diabetes Mellitus (DM) is a metabolic disorder that can result high blood sugar [121]. It has two major 

causes- improper production of insulin by the pancreas (Type-I diabetes) and the improper response of 

body tissues toward the insulin produced 

(Type-II diabetes). Eye disease caused by diabetes termed diabetic retinopathy (DR) and long termed DR 

may cause complete blindness to the patient. It is curable only if it is detected at the early stages through 

retinal screening. Automated detection of DR through deep learning model are far better than manual 

process of detecting of DR and gives optimized and better accuracy. 

 

Gulshan et al. (2016) analysed eye picture archive communication system (Eye PACS-I) that consists of 
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10,000 retinal images with the help of deep CNN (DCNN) and conclude the sensitivity of 97.5% and 

93.4% specificity. Harry Pratt (2016) also used DCNN for classification and detection of moderate and 

worse using the dataset Messidor-2 that contain 1700 images collected from 874 patients to claim the 

sensitivity and specificity of 96% and 93.4% respectively. Kathrivel (2016) used the dataset Kaggle 

fundus, DRIVE and STARE that are publicly available for classification of the fundus with DCNN with 

dropout layer and conclude the accuracy up to 94% - 96%. 

 

Haloi (2015) detect early-stage DR on Retinopathy online challenge (ROC) by training a 5-layered 

connection mechanism using Messidor dataset and conclude upto 97% sensitivity, 96% specificity, 96% 

accuracy and 0.988 area under the curve (AUC) he also claims up to 0.98 AUC on ROC dataset. Alban 

(2017) diagnosed five class severities and de-noised the Eye PACS images of angiography for detection 

of DR. he applied CNN and comes up with 79% AUC and 45% accuracy. Lim et al. (2014) used the 

methods mentioned by Gilbert et al. (2012) for extracting features from identified region then classify 

these features by implementing deep convolutional neural network and realised the model on SiDRP and 

DIARETBD1 datasets. 

 

Pratt et al. (2016) employed the NVIDIA CUDA DCNN library on Kaggle dataset consisting of above 

80,000 digital fundus images. They also validated the network on 5,000 images. The images resized into 

512x512 pixels and then sharpened. Finally, the features vector fed to Cu-DCNN. They classified the 

images into 5 classes using features like exudates, haemorrhages and micro-aneurysms and achieve upto 

95% specificity, 30% sensitivity and 75% accuracy. 

 

3.2.2 Gastrointestinal (GI) Disease Detection 

 

A metabolic disease called diabetes mellitus (DM) can cause excessive blood sugar levels [121]. Type I 

diabetes, which results in incorrect pancreatic insulin synthesis, and improper body tissue responses to the 

insulin produced, are the two main causes. 

(Diabetes type II). Diabetic retinopathy, also known as DR, is an eye condition that can render a patient 

completely blind. Only if it is discovered in its earliest stages by retinal screening is it treatable. 

Automated DR detection using a deep learning model is far more accurate and produces better results 

than manual DR detection. 

Deep CNN (DCNN) was used by Gulshan et al. (2016) to evaluate the eye picture archiving 

communication system (Eye PACS-I), which comprises of 10,000 retinal images. They came to the 

conclusion that the system has a sensitivity of 97.5% and a specificity of 93.4%. Using the dataset 

Messidor-2, which contains 1700 photos gathered from 874 patients, Harry Pratt (2016) also employed 

DCNN for classification and detection of moderate and worse, claiming sensitivity and specificity of 96% 

and 93.4%, respectively. Kathrivel (2016) employed the publicly accessible datasets DRIVE, STARE, 

and Kaggle fundus for the categorization of the fundus with DCNN with dropout layer and came to the 

conclusion that the accuracy was between 94% and 96%. 

By using the Messidor dataset to train a 5-layered connection mechanism, Haloi (2015) was able to 

diagnose early-stage DR on the Retinopathy online challenge (ROC) and reach conclusions with up to 

97% sensitivity, 96% specificity, 96% accuracy, and 0.988 area under the curve (AUC). He also asserts 

up to 0.98 AUC on the ROC dataset. When Alban (2017) used CNN to de-noise the Eye PACS pictures 

of angiography in order to detect DR, he identified five class severities and achieved 79% AUC and 45% 

accuracy. Lim et al. (2014) developed the model on the SiDRP and DIARETBD1 datasets using the 

techniques suggested by Gilbert et al. (2012) for extracting features from defined regions and then 

classifying these features by deploying deep convolutional neural networks. 

 

NVIDIA CUDA DCNN library was used by Pratt et al. (2016) on the Kaggle dataset, which included 

more than 80,000 digital fundus images. Additionally, they tested the network on 5,000 photos. The 

photos were sharpened after being downsized to 512x512 pixels. The features vector was then sent to the 
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Cu-DCNN. Using features including exudates, haemorrhages, and micro-aneurysms, they divided the 

images into five classes, achieving up to 95% specificity, 30% sensitivity, and 75% accuracy. 

3.2.3 Tumour detection 

 

A tumour or neoplasm is an abnormal development of cells that causes havoc in any portion of the body. 

Cancer may or may not be caused by a tumour. As a result, we divide tumours into malignant and 

benign tumours, which refer to cancerous and non-cancerous tumours, respectively. Since benign 

tumours do not spread to other bodily parts, they are significantly less harmful than malignant ones. 

While malignant can spread to other bodily regions and become challenging to treat. 

Wang et al. (2016) examined 482 patient photos, of which 246 women with tumours were found. The 

patients ranged in age from 32 to 70. By first de-noising the examined images, the breast cancer was 

then segmented utilising modified wavelet transformation, morphological operations, and region growth. 

Then, SVM and extreme learning machines received morphological and textured features for the 

classification and detection of breast tumours. The result of employing ELM and was that the overall 

error rate was 84. 

utilising SVM, 96. In 2015, Jeimer et al. published a research titled "Automatic coronary calcium 

scoring in cardiac angiography using CNN" that employed sparse data from malignant masses and 

benign solitary cysts. As a consequence, CNN claimed an area under the curve of up to 87%. 

Additionally, using CNN, Weildi et al. (2016), Rongshen Zhu (2015), and Yixuan Yuan (2017) publish 

their results with an area under the curve of 80% to 85%. 

 

4 Conclusion 

The human mind is constantly interested in new discoveries, advancements, and what lies beyond them. 

One such example is artificial intelligence, which emerged from the desire to create computers with the 

capacity to learn from their experiences. The main accomplishment in the development of this kind of 

intelligence is that it allows users to handle a large amount of data that is impossible for the human mind 

to store. This kind of computer application will undoubtedly reduce the amount of work involved in 

handling data, but putting this technology into practise is not an easy undertaking. AI must be 

continuously trained using historical data. Additionally, the ongoing data input is essential for continued 

development and improvement once the system has been taught. In this study, we looked at the drivers 

behind the use of ML in healthcare. We also talk about ML, which is the main subcategory of ML. We 

discussed various healthcare data that deep learning has studied and surveyed while focusing on deep 

learning and its architecture. However, several ML technologies are garnering a lot of interest in medical 

research. Real-time implementation continues to have issues. One of these issues is regulation. The 

safety, assessment, and efficiency standards of the ML system are not met by recent rules. The US FDA 

offers guidelines for evaluating ML systems that ensure to retain the safety and efficiency in order to get 

around this problem. Another barrier is the lack of incentives for data exchange on the system in the 

current healthcare context. As a result, ML training prior to adoption has been hampered. There are plans 

for the healthcare revolution to encourage data exchange among numerous nations. 
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