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ABSTRACT 

The Study on mathematical model of turbulent combusting flows by usig AMR Algorithms. 

Due to more manageable computational requirements and somewhat greater ease in handling 

complex flow geometries, most practical simulation algorithms are based on the Reynolds- or Favre- 

averaged Navier–Stokes equations, where the turbulent flow structure is entirely modelled and not 

resolved. The time-averaging approach, the system of equations governing turbulent combusting 

flows can be both large and stiff and its solution can still place severe demands on available 

computational resources. 
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1.  INTRODUCTION 

 
Introduction of mathematical model of turbulent combusting flows by usig AMR Algorithms 

have been taken to reduce the computational costs of simulating combusting flows. One successful 

approach is to make use of solution-directed mesh adaptation, such as the adaptive mesh refinement 

(AMR) algorithms developed for aerospace applications Berger and Saltzman 1994, Aftosmis et al. 

1998, Groth et al. 1999, 2000, Sachdev et al. 2005). Computational problems with disparate length 

scales, providing the required spatial resolution while minimising memory and storage requirements. 

Recent progress in the development and application of AMR algorithms. The producing a parallel 

AMR method that both reduces the overall problem size and the time to calculate a solution for 

laminar combusting flows. The extension of this combined approach to turbulent non-premixed 

combusting flows is the focus of this study. 
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2. PRELIMINARIES 

 

2.1 Fluid Dynamics 

Fluid dynamics is a subdisciplines of fluid mechanics that describes the flow of fluids-liquid 

and gases. It has several subdisciplines, including aerodynamics ( the study of air and other gases in 

motion) and hydrodynamics ( the study of liquid in motion). The father of fluid dynamics is blaise 

pascal. 

2.2 Turbulent Flow 
A type of fluid ( gases or liquid ) flow in which the fluid undergoes irregular fluctuations, or 

mixing, in contrast to laminar flow, in which fluid moves in smooth paths of layers. In turbulent 

flow the speed of the fluid at a point is continuously undergoing changes in both magnitude and 

directions. 

2.3 Navier-Stokes Equations 
In fluid dynamics a partial differential equations that describes the flow of incompressible 

fluids. The equation is a generalization of the equation devised swiss mathematicians Leonhard 

euler in the 18thcentuary to describes the flow of incompressible and frictionless fluid 

u 
+ (u.u) = − 

1 
p + v 2u 

  

t  

2.4  Inviscid Fluid 

 
Inviscid flow is the flow of an inviscid fluid, in which the viscosity of the fluid is equal to 

zero. When viscous force are neglected such as the case of the inviscid flow.
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2.5 Viscous Flow 

 
A type of fluid flow in which there is a continuous steady motion of the particle; the 

motion at a fixed point is always remains constant. Also called streamlines flow; laminar flow; 

steady flow. 

2.6 Turbulent  Prandtl Number 

 
A dimensionless parameter used in calculations of heat transfer between a moving fluid and 

a solid body equal to Cp V/K , Where Cp is the heat capacity per unit volume , V is the kinematic 

viscosity , K is thermal conductivity. 

2.7 Reynolds Number 

 
Reynold number is the ratio of   inertial forces to viscous force within a fluid which is 

subjected to relative internal moment due to different fluid velocities , which is known as a 

boundary layer in the case of a boundary surface such as the interior of a pipe. 

2.8 Eddy Viscosity 

 
The turbulent transfer of momentum by eddies giving rise to an internal fluid friction, in a 

manner analogous to the action of molecular viscosity in laminar flow, but taking place on a much 

layer scale. Eddy viscosity is a functions of the flow, not of the fluid. 

2.9 Molecular stress tensor or Viscous stress tensor 

 
The viscous stress tensor is a tensor used in continuum mechanics to model the part of the 

stress at a point within some material that can be attributed to the strain rate, the rate at which it 

is deforming around that point. 

2.10 Vorticity Tensor 

 
Vorticity is generated at solid interface and at fluid – fluid interfaces. The vorticity tensor is 

a skew symmetric tensor. We can write its components in terms of the components of the velocity 

gradient in a rectangular cartesian basis set as follow. 
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n=1 

3. MATHEMATICAL MODEL OF TURBULENT COMBUSTING FLOW 

 

3.1 FAVRE-AVERAGED NAVIER–STOKES EQUATIONS 

A mathematical model based on the Favre-averaged Navier–Stokes equations for a 

compressible thermally perfect reactive mixture of gases has been formulated and is used here in to 

describe turbulent non-premixed combustion processes. In this formulation, the continuity, 

momentum and energy equations for the reactive mixture of N species are 

 

 
+  . (u ) = 0 (1) 
t 

 
(u ) +   ( u u +p l ) =  .( +  ) + f , (2) 

t 

where  is the time-averaged mixture density, u is the Favre-averaged mean velocity of the 
 

mixture, p is the time-averaged mixture pressure, e = u 2 /2+ 
N

 c nhn – p/  + k is the 

 
 

Favre-averaged total specific mixture energy, f is a body force per unit volume acting onthe 

gaseous mixture, k is the specific turbulent kinetic energy, Dk is the coefficient for the diffusion of the 

turbulent energy,  and  are the molecular and turbulent Reynolds stress tensors or dyads, and   q 

and   q t      are the molecular and turbulent heat flux vectors, 

respectively. Fourier’s law is used to represent the thermal diffusion caused by the random thermal 

motion and turbulence. In addition, hn is the absolute (chemical and sensible) internal enthalpy for 

species n. The transport equation describing the time evolution of the species mass fraction, cn, is 

given by 

 
( cn) +  .( cu) 

t 

 
   

= -  .( J n+ J tn) +  w n (3) 

Where wn is the time-averaged or mean rate of the change of the species mass fraction 
 

produced by the chemical reactions and Jn   and Jt n are the molecular and turbulent diffusive 

fluxes for species n, respectively. The latter are specified using Fick’s law. The modified two-

equation k–  model of Wilcox (2002) is used here to model the unresolved turbulent flow quantities. 

In this approach, the Boussinesq approximation is used to relate the Reynolds 

stress tensor,  , to the mean flow strain-rate tensor using a turbulent eddy viscosity, µt, with 
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µt = 
k 

. Transport equations are solved for turbulent kinetic energy, k, and the specific 

 

dissipation rate,  , given by 

 
(k) + . (ku ) =  :  u +  .[(µ+µt *) k ] –β* k , (4) 

t

 

 
() +  .( u) = 

 
 :  u + .[(µ+µt 

 
  

 
 
) ] −  2, (5) 

t k 

where µ is the molecular viscosity of the mixture and β*,  *, α, β and  are close 

coefficients of this two-equation model. The latter are given by 

 

 

with 

α = 
13 

, 
25 

β = β0 fβ, β*=β0 
*fβ,  =  * = 

1 
, 
2 

(6) 
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For two-dimensional axisymmetric flows, the preceding equations can be re-expressed using vector 

notation as 

U 
+

 

t 

 
( F-Fv) + 

r 

 
(G-Gv) = 

z 

1 
(Sϕ +Sϕv) +S (9) 

r 

where U is the vector of conserved variables given by 

U= [ρ,ρvr,ρvz,ρe,ρk,ρw,ρc1,…….ρcN]T (10) 

 

and F and Fv are the inviscid and viscous radial flux vectors, G and Gv are the inviscid and 

viscous axial flux vectors, S and S  v are the inviscid and viscous  source vectors 

associated with the axissymmetric geometry, and S is the source vector containing terms related to 

the finite rate chemistry body forces, and turbulence modeling, respectively. Here r and z are the 

radial and axial coordinates of the axisymmetric frame and vr and vz are the radial and axial velocity 

components. 
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3.2 TREATMENT OF NEAR-WALL TURBULENCE 

 
Both low-Reynolds-number and wall-function formulations of the   k–v model are used for the 

treatment of near-wall turbulent flows, with a procedure for automatically switching from one to the 

other, depending on mesh resolution. In the case of the low- Reynolds-number formulation, it can be 

shown that 

lim  =
  6v  

y→0 

(12) 

 

where y is the distance normal from the wall. Rather than attempting to solve the  - equation 

directly, the preceding expression is used to specify  for all values of y+ ≤ 2.5, 

where y+ = uty/v, u2= Tw/ρ, and Tw is the wall shear stress. Provided there are 3–5 computational cells 

inside y+ =2.5, this procedure reduces numerical stiffness, guarantees numerical accuracy, and permits 

the k–  model to be solved directly in the near-wall region without resorting to wall functions. In the 

case of the wall-function formulation, the expression

 
2 

k =  

 

 
(13) 

 

 =    u  

 
 

(14) 
 

are used to fully specify k and  for y+ ≤ 30–250, where k is the von Ka´rma´n constant. The 

formulae 

2     

k =    

 

+     
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 
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(15) 
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                  () 

 

have been devised to prescribe k and  for y+ lying between 2.5 and a cutoff value, 
+ 

, 
cutoff 

where  0 and  wall are the values in the near-wall sub layer and in the log layer, respectively. 

The cutoff, 
+ 

,  0 is taken to be in the range 30–50 for this study. When y+ is close to 
cutoff 

 

y 
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3.3 PARALLEL AMR ALGORITHM 

3.3.1 FINITE VOLUME SCHEME 

A finite volume scheme is employed to solve the Favre averaged Navier–Stokes equations of 

equation (9) above for a two-dimensional axisymmetric coordinate frame. The system of governing 

equations is integrated over quadrilateral cells of a structured multi- block quadrilateral mesh. The 

semi-discrete form of this finite-volume formulation applied to cell (i, j) is given by 

 

ji

ji

Adt

d

,

, 1
−=

 ( ) JIv
kfaces ji

kjikjikji SS
r

lnF s ,

, .

,,,,,,

1
, +++ 


              (17) 

 
ii , j 

 → 

Where F = (F − FV ,G − GV ), ri, j and Ai,j   are the radius and area of cell (i, j), and 𝑙 and n 

are the length of the cell face and unit vector normal to the cell face or edge, respectively. The 

inviscid (hyperbolic) components of the numerical flux at each cell face is evaluated using limited 

linear reconstruction (Barth 1993) and one of several Riemann-solver used flux functions (Roe 1981, 

Einfeldt1988, Linde 2002). The viscous (elliptic) components of the cell face flux are evaluated by 

employing a centrally weighted diamond-path reconstruction procedure as described by Coirier and 

Powell (1996). 

For the time-invariant calculations performed as part of this study, a multi grid 

algorithm with multi-stage time marching scheme smoother is used to solve the coupled set of non-

linear ordinary differential equations that arise from the finite-volume spatial discretization 

procedure. The smoother is based on the optimally-smoothing multistage time marching schemes 

developed by van Leer et al.(1989). To cope with numerical stiffness, a semi-implicit treatment is 

used in the temporal discretization of the source terms associated with axisymmetric geometry, finite-

rate chemistry, turbulence modeling and gravitational acceleration. 
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3.3.2 BLOCK-BASED ADAPTIVE MESH REFINEMENT 

AMR algorithms, which automatically adapt the mesh to the solution of the governing 

equations, can be very effective in treating problems with disparate length scales. They permit local 

mesh refinement and there by minimize the number of computational cells required for a particular 

calculation. Following the approach developed by Grothet al. (1999, 2000) for computational 

magneto hydrodynamics, a flexible block-based hierarchical data structure has been developed and is 

used in conjunction with the finite-volume scheme described above to facilitate automatic solution-

directed mesh adaptation on multi block body-fitted quadrilateral mesh according to physics based 

refinement criteria. The method allows for anisotropic mesh refinement and is well suited to parallel 

implementation via domain decomposition.    Refer to the recent papers by Sachdev et al. (2005) and 

Northrup and Groth (2005) for further details. 

 
3.3.3 DOMAIN DECOMPOSITION AND PARALLEL IMPLEMENTATION 

A parallel implementation of the block-based AMR scheme has been developed using the C++ 

programming language and the message passing interface (MPI) library 30 

 

30 

1 

25 

 
 

20 0.8 

 

SP  15 

 
0.6 EP 

 

 

10 0.4 

 
 

5 0.2 

 

 

0 5 10 15 20 25 30 0 

Number of Processors 

 

Figure1. Relative parallel speed-up, Sp, and efficiency, Ep, for a fixed size problem using up to 32 
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by Gropp et al. (1999). A domain decomposition procedure is used where the solution blocks 

making up the computational mesh are distributed equally among available processors, with more 

than one block permitted per processor. A motion ordering space filling curve is used to order the 

blocks for more efficient load balancing (Aftosmis et al. 2004). The parallel implementation has been 

carried out on a parallel cluster of 4-way Helwlett-Packard ES40, ES45, and intregrity rx4640 servers 

with a total of 244 Alpha and Itanium 2 processors. A low-latency performance and scalability of the 

proposed solution- adaptive method on this facility are shown in figure 1 for a fixed size turbulent 

non-reacting multi-species flow problem having 64 solution blocks. The relative parallel speed-up, Sp 

defined as 

s = 
t1 p, (18) 

p t p
 

 

and the relative parallel efficiency, Ep, defined as 
 

 

E = 
SP , 

 
(19) 

p P 
 

are both shown in the figure, where t1 is the processor time required to solve the problem using a 

single processor, and tp is the total processor time required to solve the problem using p processors. 

The performance indicators are shown for three different mesh sizes: 4096 cells (64 8 x 8 cell 

blocks); 6400 cells (64 10 x 10 cellblocks); and 18,432 cells (64 12 x 24 cell blocks). It can be seen 

that the parallel speed-up of block-based AMR scheme is nearly linear and is about 87% for up to 32 

processors, even for the smaller 8 x 8 cell solution blocks. The parallel efficiency is 92% for the larger 

10 x 10 cell solution blocks. 
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Figure 2.Comparison of predicted and exact solutions of the axial velocity profile for laminar Couette flow. 
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CONCLUSION 

In this project the AMR scheme has been described for turbulent non-premixed combusting 

flows and parallel implementations also discussed the Navier stoke’s equation of non-reacting and 

reacting flow results for the turbulent non-premixed flame bluff body burner. 
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