

A Study on the Effectiveness of Supplier Quality Management Strategies in Global Supply Chain Networks

Shani Singh (M.Tech)

Research Scholar, Mechanical Engineering

Shanince1@gmail.com

Abstract

This study examines the effectiveness of Supplier Quality Management (SQM) strategies in global supply chain networks, focusing on how integrated quality frameworks, technological innovations, and collaborative supplier relationships enhance performance and competitiveness. SQM represents a structured approach to ensuring supplier compliance with quality standards, reducing operational risks, and promoting consistency across complex, multi-tiered supply chains. The research draws on key theories such as Total Quality Management (TQM), Supply Chain Quality Management (SCQM), and systems integration models to explain how firms achieve superior quality outcomes through collaboration and continuous improvement. It highlights the growing influence of international standards like ISO 9001:2015, IATF 16949, and Quality at Source (Q@S) in fostering transparency, accountability, and efficiency among global suppliers. Moreover, technological tools—including Artificial Intelligence (AI), Internet of Things (IoT), automation, and Enterprise Resource Planning (ERP) systems—have revolutionized supplier evaluation and quality monitoring by providing real-time data visibility and predictive analytics capabilities. The findings emphasize that effective supplier selection, development, and risk management strategies are critical in ensuring sustainability, regulatory compliance, and resilience against disruptions such as counterfeits and supply bottlenecks. Case studies of global firms further demonstrate that successful SQM depends on continuous collaboration, digital integration, and adherence to global quality standards. Overall, the study concludes that organizations that strategically align technology, quality standards, and supplier collaboration are better positioned to sustain long-term performance, innovation, and competitive advantage in an increasingly interconnected and volatile global supply environment.

Keywords: Supplier Quality Management, supply chain networks, ISO, IATF, Artificial Intelligence, Internet of Things, sustainability, supply and bottlenecks

1. Introduction to Supplier Quality Management

Supplier Quality Management (SQM) represents a structured approach to ensuring that goods and services obtained from suppliers meet required standards and contribute to overall organizational performance. In the context of global supply chain networks, SQM emphasizes the integration of supplier capabilities, continuous monitoring, and collaborative improvement practices that collectively enhance competitiveness. As organizations expand globally, supplier quality becomes a cornerstone for achieving operational consistency, reducing risks, and ensuring compliance with international regulations. Effective SQM aligns with broader supply chain quality management (SCQM) frameworks, integrating Total Quality Management (TQM) principles, ISO 9001:2015 standards, and continuous improvement methodologies to drive synergy across network partners (Ondiek & Odock, 2018).

In recent years, advancements in digital technologies such as artificial intelligence (AI), Internet of Things (IoT), and blockchain have redefined the mechanisms of quality monitoring and supplier evaluation. These technologies provide real-time visibility and traceability, helping organizations mitigate risks related to non-compliance and defective supplies. Consequently, SQM has evolved from a reactive inspection-based process into a proactive and predictive management practice. The modern SQM paradigm emphasizes collaboration, continuous feedback, and shared responsibility between buyers and suppliers to deliver sustainable performance in a complex global marketplace.

1.1. Importance of Supplier Quality in Global Supply Chains

Supplier quality is a decisive factor in maintaining operational resilience, brand reputation, and customer satisfaction within global supply chains. High-quality suppliers contribute to reduced production costs, improved product reliability, and shorter lead times, which collectively strengthen competitive advantage. Conversely, supplier quality failures can lead to recalls, reputational damage, and financial losses. Research highlights that quality-oriented supplier relations—anchored in mutual trust, effective communication, and clear performance metrics—are essential for ensuring continuity in supply and maintaining compliance with international quality standards (Uluskan, 2016). In today's interconnected economy, supplier quality directly influences the overall performance of global supply networks, making it a strategic imperative rather than a functional concern.

2. Theoretical Framework of Supply Chain Quality

The theoretical basis of Supplier Quality Management (SQM) in global supply chains is rooted in Total Quality Management (TQM), Supply Chain Quality Management (SCQM), and systems integration theories. These frameworks emphasize collaboration between suppliers and buyers to ensure end-to-end quality performance and sustainability. SCQM focuses on integrating quality management across the entire supply chain rather than at isolated nodes. It views all partners—suppliers, manufacturers, and distributors—as contributors to collective performance improvement and customer satisfaction. When properly implemented, SCQM enhances operational efficiency, reduces variability, and aligns quality goals across global partners (Ondiek & Odock, 2018).

Modern supply chain quality frameworks incorporate systems thinking, where quality is perceived as an emergent property of the entire network rather than an individual function. Theories such as the Deming Cycle (PDCA), Goldratt's Theory of Constraints, and the Supply Chain Operations Reference (SCOR) model emphasize iterative improvement, bottleneck analysis, and process alignment across tiers of suppliers (Wachira, Mburu & Kiai, 2022). Furthermore, recent advancements have incorporated behavioral and relational theories, emphasizing trust, transparency, and knowledge sharing as essential components of sustainable supplier partnerships (Asa et al., 2023). Collectively, these frameworks provide the foundation for evaluating and managing quality in complex global networks.

2.1. Key Concepts and Models of Quality Management

Quality management in supply chains encompasses several foundational concepts: continuous improvement, customer focus, process orientation, and leadership commitment. Models such as ISO 9001:2015, Six Sigma, and Lean Manufacturing have been widely adopted to formalize supplier quality practices. Each model contributes uniquely—Lean focuses on waste elimination, Six Sigma emphasizes variability reduction, and ISO 9001 sets standardized requirements for supplier processes. The integration of these models allows organizations to monitor supplier performance, benchmark against global standards, and maintain competitive consistency. Empirical studies demonstrate that adopting these quality models positively correlates with improved supplier reliability, delivery accuracy, and defect prevention (Fonseca & Domingues, 2017).

2.2. Role of Quality Standards and Certifications

Global supply chain quality management relies heavily on recognized quality standards and certifications that serve as benchmarks for supplier performance and credibility.

- Ensuring Global Consistency and Compliance:** International standards such as ISO 9001:2015, IATF 16949 (Automotive), and AS9100 (Aerospace) ensure consistency in product quality across regions. These certifications demand documented processes, regular audits, and continuous improvement measures, reducing the likelihood of defects and compliance failures. Certification also fosters trust among international partners by ensuring that suppliers adhere to universally accepted procedures (Gruszka 2017).

- Driving Continuous Improvement and Supplier Development:** Standards like ISO 14001 (Environmental Management) and ISO 45001 (Occupational Safety) promote responsible and sustainable supplier behavior, influencing broader supply chain ethics and social responsibility. Certification acts not only as a compliance tool but as a mechanism for supplier capability enhancement, fostering transparency and continuous improvement. Moreover, research shows that organizations integrating Quality at Source (Q@S) principles within certification frameworks achieve higher cost efficiency and regulatory compliance, positioning certification as both a performance and risk management tool.

3. Global Supply Chain Dynamics

Global supply chain dynamics refer to the complex, interconnected systems that facilitate international sourcing, manufacturing, and distribution. These networks are influenced by globalization, technology, regulatory changes, and geopolitical uncertainty. In today's volatile environment, supplier quality plays a vital role in sustaining resilience and adaptability. Firms increasingly depend on multi-tier supplier networks, making visibility and control over supplier quality a competitive necessity (Yadav et al., 2023).

3.1. Characteristics of Modern Global Supply Networks

Modern global supply chains are characterized by multi-tier interdependence, digital integration, and geographical dispersion. These networks operate in real time, leveraging advanced technologies such as ERP systems, IoT sensors, and data analytics for transparency and traceability. Collaboration and agility are critical success factors, as disruptions in one region can rapidly propagate through the network. Additionally, sustainability, ethical sourcing, and regulatory compliance have become embedded priorities, compelling organizations to integrate supplier quality as a strategic function rather than an operational task. Research emphasizes that organizations with strong supplier relationship management frameworks experience greater efficiency, cost reduction, and responsiveness to market changes (Najjar, et al., 2023).

3.2. Challenges in Ensuring Supplier Quality Across Borders

Ensuring consistent supplier quality across global borders remains one of the most complex challenges in modern supply chain management. These challenges stem from regulatory diversity, cultural differences, infrastructure disparities, and limited supply chain visibility. Multi-tier global supplier networks often lack transparency beyond tier-one suppliers, which increases the risk of counterfeit products, non-compliance, and unethical practices. Research highlights that deceptive counterfeit risks have risen significantly, particularly among lower-tier suppliers in developing nations, leading to costly recalls, delays, and reputational damage (Ghadge et al., 2021).

A further challenge arises from the variation in quality management maturity across international suppliers. Many suppliers operate under different national quality standards, creating inconsistency in quality assurance systems. The implementation of Quality at Source (Q@S) principles and ISO certification frameworks is uneven, causing performance gaps between suppliers in developed and emerging markets. Additionally, logistical complexities—such as long lead times, geopolitical risks, and trade restrictions—can further undermine quality control efforts. Overcoming these barriers requires a combination of digital traceability, collaborative governance, and risk-based supplier audits to ensure consistent performance across borders.

4. Supplier Selection and Evaluation Strategies

Supplier selection and evaluation represent the foundation of effective supplier quality management. The selection process ensures that only capable, compliant, and high-performing suppliers are integrated into the global network. In a quality-driven supply chain, supplier selection is based not merely on cost but also on criteria such as quality performance, delivery reliability, sustainability compliance, and technological compatibility. Studies demonstrate that

combining quantitative and qualitative evaluation methods improves supplier reliability and strategic alignment. For example, fuzzy analytic network process (FANP) and data envelopment analysis (DEA) models enable firms to weigh both tangible (cost, lead time) and intangible (trust, collaboration) criteria in selection decisions (Samut & Aktan, 2019).

An effective supplier evaluation system must also consider long-term performance monitoring and dynamic reallocation of sourcing volumes. Firms that continuously assess supplier performance through productivity metrics and responsiveness can improve flexibility and mitigate risk. Research in European construction industries found that continuous supplier evaluation and reallocation of purchasing volumes—based on supplier performance—led to measurable gains in supply chain efficiency and reduced risks from supplier underperformance (Noorizadeh, Kuosmanen & Peltokorpi, 2020).

Furthermore, supplier selection is increasingly integrated with strategic sustainability and ethical considerations. Organizations evaluate environmental and social compliance as core selection criteria, ensuring suppliers align with corporate social responsibility (CSR) goals. This approach strengthens global reputation and mitigates the risks associated with non-compliance and unethical sourcing. Supplier partnerships built on transparency and consistent evaluation improve not only product quality but also resilience to disruptions (Areri & Gekara, 2019).

In conclusion, supplier selection and evaluation strategies are essential mechanisms for achieving quality assurance, minimizing risk, and aligning supplier objectives with global supply chain goals. These strategies enable continuous improvement and foster strategic, trust-based relationships that underpin sustainable global competitiveness.

5. Supplier Development and Collaboration Practices

Supplier development and collaboration practices are strategic mechanisms that enhance supplier capabilities, ensure quality performance, and foster long-term competitiveness. Supplier development involves structured efforts by buying firms to improve supplier processes, product quality, and innovation capacity through training, joint problem-solving, and technology transfer. In global networks, collaboration and mutual commitment are essential to manage interdependence and maintain supply chain stability. Studies have shown that organizations adopting proactive supplier development strategies achieve improved operational efficiency, cost reduction, and innovation outcomes (Areri & Gekara, 2019).

Collaborative supplier relationships, built on trust and transparency, are increasingly seen as competitive differentiators in global markets. Collaboration allows the integration of supplier expertise into product design and process improvement, reducing quality variability and cycle times. Research indicates that effective supplier relationship management (SRM) enhances communication, builds resilience during disruptions, and improves collective responsiveness to market dynamics (Asa et al., 2023). Additionally, local supplier development initiatives—such as those implemented in global health supply chains—have shown measurable impacts in supplier revenue growth, quality improvement, and job creation, confirming the long-term value of capability-building programs (Yadav et al., 2018).

Overall, supplier development and collaboration transform supplier relationships from transactional exchanges into strategic partnerships. The mutual sharing of data, co-investment in technology, and continuous feedback loops strengthen supplier alignment with buyer quality expectations, driving sustained performance improvements across the supply chain.

6. Technological Tools Supporting Supplier Quality

The digital transformation of global supply chains has significantly redefined how supplier quality is monitored, managed, and optimized. Advanced technological tools—ranging from enterprise resource planning (ERP) systems to IoT sensors and predictive analytics—enable organizations to achieve real-time visibility and control over supplier performance. These tools facilitate proactive issue identification, automate compliance tracking, and enhance decision-

making accuracy. Research shows that firms adopting integrated digital platforms for supplier management achieve higher operational efficiency, reduced defect rates, and improved traceability.

Furthermore, digital systems foster cross-organizational collaboration by providing transparent data exchange and consistent performance metrics. Cloud-based solutions and AI-driven dashboards offer predictive insights, helping firms anticipate quality deviations before they impact production. The integration of these tools with global standards like ISO 9001:2015 strengthens compliance and enhances supplier accountability (Fonseca & Domingues, 2017).

6.1. Use of Digital Platforms and ERP Systems

Enterprise Resource Planning (ERP) systems and Supplier Relationship Management (SRM) platforms serve as digital backbones for modern supplier quality management. ERP systems integrate procurement, logistics, and quality functions, enabling real-time monitoring of supplier performance and contract compliance. By linking supplier quality data to production and financial metrics, firms can make data-driven sourcing decisions and manage risks proactively. Studies reveal that ERP-based SRM systems enhance transparency, streamline communication, and support supplier scorecarding and performance benchmarking (Vaka, 2024).

Additionally, digital collaboration platforms facilitate document sharing, audit tracking, and corrective action management across geographically dispersed suppliers. By automating key workflows—such as supplier onboarding, qualification, and inspection management—organizations minimize manual errors and strengthen data integrity. Integrated ERP systems further enable compliance with international quality standards and promote traceability throughout the supply chain, which is vital for industries such as automotive and pharmaceuticals where product quality and safety are critical (Fonseca & Domingues, 2017).

6.2. Role of IoT, Automation, and Data Analytics in Quality Monitoring

Emerging technologies such as the Internet of Things (IoT), automation, and advanced data analytics have become pivotal in monitoring supplier quality and ensuring real-time visibility across global supply networks. IoT devices embedded in production lines and logistics systems capture continuous data on equipment performance, product specifications, and environmental conditions. This data enables predictive maintenance and immediate anomaly detection, reducing the occurrence of defects. Automation technologies, such as robotic inspection systems, enhance precision and repeatability in supplier quality control processes.

Big data analytics further strengthens supplier quality management by transforming raw data into actionable insights. Through machine learning algorithms, firms can predict supplier risk patterns, assess performance trends, and prioritize improvement initiatives. Research highlights that digital integration enables early identification of quality deviations, promotes continuous improvement, and strengthens global compliance frameworks (Tarigan et al., 2021). Additionally, combining IoT and analytics enhances network visibility and fosters cross-border supplier accountability, a crucial factor in mitigating the risk of counterfeits and defective components (Ghadge et al., 2021). The integration of digital technologies provides a strategic advantage by transforming supplier quality management from reactive inspection into proactive and predictive control. This digital capability enhances both efficiency and resilience, enabling global supply chains to maintain quality consistency even under disruption.

7. Risk Management in Supplier Quality

Risk management in supplier quality is a critical aspect of global supply chain governance, ensuring that disruptions, defects, and compliance breaches are effectively minimized. As global supply chains become increasingly complex, the risks associated with supplier quality—such as counterfeit components, inconsistent standards, and regulatory violations—have grown substantially. Effective Supplier Quality Risk Management (SQRM) integrates quality assurance with risk identification, evaluation, and mitigation processes throughout the supplier network.

In global networks, the main quality risks include:

- Counterfeit and substandard materials – prevalent in multi-tier supply chains, particularly from low-cost sourcing regions.
- Regulatory non-compliance – especially in industries like automotive, pharmaceuticals, and aerospace.
- Supplier insolvency or capacity issues, which can cause production delays and material shortages.
- Information asymmetry – limited visibility into sub-tier suppliers' practices.

A study on counterfeit risks in international supply chains found that deceptive counterfeit components, especially from developing economies, lead to significant financial losses, reputational damage, and even product recalls. The research emphasized that pre-supply evaluation, quality audits, and network transparency are the most effective mitigation strategies (Ghadge et al., 2021).

Risk management must extend beyond detection to prevention. The Quality at Source (Q@S) framework emphasizes defect prevention at the supplier stage, reducing downstream inspection costs and ensuring regulatory compliance. By embedding Q@S principles, organizations proactively ensure that quality is built into processes rather than inspected afterward, significantly minimizing failure costs.

From a systems perspective, supply chain quality risks are best managed through integration and competency alignment. Research in manufacturing industries shows that supply chain integration—coordinating communication, processes, and data sharing between suppliers and buyers—has a significant positive impact on quality consistency and organizational performance (Tarigan et al., 2021). Effective risk management also relies on competency-based supplier evaluation, where suppliers' technical and managerial abilities are continuously assessed to anticipate risks before they escalate.

Moreover, technology-driven risk management is transforming supplier quality assurance. IoT, AI, and blockchain tools enable real-time monitoring of supplier performance, traceability of materials, and predictive analytics for early detection of quality deviations. Studies highlight that firms leveraging digital traceability systems can detect high-risk suppliers faster, improving resilience and compliance with international standards (Fonseca & Domingues, 2017). Risk management in supplier quality depends on three pillars: visibility, collaboration, and technology integration. Building transparent, data-driven, and trust-based supplier ecosystems reduces exposure to global risks while promoting sustainable and compliant operations.

8. Case Studies of Effective Supplier Quality Management

Supplier quality management effectiveness is best demonstrated through practical cases where global firms successfully aligned supplier practices with strategic quality goals. These case studies show how leadership, technology, and collaboration improve quality assurance outcomes across global networks.

8.1. Best Practices from Leading Global Companies

Leading multinational companies such as Toyota, Siemens, and Unilever have implemented integrated supplier development and quality assurance systems that focus on continuous improvement, supplier training, and standardized audits. In the automotive sector, the implementation of ISO/TS 16949 and ISO 9001:2015 frameworks has proven essential for supplier qualification and performance monitoring. Research from the automotive industry emphasizes that Quality Management Systems (QMS) are vital in ensuring suppliers can adapt to environmental changes while maintaining high-quality output (Fonseca & Domingues, 2017).

Moreover, Quality at Source (Q@S) integration in supplier management has shown success in improving regulatory compliance and cost efficiency. Firms adopting Q@S frameworks have achieved reductions in inspection costs, improved audit performance, and enhanced supplier accountability. Similarly, public procurement organizations that

employ Supplier Relationship Management (SRM) systems demonstrate better performance in procurement efficiency, trust building, and transparency in supplier evaluation (Asa et al., 2023).

The pharmaceutical supply chain under PEPFAR's local sourcing program illustrates how local supplier development fosters economic growth and quality assurance simultaneously. Suppliers involved in structured development programs achieved measurable improvements in production quality, contract acquisition, and workforce expansion (Yadav et al., 2018). These examples collectively highlight that best practices in supplier quality management involve proactive collaboration, standardized quality systems, and ongoing supplier capability enhancement.

8.2. Lessons Learned from Supplier Quality Failures

While many organizations have succeeded in developing robust supplier quality systems, failures have exposed the consequences of weak oversight and poor communication. Quality failures often result from insufficient supplier audits, lack of data visibility, or overreliance on cost-based selection. Case studies of global counterfeit incidents demonstrate that insufficient traceability in multi-tier supplier networks can lead to severe brand and legal repercussions (Ghadge et al., 2021).

Similarly, inconsistent implementation of international standards, such as ISO 9001, across supplier tiers leads to product recalls and reputational losses in industries like electronics and aerospace. Research suggests that these failures can be mitigated through improved supplier training, integrated digital monitoring systems, and stronger buyer-supplier collaboration frameworks.

Ultimately, these lessons underscore that quality failures are rarely the result of isolated incidents; they often reflect systemic weaknesses in communication, risk control, and continuous improvement processes within the supplier network.

9. Assessment of Supplier Quality Management Effectiveness

Assessing the effectiveness of Supplier Quality Management (SQM) strategies is essential to ensure that supplier performance aligns with organizational goals for quality, cost, and sustainability. Effective assessment frameworks integrate both quantitative performance metrics (e.g., defect rates, on-time delivery, cost savings) and qualitative indicators (e.g., trust, collaboration, compliance). In global supply chains, where supplier diversity and complexity are high, such multidimensional assessments help identify performance gaps and prioritize improvement initiatives.

A core evaluation method involves linking Total Quality Management (TQM) principles with supply chain performance indicators. Empirical research demonstrates that TQM practices—such as management commitment, customer focus, and supplier relationship management—account for over 70% of the variance in overall supply chain. This highlights that supplier quality initiatives are not merely operational but are strategic levers for competitive advantage (Saragih, et al 2020).

Assessment systems increasingly incorporate digital traceability and analytics tools. AI-driven dashboards and ERP-integrated SRM platforms allow continuous monitoring of supplier metrics and generate predictive insights into potential risks or performance deviations. Studies emphasize that integrating Quality at Source (Q@S) principles with such digital systems improves quality compliance and reduces downstream inspection costs. Furthermore, adopting supplier evaluation models that include sustainability and social responsibility criteria enhances long-term network resilience and reputation management (Asa et al., 2023).

To ensure continuous improvement, organizations often apply feedback loops that compare supplier performance against benchmarks and contractual expectations. Regular audits, performance reviews, and collaborative workshops promote transparency and joint problem-solving. Firms that institutionalize these feedback systems report higher supplier retention rates, improved quality outcomes, and greater adaptability to disruptions. The effectiveness of supplier quality management is best measured through a balanced evaluation system that combines data-driven analytics, stakeholder

collaboration, and continuous improvement mechanisms. By integrating technology, standards, and human factors, organizations can achieve sustainable supplier quality performance and competitive advantage across global networks.

10. Conclusion

The study on the effectiveness of Supplier Quality Management (SQM) strategies in global supply chain networks highlights the vital role of integration, technology, and collaboration in ensuring consistent quality and operational resilience. Modern SQM practices have evolved from traditional inspection-based systems into proactive and predictive frameworks that align with Total Quality Management (TQM) and Supply Chain Quality Management (SCQM) principles. These approaches emphasize end-to-end quality integration, continuous improvement, and mutual accountability among global partners. Research indicates that supplier selection, development, and risk management are no longer peripheral activities but strategic imperatives for achieving competitiveness and sustainability in volatile global markets (Ondiek & Odock, 2018; Wachira, Mburu & Kiai, 2022). Additionally, adopting global quality standards such as ISO 9001:2015, and embedding Quality at Source (Q@S) principles, ensures suppliers meet performance benchmarks while maintaining compliance and minimizing risks.

Furthermore, the integration of advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and data analytics has transformed supplier quality management into a data-driven, real-time monitoring system. These tools enhance traceability, risk detection, and predictive quality control, allowing firms to address potential issues before they escalate. Successful organizations leverage supplier relationship management (SRM) systems, collaborative platforms, and digital audits to foster transparency and long-term partnerships (Asa et al., 2023). Conversely, case studies of supplier quality failures underscore the consequences of weak oversight, lack of visibility, and fragmented communication within global supply networks (Ghadge et al., 2021). Overall, the findings affirm that effective SQM is achieved through a balanced combination of people, processes, and technology—anchored in collaboration, continuous improvement, and standardized quality frameworks. Organizations that embrace these strategies can build resilient, compliant, and high-performing global supply chains capable of sustaining long-term competitive advantage.

References

- [1]. Okoth, O. T., & Ochieng, O. S. (2018). Supply chain quality management practices, complementary firm assets, competitive advantage and firm performance.
- [2]. Uluskan, M., Joines, J. A., & Godfrey, A. B. (2016). Comprehensive insight into supplier quality and the impact of quality strategies of suppliers on outsourcing decisions. *Supply Chain Management: An International Journal*, 21(1), 92-102.
- [3]. Wachira, K. M., Mburu, D. K., & Kiai, R. (2022). Total quality management practices and supply chain performance among manufacturing and allied companies listed at Nairobi securities exchange, Kenya. *European Journal of Business and Management Research*, 7(1), 269-279.
- [4]. Asa, A. R., Naruses, N., Nautwima, J. P., & Tsoy, D. (2023). Supplier relationship management and organizational performance: A focus on public procurement. *The International Journal of Management Science and Business Administration*, 9(6), 19-28.
- [5]. Fonseca, L. M., & Domingues, J. P. (2017). Reliable and flexible Quality Management Systems in the automotive industry: monitor the context and change effectively. *Procedia Manufacturing*, 11, 1200-1206.
- [6]. Gruszka, J., & Misztal, A. (2017). The new IATF 16949: 2016 standard in the automotive supply chain. *Research in logistics & production*, 7.
- [7]. Najjar, M., & Yasin, M. M. (2023). The management of global multi-tier sustainable supply chains: a complexity theory perspective. *International Journal of Production Research*, 61(14), 4853-4870.
- [8]. Yadav, S., Chowdary, M., Veeramani, G., Celia, B. R., Pal, S., & Prakash, O. (2023). Impact of supply chain management on the Indian SME operational effectiveness. *Journal of Informatics Education and Research*, 3(2), 1582-1588.

[9]. Ghadge, A., Duck, A., Er, M., & Caldwell, N. (2021, April). Deceptive counterfeit risk in global supply chains. In *Supply Chain Forum: An International Journal* (Vol. 22, No. 2, pp. 87-99). Taylor & Francis.

[10]. Saragih, J., Tarigan, A., Pratama, I., Wardati, J., & Silalahi, E. F. (2020). The impact of total quality management, supply chain management practices and operations capability on firm performance. *Polish Journal of Management Studies*, 21(2), 384-397.

[11]. Kaya Samut, P., & Erdoğan, H. A. N. D. E. (2019). Integrating qualitative and quantitative factors in supplier selection and performance evaluation. *South African Journal of Industrial Engineering*, 30(2), 146-160.

[12]. Noorizadeh, A., Kuosmanen, T., & Peltokorpi, A. (2021). Effective purchasing reallocation to suppliers: insights from productivity dynamics and real options theory. *International Journal of Production Economics*, 233, 108002.

[13]. Areri, J. M., & Gekara, G. M. (2019). Influence of supplier management practices on supply chain performance in public health institutions in Nairobi City County, Kenya. *The Strategic Journal of Business & Change Management*, 6(4), 601-615.

[14]. Vaka, D. K. (2024). Enhancing supplier relationships: critical factors in procurement supplier selection. *Journal of Artificial Intelligence, Machine Learning and Data Science*, 2(1), 229-233.

[15]. Tarigan, Z. J. H., Mochtar, J., Basana, S. R., & Siagian, H. (2021). *The effect of competency management on organizational performance through supply chain integration and quality* (Doctoral dissertation, Petra Christian University).