

A Study to Assess the Effectiveness of Structured Teaching Program on Knowledge Regarding Prevention of Swine Flu Among in Rural Area in Indore City

Ms. Varsha Gayke Department of Nursing, M.Sc, Bombay Hospital College of Nursing, Indore, Madhya Pradesh.

ABSTRACT:

Pigs around the world are susceptible to swine influenza, a respiratory disease brought on by type A influenza viruses, particularly strains H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses can infect humans and cause mild to severe sickness in people of all ages. Those who come into contact with pigs are particularly at risk. Influenza epidemiology research was previously only done in resource-rich nations. After 30,000 cases of H1N1 illness were recorded from more than 70 countries on June 11, 2009, the World Health Organization proclaimed an H1N1 pandemic. The frequency of swine influenza significantly increased in 2015, reaching a 5-year high. 2015 saw 10,000 instances of swine flu confirmed in India, with 774 fatalities.

KEYWORDS : Prevention from Swine flu, Rural area, Structured Teaching Programme

INTRODUCTION

Swine flu is a serious respiratory condition caused by a strain that carries the flu type an infection known as H1N1, officially referred to as Novel A/H1N1. The disease is a blend of four known strains of flu an infection: one endemic in people, one endemic in flying creatures, and two endemic in pigs (pig). Swine flu was initially believed to be a sickness associated with human flu during the 1918 influenza pandemic, known as Spanish influenza.

Swine flu is a serious respiratory condition caused by a strain that carries the flu type an infection known as H1N1, officially referred to as Novel A/H1N1. The disease is a blend of four known strains of flu an infection: one endemic in people, one endemic in flying creatures, and two endemic in pigs (pig). Swine flu was initially believed to be a sickness associated with human flu during the 1918 influenza pandemic, known as Spanish influenza.

OBJECTIVES

- To assess the pre-test knowledge regarding prevention of swine flu among in rural area in Indore city.
- To assess the post-test knowledge regarding prevention of swine flu among in rural area in Indore city.

• To compare the pre-test and post-test knowledge score regarding prevention of swine flu among in rural area in Indore city.

• To assess the effectiveness of structured teaching program on prevention of swine flu among in rural area in Indore city.

• To find out the association between pre-test knowledge scores with selected their demographic variables.

HYPOTHESIS

At the level of 0.05 significance

H01 - There will be no significant difference between pre-test and post-test Knowledge scores regarding prevention of swine flu among in rural area in Indore city

 H_{A1} - There will be significant difference between pre-test and post-test Knowledge scores regarding prevention of

swine flu among in rural area in Indore city

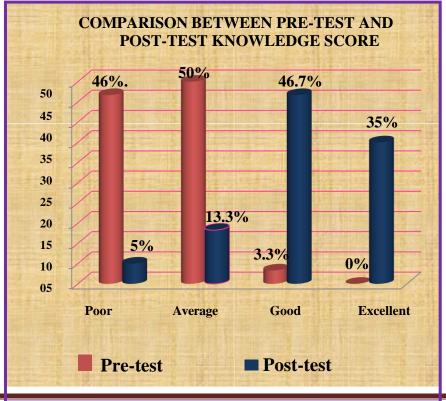
H02 -There will be no significant association between the pre-test knowledge of rural area people regarding swine flu prevention with selected demographic variables

 H_{A_2} - There will be significant association between the pre-test knowledge of rural area people regarding swine flu prevention with selected demographic variables.

METHODOLOGY

Quantitative evaluative approach is used to assess the effectiveness of structured teaching programme on knowledge regarding prevention from swine flu among selected rural areas of Indore city. The target population consist of rural area people of Indore city sample size comprises of 60 rural area, simple random sampling technique is used Demographic variables and administration of self-structured questionnaire.

SECTION - 1


Demographic characteristics – Demographic data of rural area peoples includes, Age, education, types of family, monthly income, health status of family members, previous knowledge regarding swine flu and its preventive aspects, If yes source of knowledge.

SCORING KEY FOR KNOWLEDGE QUESTION

Table No. 01

Scores	Remarks
0 - 8	Poor
9 – 16	Average
17 - 24	Good
25 - 32	Excellent

Figure- Clustered Column diagram shows categorical comparison between pre-test and post-test knowledge regarding prevention of swine flu among rural area people.

S.	Demographic Variable	Particular	Frequency (f)	Percentage (%)	People
No.					
		18-28	21	35	1
1	Age (in years)	29-38	24	40	
		39-48	11	18.3	
		Above 49	04	6.7	
2	Education Status	Primary School	08	13.3	1
		Secondary	18	25.0	
		Higher Secondary	30	53.4	
		Graduate and post graduate	04	08.3	
3	Type of Family	Nuclear	18	30	1
		Joint	31	51.7	
		Extended	11	18.3	
4	Present Health Status	Healthy	42	70	1
		Fever	06	10	
		Sore Throat	08	13.3	
		Any type of pain	04	6.7	
5	Monthly Income	Less than 10000	07	11.7	7
		10001-20000	20	33.3	
		20001-30000	21	35	
		Above 30000	12	20	
6	Previous Knowledge	Yes	13	21.7	1
		No	47	78.3	
7	Sources of Knowledge	Mass Media	08	72.7	1
		Magazines and Newspaper	03	26.2	
		ASHA Worker and Local	02	01.1	
		Bodies			

Table No.02 Frequency And Percentage Distribution Of Selected Demographic Variables of Rural Area

RESULTS

The result of this indicates that there was a significant increase in the Post-test knowledge scores compared to Pretest scores of knowledge regarding prevention of swine flu among rural area people in Indore City. The mean and SD Knowledge score were observed 6.51 ± 3.05 in the pre-test and after administration of structured Teaching Program the post-post mean and SD was observed with 14.08 ± 3.89 and mean differences is 7.68.

CONCLUSION

Based upon the analysis and interpretation of data we can conclude that there is statistically significant difference in the pre-test and Pre-test knowledge and attitude score Hence, the Hypothesis.

 H_{A1} : There will be significant association between the pretest knowledge of rural area people regarding swine flu prevention with difference between pretest and posttest Knowledge scores regarding prevention of swine flu among in rural area in Indore city is Being **accepted**.

Also, the hypothesis, H_{A_2} - There is significant association between the pretest knowledge of rural area people regarding swine flu prevention with selected demographic variables.

is being accepted here as all the demographic variable accept type of family is insignificant".

From the above results, we can conclude that there were a statistical significant increase in knowledge among the rural area people regarding prevention from swine flu. Thus, the intervention planned teaching programme was effective for improving knowledge.

LIMITATION

- The present study consists of living in selected rural area of Indore.
- The present study only comprises of 60 rural area people
- The data collection of present study was carried for a stipulated 20 days

REFERENCES

Akhil Kumar Srivastav, Mini Ghosh (2016), Modeling and analysis of the symptomatic and asymptomatic infections of swine flu with optimal control, Modelling Earth and environment, 2, pages1–9(2016).

² Anupam Mukherjee, Tapasi Roy, Anurodh S (2010), Prevalence and epidemiology of pandemic H1N1 strains in hospitals of Eastern India, Journal of Public Health andEpidemiology, Vol. 2(7), pp. 171-174.

3. B Dwivedi, J Sabat, SDixit, S Rathore, S Subhadra (2019), Epidemiological and clinical profile of Influenza A(H1N1) pdm09 in Odisha, eastern India, Heliyon , 5(10): e02639.