
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22833 | Page 1

A SURVEY ON CHANGE DETECTION IN HIERARCHICAL DATA

STRUCTURES FOR DATA WAREHOUSES

B Chirag Baliga1, Uday A S, Dr. Rashmi R3

Information Science and Engineering, RV College of Engineering®, Bengaluru

---***---

Abstract: Change detection algorithms play a crucial role in

data warehousing applications, where efficiently identifying

and tracking differences between data structures is essential.

This paper presents a comprehensive review of existing

change detection algorithms, focusing on their methodologies,

assumptions, and performance characteristics in the context

of data warehouse environments. The review emphasizes the

applicability and results of these algorithms considering

factors such as matching accuracy, handling of moved

subtrees, support for subtree deletion, and overall

effectiveness in capturing changes. Experimental evaluations

and comparative analyses are conducted to assess the

performance of the algorithms. Some other applications such

as web publishing, query systems, and database management,

version and configuration management are also discussed.

The findings of this review provide valuable insights into the

state-of-the-art change detection algorithms, enabling

researchers and practitioners in the field of data warehousing

to make informed decisions when selecting and implementing

change detection solutions.

Keywords: Change detection, XML, hierarchically

structured data, data warehouse, version management,

similarity search, tree edit distance, tree edit script

I. INTRODUCTION

In today's information-rich world, where data is constantly

evolving and being updated, change detection within existing

data is of utmost importance to track modifications and

perform necessary actions. Whether it is monitoring updates

in a web application, tracking modifications in a database, or

synchronizing data across different systems, being able to

identify and understand the changes within hierarchical

structures is crucial. By comparing two files in formats such

as XML, it becomes possible to detect insertions, deletions,

and modifications of elements, attributes, and their values.

This enables efficient tracking and management of changes,

ensuring data integrity and consistency.

At its core, change detection involves the comparison of two

or more data structures to identify added, deleted, or modified

elements. The data structures can range from simple text

documents to complex hierarchical data representations such

as XML or JSON. The primary objective of change detection

algorithms is to generate an edit script or a set of operations

that succinctly describes the transformations required to

transform one data structure into another. Hierarchically

structured data are commonly utilized to store configuration

settings, specifications, and other critical information related

to software systems. By comparing different versions of XML

files, it becomes possible to detect changes in configurations,

allowing for the identification of discrepancies and conflicts.

This enables efficient management of software versions and

configurations, facilitating seamless deployment,

troubleshooting, and maintenance.

One of the key challenges in change detection is handling

large datasets efficiently. As the size of the datasets increases,

the computational complexity of the algorithms becomes a

crucial factor. Several algorithms address this challenge by

employing optimized data structures, indexing techniques, and

parallel processing to improve runtime performance and

scalability. This review aims to serve as a valuable resource

for researchers and practitioners in the field, facilitating the

exploration and advancement of techniques for effective

analysis and comparison of hierarchically structured data.

II. REVIEW OF ALGORITHMS

The basic algorithms which are typically used in change

detection are discussed in [11]. The paper mostly focuses on

Outer Join Algorithms, optimization using compression

and the Window algorithm.

The basic sort merge algorithm takes advantage of the

sorted order by making an optimization; when two records are

being matched, the record with the smaller key is guaranteed

to have no matching records. If the algorithm is executed as

part of a differential process (where changes are detected

between snapshots), it is possible to save the sorted file from

the previous snapshot. This way, only the second file needs to

be sorted. The second file (F2) can be sorted using the

multiway merge-sort algorithm, which constructs runs

(sequences of blocks) with sorted records. After several

passes, the file is partitioned into progressively longer runs

until there is only one run left. The complexity and IO cost of

the basic sort merge join algorithm depend on the size of the

input files and the available memory. In general, it takes

approximately 2 * |F1| * logM1|F1| IO operations to sort a file

of size F1. However, if enough memory is available (M12 >

|F1|), the sorting can be done in 4 * |F1| operations (using two

passes). The second phase of the algorithm, involving

scanning and merging the two sorted files, requires |F1| + 5 *

|F2| IO operations.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22833 | Page 2

The partitioned hash join algorithm partitions the input files

into buckets using a hash function applied to the join attribute.

The steps of this algorithm are as follows:

1. The input files are divided into multiple buckets

based on the hash values of the join attribute.

2. Records from the buckets with the same hash value

are compared to find matches.

3. The algorithm considers each pair of records from

the matching buckets and produces the desired join

results.

This algorithm offers advantages in terms of parallelism and

reducing the need for sorting. However, the specific details of

the algorithm's implementation and its IO cost are not

provided in the given text. A detailed discussion of the

partitioned hash algorithm is given where they show that the

IO cost incurred is |F1| + 3 * |F2|.

The Window Algorithm assumes that matching records are

physically close to each other in the files. While the matching

records may not be in the same position due to possible

reorganizations at the source, it is expected that they would

still be within a relatively small area, such as a track. File

reorganization algorithms typically rearrange records within a

physical sub-unit, leading to this expectation. The algorithm

takes advantage of this assumption and the increasing capacity

of main memory. It maintains a moving window of records in

memory for each snapshot. Only the records within the

window are compared, with the hope that the matching

records will occur within the window. Unmatched records are

reported as either inserts or deletes, which may occasionally

result in useless delete-insert pairs. However, it is stated that a

small number of such pairs can be tolerated. To implement the

window algorithm, the available memory is divided into four

distinct parts: input buffers and aging buffers for each

snapshot. The input buffer is responsible for transferring

blocks from disk, while the aging buffer serves as the moving

window mentioned earlier. Since the files are read through

only once, the IO cost for the window algorithm is only |Fl| +

|F2| regardless of snapshot size, memory size and number of

updates. Thus the window algorithm achieves the optimal IO

performance among the other algorithms in [11].

In the paper [12], the same authors proposed yet another

algorithm, MH-DIFF for change detection in two hierarchical

structure snapshots such as trees. This algorithm gives the

changes in a descriptive way with more complex operations,

unlike previous counterparts, which give it as a sequence of

simple insert and delete operations, which do not convey an

intuitive understanding of the changes. The algorithm works

by first creating a hash table of the nodes in the tree. The hash

table is used to quickly find the nodes that have changed since

the last time the tree was checked. The algorithm then uses a

series of heuristics to determine the type of change that has

occurred. The heuristics are based on the following.

1. The number of nodes that have changed.

2. The location of the nodes that have changed.

3. The values of the nodes that have changed.

The complexity of the MH-Diff algorithm is O(ND), where N

is the number of nodes in the tree and D is the depth of the

tree. The O(ND) complexity is due to the fact that the

algorithm has to create a hash table of all the nodes in the tree,

and then it has to compare the hash table of the old tree to the

hash table of the new tree. The O(ND) complexity can be

reduced by using a more efficient data structure to store the

nodes in the tree, such as a balanced binary tree.

The paper in [15] discusses the RWS-Diff algorithm, which

uses random walks similarity (RWS) measure to find similar

subtrees rapidly. It is able to compute a cost-minimal edit

script in log-linear time while having the robustness of a

similarity based approach. This algorithm involves the

following steps:

1. Simple Matching Step: This initial step attempts to

identify obvious common structures in both versions

of the tree. The nodes that are successfully mapped

in this step are excluded from further matching steps,

leading to improved efficiency.

2. Construction of Feature Vectors: For the unmapped

subtrees in both trees, fixed-length feature vectors

are created. These feature vectors serve as

representations of the subtrees and exhibit similarity

if the subtrees themselves are similar. The similarity

measure used is the squared Euclidean distance

between the feature vectors.

3. Index Structures for Nearest Neighbors Queries: In

this step, appropriate index structures are constructed

to facilitate nearest neighbors queries among the

feature vectors. These index structures help in

efficiently identifying potential candidates for

mapping based on similarity.

4. Mapping of Unmapped Subtrees: Using the

constructed index structures, previously unmapped

subtrees are mapped by searching for possible

candidates through nearest neighbors queries. This

step aims to find similar subtrees in the two versions

of the tree and establish corresponding mappings.

5. Generation of the Edit Script: Finally, based on the

edit mapping obtained from the previous steps, an

edit script is generated. The edit script represents the

operations required to transform one version of the

tree into another. The goal is to create an edit script

that minimizes the overall cost of the required edits.

The generation of random walk feature vectors for all subtrees

in a tree has a complexity of O(n), where n represents the

number of nodes in the tree. Since there can be O(n) subtrees

in both trees that need to be mapped, mapping one subtree

may only require O(log n) operations. The nearest neighbors

lookup in the index structures typically has a complexity of

O(log n). The index structures are adjusted to ensure worst-

case O(log n) behavior by sacrificing some approximation

quality in extreme cases. This means that a single RWS

mapping operation remains within O(log n) complexity.

Insertions or lookups in the mapping 'M' are also in O(1) since

dense integers can be assigned to each node in tree B, and 'M'

can be implemented as an array indexed by these integers.

Finally, the edit script generation loops only twice over both

trees, resulting in an overall complexity of O(n). This meets

the desired complexity bound of O(n log n) for the entire

RWS-Diff algorithm.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22833 | Page 3

[13] discusses the KF-Diff+ algorithm, which is specifically

tailored for XML documents where each node has a unique

key among its siblings. In this scenario, KF-Diff+ allows

move operations only between nodes with the same parent,

and it can compute the diff in linear time, O(n), where n is the

size of the input. [18] proposed the XyDiff algorithm that does

not rely on strong assumptions about the XML document

structure. It utilizes tree hashes that are invariant to the sibling

order, enabling efficient identification and mapping of moved

subtrees. XyDiff first maps the moved subtrees and then

proceeds to map nodes in the vicinity of these mapped

subtrees. The overall runtime complexity of XyDiff is O(n log

n), where n is the size of the input. XyDiff has shown good

performance when there are large unchanged subtrees in the

XML documents.

These algorithms have their implementations in programming

languages like Python and Java as described in TABLE 1. The

Javascript implementations are often used to evaluate change

in DOM structure of web pages.

 TABLE 1. Implementation

of some algorithms

III. IMPLEMENTATION USING XML DATA

 XML, the widely adopted eXtensible Markup

Language, has emerged as the de facto standard for document

publishing and transport on the web.. Given the dynamic

nature of online information, there arises a need for a tool that

can effectively detect changes in XML documents. Efficient

operation of this tool becomes paramount, especially when

handling large volumes of evolving documents. Efficient

operation of this tool becomes paramount, especially when

handling large volumes of evolving documents. To illustrate

the significance of such a tool, [1] introduced a scenario

where a parent intends to purchase books for their children

from an online auction site, relying on a search engine

equipped with this change-detection capability. During the

parent's initial visit, a list of currently available books and

their associated information is obtained. Two hours later,

when the search engine retrieves updated data, the change-

detection tool comes into play to discern the alterations that

have occurred during this time frame. Firstly, the tool

determines whether the two versions are identical or not. If

disparities exist, it proceeds to match each book segment in

the previous version with those in the new version, discerning

which books are still available, which have been sold, and

which ones are newly listed. Despite the change in the

ordering of the two books, both of them remain available in

this example.

 For each book that is still available, the change-

detection tool further analyzes the modifications made to the

associated information. The tool would notify the consumer

that there are now two fewer hours remaining to submit a bid

for both books. Specifically, the Harry Potter book currently

has a bid price of $10, with Mark as the bidder, who possesses

a rating of 125. As for the Tom Sawyer book, it currently

stands at a bid price of $4.50, and there have been no changes

in the bidder's identity. The paper also introduces an algorithm

called X-diff for computing the differences between two

versions of an XML document.

The key features of the algorithms are:

1. XML Structure Information: X-Diff introduces the

notion of node signature and a new matching between

the (XML) trees corresponding to the two versions of a

document. Together, these two features are used to find

the minimum-cost matching and generate a minimum-

cost edit script that is capable of transforming the

original version of the document to the new version.

2. Unordered Trees: Since XML documents can be

represented as trees, the change detection problem is

related to the problem of change detection on trees. For

database applications of XML the authors believe that

the unordered tree model is more important. Thus, X-

Diff is designed to handle unordered tree representations

of XML documents.

3. High Performance: Change detection on unordered trees

is substantially harder than that on ordered trees, which.

has been shown to be NP-Complete in the general case.

By exploiting certain features of XML documents, a

polynomial algorithm is presented to compute the

“optimal” difference between two XML documents.

[1] also discusses the tree representation of the XML

documents which is applied when detecting changes in them.

To create an efficient algorithm for detecting changes in XML

documents, it is essential to have a grasp of the hierarchical

structure within XML. According to the Document Object

Model (DOM) specification, an XML document can be

represented as a tree. The paper explores three types of nodes

found in the DOM tree: element nodes, text nodes, and

attribute nodes. Element nodes are non-leaf nodes with a

single label (name), text nodes are leaf nodes with a single

label (value), and attribute nodes are leaf nodes with two

labels (name and value). As per the DOM specification,

element and text nodes have a specific order, while attribute

nodes do not. In many cases, XML documents can be treated

as unordered trees, where only the relationships between

ancestors matter, and the left-to-right order among siblings is

insignificant. In the X-Diff approach, the focus is on detecting

changes in unordered trees. Most correction methods designed

for ordered tree-to-tree comparisons are not suitable for

unordered trees because their accuracy usually relies on

preserving the left-to-right order when matching nodes. Two

trees are considered isomorphic if they are identical except for

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22833 | Page 4

the arrangement of siblings. In X-Diff, equivalence between

two trees is determined based on their isomorphism.

FIGURE 1. Two sample XML documents

FIGURE 2. Tree representation of the documents in Figure 1

 [2] utilized an example in configuration

management, consider the correlation of data stored in an

architect’s database with data stored in an electrician’s

database, where both databases are for the same building

project. For autonomy reasons, the databases are updated

independently. However, periodic consistent configurations of

the entire design must be produced. This can be done by

computing the deltas with respect to the last configuration and

highlighting any conflicts that have arisen.

The work on change detection reported in the paper has four

key characteristics:

1. Nested Information: The paper’s focus was on

hierarchical information, not “flat” information. With

flat information deltas may be represented simply as sets

of tuples or records inserted into, deleted from, and

updated in relations. In hierarchical information, we

want to identify changes not just to the “nodes” in the

data, but also to their relationships. For example, if a

node (and its children) is moved from one location to

another, we would like this to be represented as a

“move” operation in the delta.

2. Object Identifiers Not Assumed: For maximum

generality the authors do not assume the existence of

identifiers or keys that uniquely match information

fragments across versions. For example, to compare

structured documents, we must rely on values only since

sentences or paragraphs do not come with identifying

keys. Similarly, objects in two different design

configurations may have to be compared by their

contents, since object-ids may not be valid across

versions.

3. Old, New Version Comparison: Although some database

systems—particularly active database systems—build

change detection facilities into the system itself, the

paper focuses on the problem of detecting changes given

old and new versions of the data. They believe that a

common scenario for change detection—especially for

applications such as data warehousing, or querying and

browsing over changes—involves “uncooperative”

legacy databases (or other data management systems),

where the best one can hope for is a sequence of data

snapshots or “dumps”.

4. High Performance: The goal was to develop high

performance algorithms that exploit features common to

many applications and can be used on very large

structures. In particular, present algorithms that always

find the most “compact” deltas, but are expensive to run,

especially for large structures. (The running time is at

least quadratic in the number of objects in each structure

compared. The properties of these algorithms are

described in more detail in Section II.) The algorithms

discussed in the paper are significantly more efficient

(intuitively, our running time is proportional to the

number of objects times the number of changes), but

may sometimes find non-minimal, although still correct,

deltas.

IV. EXPECTED OUTCOMES AND CONCLUSIONS

We have examined and compared several change detection

algorithms, each offering unique approaches and features for

identifying and analyzing differences within data structures.

The reviewed algorithms, including KF-Diff+, XyDiff, RWS-

Diff, and the basic sort merge join algorithm, have

demonstrated their effectiveness in various applications and

domains.

The KF-Diff+ algorithm showcases its suitability for XML

documents with unique node keys, allowing efficient

computation of diffs with move operations. However, its

applicability is limited to specific types of data structures that

adhere to the key uniqueness constraint. XyDiff stands out as

an algorithm that operates without strong assumptions and

runs in less than quadratic time. By utilizing tree hashes

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22833 | Page 5

invariant to sibling order, XyDiff efficiently detects and maps

moved subtrees. The algorithm's ability to handle large

unchanged subtrees contributes to its overall performance and

produces smaller edit scripts. RWS-Diff introduces an

elaborate similarity measure and a five-step process for

constructing approximate cost-minimal edit mappings. With

its focus on finding better mappings than previous approaches,

RWS-Diff demonstrates improved accuracy and results.

Furthermore, it supports subtree deletion, enabling the

removal of surplus data from one of the trees. The basic sort

merge join algorithm, although not specifically designed for

change detection, serves as a foundational method for

comparing and identifying differences between data

structures. It excels in scenarios where the data is sorted and

requires a straightforward comparison.

Comparing these algorithms, we observe that they vary in

their assumptions, computational complexity, runtime

performance, and capabilities. Each algorithm caters to

specific data structures, optimization goals, and domain

requirements. Researchers and practitioners should carefully

consider these factors when selecting an algorithm for their

applications. While some algorithms achieve better runtime

performance or handle specific constraints, such as unique

keys or sibling order invariance, others offer more advanced

features like semantic change detection or support for subtree

deletion. The choice of algorithm should align with the

specific needs of the application, considering factors such as

dataset size, complexity, the presence of semantic changes,

and desired accuracy.

Further research and development in change detection

algorithms continue to address the evolving demands of data-

intensive applications. By considering the strengths and

limitations of existing algorithms, we can pave the way for

improved techniques that provide faster, more accurate, and

scalable solutions for change detection in various domains and

applications.

V. REFERENCES

[1] Y. Wang, D. J. DeWitt and J. . -Y. Cai, "X-Diff: an

effective change detection algorithm for XML documents,"

Proceedings 19th International Conference on Data

Engineering (Cat. No.03CH37405), Bangalore, India, 2003,

pp. 519-530.

[2] Chawathe, S.S. et al. (2005) “Change detection in

hierarchically structured information,” ACM SIGMOD

Record, 25(2).

[3] Bertino, E., Guerrini, G. and Mesiti, M. (2004) “A

matching algorithm for measuring the structural similarity

between an XML document and a DTD and its applications,”

Information Systems, 29(1), pp. 23–46.

[4] Haw, S.C. and Rao, G.S. (2007) “A comparative study and

benchmarking on XML parsers,” The 9th International

Conference on Advanced Communication Technology

[Preprint].

[5] S. Abiteboul, S. Cluet, and T. Milo. A database interface

for file update. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, 1995.

[6] H.C. Howard, A.M. Keller, A. Gupta, K. Krishnamurthy,

K.H. Law, P.M. Teicholz, S. Tiwari, and J. Ullman. Versions,

configurations, and constraints in CEDB. CIFE Working

Paper 31, Center for Integrated Facilities Engineering,

Stanford University, April 1994.

[7] J. Widom and J. Ullman. C3: Changes, consistency, and

configurations in heterogeneous distributed information

systems. Unpublished project description, available through

the URL http://www-db.stanford.edu/c3/synopsis.html, 1996.

[8] C. M. Hoffmann, M. J. O’Donnell, “Pattern Matching in

Trees”, Journal of the ACM, 29: 68-95, 1982.

[9] J. Clark, S. DeRose, et al., “XML Path Language (Xpath)

Version 1.0”, November 2008

[10] S. S. Chawathe, S. Abiteboul, and J. Widom.

Representing and querying changes in semistructured data. In

ICDE, 1998.

[11] Labio, Wilburt and Hector Garcia-Molina. “Efficient

Snapshot Differential Algorithms for Data Warehousing.”

Very Large Data Bases Conference (1996).

[12] Sudarshan S Chawathe and Hector Garcia-Molina 1997,

Meaningful change detection in structured data, ACM

SIGMOD Record 26, 2 (1997)

[13] H. Xu, Q. Wu, H. Wang, G. Yang, and Y. Jia. KF-Diff+:

Highly efficient change detection algorithm for XML

documents. In ODBASE, 2002.

[14] R. Yang, P. Kalnis, and A. K. H. Tung. Similarity

evaluation on tree-structured data. In SIGMOD, 2005.

[15] Finis, Jan & Raiber, Martin & Augsten, Nikolaus &

Brunel, Robert & Kemper, Alfons & Färber, Franz. (2013).

RWS-Diff: Flexible and efficient change detection in

hierarchical data. International Conference on Information and

Knowledge Management, Proceedings. 339-348.

[16] N. Augsten, M. B¨ohlen, and J. Gamper. The pq-gram

distance between ordered labeled trees. TODS, 35(1), 2005.

[17] K. Zhang and D. Shasha. Simple fast algorithms for the

editing distance between trees and related problems. SIAM J.

of Computing, 18(6), 1989

[18] A Marian, S Abiteboul, G Cobéna, L Mignet, Change-

Centric Management of Versions in an XML Warehouse,

VLDB 2001.

[19] K. Zhang and T. Jiang. Some MAX SNP-hard results

concerning unordered labeled trees. IPL, 49(5), 1994.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 07 Issue: 05 | May - 2023 SJIF 2023: 8.176 ISSN: 2582-3930

© 2023, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM22833 | Page 6

[20] D. Barnard, G. Clarke, and N. Duncan. Tree-to-tree

correction for document trees. Technical report, Queen’s

University, Kingston, 1995.

[21] J. S. Beis and D. G. Lowe. Shape indexing using

approximate nearest-neighbor search in high-dimensional

spaces. In CVPR, 1997.

[22] L. Boyer, A. Habrard, and M. Sebban. Learning metrics

between tree structured data: Application to image

recognition. In ECML, 2007

http://www.ijsrem.com/

