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Abstract

Federated Learning (FL) enables decentralized model training across edge devices while keeping raw data local,
thereby enhancing privacy and reducing communication costs. However, theoretical challenges remain: reconciling
model utility with formal privacy guarantees, mitigating communication and computation overheads, and ensuring
robustness against adversarial participants. This paper presents a conceptual comparative study of prominent privacy
mechanisms (differential privacy, secure aggregation, homomorphic encryption, and trusted execution environments)
and optimization techniques (client selection, quantization and compression, adaptive learning, and personalization
strategies) used in federated settings. Focusing exclusively on theoretical properties, we analyze the assumptions,
security models, computational complexity, communication trade-offs, and utility-privacy relationships for each
method. The goal is to provide a principled, design-oriented framework guiding researchers and practitioners for
deploying FL in resource-constrained and privacy-sensitive environments.
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1. Introduction

Federated Learning (FL) is a distributed paradigm where multiple clients collaboratively train a global model under the
orchestration of a central server, without sharing raw local data. FL is particularly suitable for edge Al applications
(mobile devices, loT sensors, healthcare wearables) where data privacy, bandwidth constraints, and heterogeneity are
primary concerns.

Despite wide interest and numerous empirical studies, the theoretical landscape of FL remains nuanced. Implementing
privacy mechanisms introduces trade- offs between model utility and formal privacy guarantees; optimizing
communication reduces bandwidth use but may affect convergence; personalization improves local performance but
complicates aggregation. This paper presents a conceptual comparison of privacy-preserving mechanisms and
optimization strategies in FL, emphasizing theoretical properties and trade-offs rather than empirical benchmarks.

2. Literature Review

Federated Learning was popularized by McMahan et al. (2017) with the FederatedAveraging (FedAvg) algorithm,
laying the groundwork for collaborative training with periodic aggregation of client-updated model weights.
Subsequent work expanded FL to handle system and statistical heterogeneity, communication constraints, and privacy
considerations.
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Privacy in FL has been addressed via several theoretical frameworks:

o Differential Privacy (DP): Originating in the database literature (Dwork et al.), DP provides provable privacy
bounds by adding calibrated noise to model updates. Abadi et al. extended DP to deep learning via the moments
accountant. In FL, DP can be implemented locally (LDP) or centrally (global DP), each with differing theoretical
utility costs.

Global (population-weighted) objective — to reference throughout:
F(0) =i=1)piFi(0), Y pi=1.
(g, 0)-Differential Privacy definition (use when defining DP formally):
Pr[IM(D)€S] < eePr[M(D")€S] + 6

for all neighbouring datasets D, D’ and measurable sets SSS.

. Secure Aggregation (SA): Protocols such as Bonawitz et al. (2017) enable a server to compute the sum of client
updates without learning individual contributions, assuming honest-but-curious servers. SA has provable
confidentiality properties under certain adversarial models.

o Homomorphic Encryption (HE): HE allows computation on encrypted data; in FL, HE can enable encrypted
aggregation of client updates with provable cryptographic guarantees but at high computation and communication
costs.

. Trusted Execution Environments (TEEs): TEEs (e.g., Intel SGX) provide hardware-enforced isolated
computation areas. TEEs reduce cryptographic overhead but rely on hardware trust assumptions and may have limited
scalability.

Optimization strategies focus on reducing communication overhead and improving convergence:

. Client Selection and Partial Participation: Theoretical studies (e.g., Li et al.) model the convergence behavior
under partial participation, showing that careful sampling can preserve convergence rates under certain assumptions.
o Compression and Quantization: Theoretical analyses of quantized stochastic gradient descent quantify bias and

variance introduced by compression schemes, guiding compression ratios that maintain convergence guarantees.
Stochastic compression operator C(-)— bounded variance model (commonly used in theoretical analyses):

E[C(g)]=g, E||IC(e)-¢’| < ollgl?,
where ®>0 denotes relative variance introduced by compression (e.g., for top-k or randomized quantization).

Effect on convergence (sketch):
If local gradients have variance bounded by c,> , compressed updates add variance ollg|l*, so an error term appears:

Convergence error ~ O(1/T) + O(w/T) + O (o)
. Adaptive Optimization & Personalization: Methods like FedProx introduce proximal terms to handle

heterogeneity, while theoretical personalization frameworks model multi-task objectives balancing global and local
loss.

This literature provides the theoretical building blocks we synthesize below.
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3. Theoretical Framework

We establish a conceptual framework for comparing privacy mechanisms and optimization techniques in FL. Consider
N clients with local data distributions D _i and local loss functions F_i(\theta). The global objective is to minimize
the population-weighted loss F(\theta) = \sum_{i=1}"N p i F i(\theta), where p i corresponds to client weight (e.g.,
proportional to dataset size)

Key theoretical axes for comparison:

o Privacy Guarantee Model: Formal definition (g,6)-DP, cryptographic semantic security, or hardware-rooted

confidentiality.

o Threat Model: Honest-but-curious server, Byzantine (malicious) clients, or colluding clients and server.

o Utility Impact: How the method affects convergence rates, bias, variance, and final model accuracy in theory.

o Communication Complexity: The additional bits transferred per round due to privacy/optimization mechanism.
o Computation Overhead: Local and server-side computational complexity added by privacy/optimization tools.

. Scalability & Practical Assumptions: Scalability to large number of clients and realistic hardware assumptions
(TEEs available?).

This multi-dimensional framework allows principled discussion without experimental data.

4. Privacy Mechanisms — Theoretical Analysis

4.1 Differential Privacy (DP)

Definition & Types: DP ensures that the inclusion or exclusion of a single data point changes output distributions only
slightly. In FL, local DP (LDP) adds noise at the client before sending updates; global DP adds noise at aggregation
time. Differential Privacy provides a mathematical guarantee that the output of a mechanism does not significantly
change when any single individual’s data is modified, added, or removed.

The paper explains this as:

. “DP ensures that the inclusion or exclusion of a single data point changes output distributions only slightly.
Local Differential Privacy (LDP):

. Noise is added on the client device before sending the update.
. This gives the strongest privacy because the server never sees the real gradient/local update.

Global (Central) Differential Privacy (GDP):

. Clients send true updates.

. Noise is added after aggregation at the server.

. Provides moderate privacy and better accuracy than LDP.

. However, requires:

o a trusted aggregator or

o a privacy-preserving tool like secure aggregation or homomorphic encryption to hide individual
updates.
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Theoretical Properties:

o Utility-Privacy Trade-off: Adding noise increases variance of updates; under convex assumptions, convergence
rate may degrade from O(1/T) to O(1/T) + O(c¢?).
Signal-to-noise ratio (SNR) for DP-noised gradients:

SNR=Var(signal)/ 6>

2 is DP noise variance. Low SNR = learning degrades — useful when discussing when LDP becomes

where o
infeasible.

Formal Privacy Guarantee (g, 6)-DP
DP provides a mathematically quantifiable privacy guarantee.
A mechanism is (g,8) -DP if changing one user’s data modifies the output distribution only by a bounded factor e plus
a small probability 3.

o Composition & Amplification: Iterative updates require careful accounting; privacy loss composes across
rounds. Because only a small subset of clients participate each round:

. Each user contributes with probability qqq
. This reduces the effective privacy loss (& becomes smaller)

This is a powerful theoretical property unique to FL.

o Threat Model: DP defends against reconstruction and inference attacks assuming adversary only sees noisy
outputs.
o Limitations: For stringent €, noise may render learning ineffective. Local DP is particularly costly in utility.

Differential Privacy suffers from several theoretical limitations. Strong privacy budgets require large amounts of noise,
substantially degrading model utility—especially in Local DP. Privacy loss accumulates across training rounds,
demanding careful composition accounting. The added noise increases gradient variance, slowing convergence and
creating a utility floor. DP theory is well-developed for convex problems but remains loose for deep non-convex
models, limiting its reliability. Global DP requires trust in the server or additional cryptographic mechanisms such as
Secure Aggregation or Homomorphic Encryption. Collectively, these limitations make DP challenging to deploy in
resource-constrained, high-accuracy federated learning settings.

42 Secure Aggregation (SA)

Definition: Secure Aggregation (SA) is a cryptographic protocol that ensures the server can recover only the sum of
client updates, while each individual update remains hidden through masking. Under the honest-but-curious server
model and non-colluding clients, SA offers information-theoretic confidentiality of local updates without adding
noise.

Theoretical Properties:

Confidentiality: Under honest-but-curious server model and non-colluding clients, SA ensures information-theoretic
secrecy of individual updates. SA guarantees that the server can only learn the aggregated sum of client updates and
not any individual client update.

No Utility Penalty (in principle): SA does not perturb gradients, so convergence guarantees of FedAvg hold if
protocol succeeds. Theoretical convergence rate of the underlying optimization algorithm remains the same.
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Cryptographic Security Based on Masking:
Clients generate pairwise or group masks such that:

. each client's update is hidden,
. all masks cancel out in the final aggregation.

This results in information-theoretic security (for Bonawitz-style protocols) because even an unbounded adversary

cannot learn the masked values.

Overheads: Communication rounds increase due to setup and mask exchange. Complexity grows with number of
clients; worst-case setup is O(N) rounds and pairwise key exchanges.

Limitations:

1. Vulnerability to Client Dropouts
SA protocols require that all clients participating in a round complete their mask exchanges.
If a client drops out:

. its masks may not cancel,
. the server cannot recover the aggregate sum,
. the entire aggregation round may fail.

Dropout-resilient versions exist but add significant complexity.

2. Collusion Breaks Security Assumptions
SA assumes:

. The server is honest-but-curious.
. Clients do not collude with the server.

If even a few clients collude with the server, they can reveal random masks or partial secrets, allowing the server to
infer individual client updates.Thus, SA is weaker than DP with respect to adversarial models.

3. High Communication and Setup Overhead

Implications:

. Mask generation and key exchange introduce multiple setup messages.

. Large numbers of clients — heavy communication cost.

. Pairwise key sharing may scale as O(N?) making SA difficult for massive FL deployments.

4. Complexity Increases with Number of Clients
SA’s computational and communication complexity grows with client count.
Theoretical impact:

. Large-scale federated networks (e.g., 10,000 devices) may experience long delays.
. More clients — more masking keys — more rounds.
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This limits scalability.

5. No Protection Against Malicious Server Tampering (Beyond Curious)

The SA threat model assumes an honest-but-curious server.

Limitation:

If the server is malicious—attempting to tamper with or modify protocol messages—standard SA does not guarantee
integrity.

Additional cryptographic tools (signatures, verifiable aggregation) are needed.

6. Not Resilient to Sybil Attacks

Because SA relies on non-collusion:

. An adversary controlling many fake clients (Sybil nodes) can weaken privacy guarantees.
. This is outside the theoretical protection model of SA.

7. Does Not Provide Semantic Privacy Like DP
[ SA prevents data visibility but does not add noise.

43 Homomorphic Encryption (HE)

Definition: Homomorphic Encryption (HE) is a cryptographic technique that allows computations to be performed
directly on encrypted data without requiring decryption. In the context of Federated Learning, clients encrypt their
local model updates, and the server aggregates these encrypted updates using the homomorphic property. The server
obtains an encrypted aggregate, which can be decrypted only with the appropriate key, ensuring that individual client
updates remain confidential throughout the process.

Theoretical Properties:
Strong Cryptographic Guarantees: Semantic security ensures that encrypted client updates reveal no information
about the underlying data—even to a computationally bounded adversary.

The server cannot distinguish between the ciphertexts corresponding to different plaintext updates.

This provides a much stronger confidentiality guarantee than Secure Aggregation, because it does not rely on a
trust model or mask cancellation.

Arithmetic on Ciphertexts (Homomorphic Property): HE allows operations like addition or multiplication without
decrypting the data.
For FL, additive HE is typically used:

Enc(x1) @ Enc(x2) = Enc(x1+x2)

This enables:

. privacy-preserving aggregation

. no information leakage to the server

. compatibility with standard FL workflows
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Computation & Communication Cost:

HE requires:

. expensive homomorphic arithmetic (e.g., modular exponentiations, polynomial arithmetic)
. large ciphertext sizes (10% to 100x larger than plaintext)

This leads to:

. high computational overhead (especially on edge devices)

. high communication bandwidth requirements

This makes HE less practical for real-time or large-scale FL deployments.

Utility: No noise-induced bias (unless combined with DP), so learning utility is preserved if resources permit.

Limitations: HE is often impractical on constrained devices due to heavy computation and bandwidth.

44 Trusted Execution Environments (TEEs)

Definition: Hardware enclaves provide isolated execution where the server can safely run aggregation code.

Theoretical Properties:

Performance: TEEs avoid cryptographic overhead, enabling near-native aggregation performance.

Trust Model: Requires trust in hardware vendor and correct enclave attestation; side-channel attacks remain a
theoretical risk.

Scalability: TEEs scale well in computation but depend on availability across server infrastructure.

Limitations: Relies on hardware trust and not a formal cryptographic proof; may be unsuitable for fully decentralized
scenarios. Trusted Execution Environments provide hardware-isolated computation but come with significant
limitations. They rely on trust in the hardware vendor and are susceptible to various microarchitectural side-channel
attacks. TEEs lack the cryptographic rigor of HE, making them vulnerable if the hardware enclave is compromised.
Their deployment is constrained by hardware availability, limited enclave memory, and scalability challenges in large
federated systems. TEEs do not address malicious client behavior and are often unsuitable for decentralized federated
learning settings. Supply-chain vulnerabilities further weaken their theoretical security guarantees.

5. Optimization Techniques — Theoretical Analysis

5.1 Client Selection & Partial Participation

In large-scale federated learning systems, it is often impractical for all clients to participate in every training round due
to communication constraints, device availability, and energy limitations. Client selection and partial participation
address this by sampling only a subset of clients in each communication round. This reduces overall bandwidth usage
and computational demand while maintaining scalability across large, heterogeneous populations of devices.
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From a theoretical standpoint, partial participation influences convergence through the statistical properties of
sampling.

Theoretical Principles
1. Unbiased Gradient Estimation

When clients are sampled uniformly or proportional to data size, the aggregated update remains an unbiased
estimator of the true global gradient. This allows standard convergence analyses to extend to the partial-participation
setting.

2. Sampling Variance

Because only a fraction of clients participate, the aggregated gradient has higher variance compared to full
participation. This variance decreases as:

. the number of selected clients increases, or
. the number of rounds increases.

Thus, partial participation introduces a stochastic error term that must be balanced with communication efficiency.

3. Scalability Benefits

By selecting only a small subset of devices each round, communication overhead per round becomes proportional to
the number of selected clients rather than the total population, enabling federated learning to scale to millions of
devices.

4. Importance of Sampling Strategies

Different strategies have theoretical effects:

. Random selection: preserves unbiasedness and ensures fairness.
. Stratified selection: reduces variance by ensuring representative client subsets.
. Priority-based selection: may favor stable or high-quality clients but could introduce bias.

52 Compression & Quantization

1. Stochastic Compression Operators

Compression is modeled using a stochastic operator C(g) applied to a gradient or model update ggg.
The operator satisfies:

E[C(g)] = g (unbiased)
and has bounded variance:

ElC(g)—glI’ < oligl?

where:
. ® measures the distortion caused by compression
. Smaller @ — higher fidelity
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. Larger O — more €Iror, slower convergence

This formulation allows gradient compression to be analyzed using standard stochastic optimization theory.

2. Convergence Under Compression
The added noise from compression increases the variance of the update, but convergence can still be guaranteed if:

. the learning rate is sufficiently small, and
. compression is unbiased or variance-controlled.

The impact on convergence typically appears as an additional error term:
O(1/T) + O(w)
where:

. the O(1/T) term is the standard rate, and
. the O(®) term captures compression-induced error.

Thus, compression introduces a trade-off between communication savings and accuracy.

3. Types of Compression

Common methods include:

¢ Quantization

Reducing numerical precision (e.g., 8-bit, 4-bit, ternary).
Pros: very low bandwidth usage.

Cons: can introduce bias without proper stochastic rounding.
* Sparsification (Top-k, Random-k)

Sending only the largest-magnitude gradient components.
Pros: large reduction in message size.

Cons: may slow convergence if too few entries are sent.

* Low-rank compression

Approximating updates with low-rank matrices.

Useful in large models with structured gradients.

4. Benefits for Federated Learning

Compression provides:

. Lower per-round communication cost
. Scalability to large models
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. Reduced energy consumption for mobile/edge clients

These are crucial for real-world FL deployment where bandwidth is limited.

5. Trade-offs

Compression improves communication efficiency but:

. increases gradient variance (),
. may reduce stability under non-1ID data,
. requires careful tuning of step sizes and compression ratios.

Therefore, selecting an appropriate compression method involves balancing accuracy and efficiency.

53 Adaptive Local Steps & Proximal Methods

Allowing multiple local SGD steps (FedAvg) reduces communication frequency but may cause divergence under
heterogeneous data. Theoretical remedies include FedProx, which adds proximal terms to control drift, leading to
improved convergence bounds under bounded heterogeneity. Federated Learning typically relies on local stochastic
gradient descent (SGD) performed independently on each client before aggregating updates at the server. Allowing
multiple local updates per round (as in FedAvg) reduces communication frequency but can introduce instability
when client data distributions are heterogencous (non-I1ID). Adaptive local steps and proximal methods aim to
control this instability and provide improved convergence guarantees in heterogeneous environments.

1. Local Update Drift

In non-IID settings, each client’s update direction deviates from the true global gradient:

1616l o< E

where:

. EEE = number of local SGD steps

. Large EEE increases client drift, leading to divergence.

Thus, there is a fundamental trade-off:

. More local steps — less communication
. But larger risk of divergence
2. Adaptive Local Steps

Instead of fixing the number of local SGD steps, clients may adapt:

. Step count based on local data size
. Step count based on gradient norms
. Step count based on computational constraints or energy availability

Theoretical implication:

. Reducing steps for high-heterogeneity clients improves stability
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. Increasing steps for homogeneous clients improves efficiency
. Adaptive strategy balances convergence and communication cost

54 Personalization & Multi-Task Theories

Personalization frameworks cast local objectives as multi-task optimization problems. Theoretical models (e.g., meta-
learning formulations) trade global generalization for local accuracy, often improving per-client utility but
complicating aggregated convergence analysis Personalization and multi-task theories address the limitations of
training a single global model in heterogeneous federated learning settings. Clients are treated as distinct but related
tasks, each with its own objective function. Methods such as meta-learning, fine-tuning, clustered FL, and model
decomposition (shared vs. local parameters) provide personalized updates that better align with local data. Theoretical
analyses model these relationships using bounded task divergence, enabling convergence guarantees and improved
performance under non-IID distributions. Personalization mechanisms significantly enhance accuracy and stability,
especially when global FL solutions fail to generalize across diverse clients.

6. Conceptual Comparative Table

Mechanism / Privacy Utility  Impact Comm. Comp.  gcalability /

Technique Model (theory) Overhead Odverhe Notes
a
Local DP Formal (&,0) High noise — high [ o (no Low Good for strong
per-client utility loss  for crypto) privacy but poor
small ¢ utility
Global pp Formal ?fter Moderate  utility Low Low Requires  trusted
(server) aggregation  |oqq aggregator or
SA/HE
Secure Cryptograph None (if Moderate  Nfoderat Robustness to
Aggregation 1€ - SUMS gyccessful) (masking ¢ dropouts needed
only setup)
Homomorphic Cryptograph None (nonoise)  Very High Very Often impractical
Encryption ic High on MCUs
TEEs Hardware  None (nonoise)  Low Moderat Requires trusted
root of trust e hardware
Compression/ — Adds compression Low Low Trade-off tunable
Quantization bias/variance (reduced) via \omega
Client — Sampling variance Redquced  Low Good scalability
Selection affects if unbiased
convergence
Personalization — Often  improves Varies Low- Complex
local utility Moderat theoretical
e analysis

(All entries are conceptual; utility impact depends on model class, data heterogeneity, and chosen parameters.)
7. Discussion

From a theoretical standpoint, no single privacy mechanism is universally optimal. Local DP provides the strongest
client-level privacy but imposes a high utility cost unless datasets are large or noise budgets are relaxed. Secure
aggregation preserves learning utility but depends on cryptographic setup complexity and assumptions about
participant behavior. HE offers strong cryptographic guarantees without injecting noise yet is computationally heavy
and thus impractical on edge devices. TEEs represent a middle ground, delivering high performance under hardware
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trust assumptions but are vulnerable to side- channels and supply-chain threats.

Optimization techniques complement privacy mechanisms. Combining compression with SA or global DP can reduce
bandwidth while preserving privacy. Proximal methods and careful client selection mitigate the negative effects of
heterogeneity. Personalization strategies can absorb some privacy-induced utility loss by focusing on local model
adaptation.

Designing an FL system for edge Al requires a principled combination: choose privacy primitives that match
adversarial assumptions, then apply optimization techniques that preserve convergence guarantees while respecting
resource budgets.

8. Challenges and Future Research Directions

Key theoretical and practical challenges include:

Tight Utility-Privacy Bounds for Deep Models: Existing DP analyses are loose for non-convex deep learning;
deriving tighter bounds remains open.

Robust Secure Aggregation with Dropouts: Protocols must be robust to high client churn with provable security.

Lightweight Cryptography for Edge Devices: New HE schemes or hybrid cryptographic primitives tailored for
constrained hardware are needed.

Unified Theoretical Models for Heterogeneous FL: Convergence analyses that capture system heterogeneity,
statistical heterogeneity, and privacy noise in one framework are lacking.

Benchmarking and Standardization: Theoretical comparison requires standardized assumptions and formal
benchmarks (e.g., agreed threat models and noise budgets).

Federated On-Device Learning: The theory behind continual, online, and on-device learning with privacy constraints
is underdeveloped. Addressing these will deepen the theoretical foundations of FL and improve real-world
deployments.

9. Conclusion

This paper provided a theoretical comparative study of core privacy-preserving mechanisms and optimization
techniques in federated learning for edge Al. By analyzing privacy models, threat assumptions, utility trade-offs,
communication and computation overheads, and scalability, we offer principled guidance for selecting methods under
various deployment constraints. Future theoretical work must strive for tighter bounds, robust secure protocols, and
cryptographic advances compatible with edge constraints.
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