A Three-Phase Two Stage Grid Tied Solar Photo Voltaic System System with Adaptive DC Link Voltage for Common Point of Interconnection Voltage Changes. **Author1** Mr. Ghule Ashish Bhimrao PG scholar ,Mss'scet ,Jalna Author ²Prof. Seema N. Kharat Assistant Professor. Mss'scet , Jalna ashishghule93@gmail.com, kharatseema.5@gmail.com **Abstract**— This paper deals with a three-phase two-stage grid tied SPV (solar photo-voltaic) system. The first stage is a boost converter, which serves the purpose of MPPT (maximum power point tracking) and feeding the extracted solar energy to the DC link of the PV inverter, whereas the second stage is a two-level VSC (voltage source converter) serving as PV inverter which feeds power from a boost converter into the grid. The proposed system uses an adaptive DC link voltage which is made adaptive by adjusting reference DC link voltage according to CPI (common point of interconnection) voltage. The adaptive DC link voltage control helps in the reduction of switching power losses. A feed forward term for solar contribution is used to improve the dynamic response. The system is tested considering realistic grid voltage variations for under voltage and over voltage. The performance improvement is verified experimentally. The proposed system is advantageous not only in cases of frequent and sustained under voltage (as in the cases of far radial ends of Indian grid) but also in case of normal voltages at CPI. The THD (total harmonics distortion) of grid current has been found well under the limit of an **Index Terms**—Adaptive DC link, MPPT, over voltage, solar PV, two-stage, three phase, under voltage. #### I. INTRODUCTION The electrical energy has a vital role in development of human race in the last century. The diminishing conventional primary sources for electricity production have posed an energy scarcity condition in front of the world. The renewable energy sources such as solar, wind, tidal etc are few of such options which solve the problem of energy scarcity. The cost effectiveness of any technology is prime factor for its commercial success. The SPV (Solar Photovoltaic) systems have been proposed long back but the costs of solar panels have hindered the technology for long time, however the SPV systems are reaching grid parity [1], [2]. The solar energy based systems can be classified into standalone and grid interfaced systems. The energy storage (conventionally batteries) management is the key component of standalone system. Various problems related to battery energy storage standalone solar energy conversion systems are discussed in [3]–[6]. Considering the problems associated with energy storage systems, the grid interfaced systems are more preferable, in case the grid is present. The grid acts as an energy buffer, and all the generated power can be fed into the grid. Several grid interfaced SPV systems are proposed in past addressing various issues related to islanding, intermittency, modeling etc [7]–[9]. With growing power system, the attention is moving from centralized generation and radial distribution to distributed generation. The distributed generation can bring in several advantages such as reduction in losses, better utilization of distribution resources, load profile flattering etc [10]-[12]. The SPV systems provide a good choice for distributed generation system considering small scale generation from rooftop solar, modularity of power converter and static energy conversion process. The initial investment in SPV systems is high because of high cost of solar panels [13]. Therefore, considering the initial investments for any installed plant, the aim is to extract maximum energy output from the given capacity. To accomplish the objective of extraction of maximum energy from an installed PV array several techniques are proposed in the literature [14]–[18]. A review of MPPT (Maximum Power Point Tracking) techniques is shown in [14]. An incremental conductance (InC) based MPPT technique is shown in [15]. An ANN based MPPT algorithm is shown in [16]. The application of sliding mode controller to MPPT algorithm is shown in [17]. A combination of fractional open circuit voltage and fuzzy based MPPT technique is shown in [18] wherein a constant offset is added at the output of fuzzy controller to improve the MPPT performance. The incremental conductance based MPPT is fast, accurate and easy to implement. In this paper, a composite InC based MPPT method is used. The composite InC method is a combination of fractional Voc and InC IJSREM Le Jeurnal Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930 based method. The proposed MPPT technique limits the area of search for MPP point hence improves the MPPT performance. The tripping of the plant causes generation loss in case of grid tied PV generation system. In general, grid tied VSCs have under voltage and over voltage protection. The nominal range of set point for under voltage and over voltage is around 0.9 pu and 1.1 pu [19]. This range is very narrow because of reasons such as converter may lose control, increase in converter rating, and converter losses at low voltage etc. In case of weak distribution system, a wide voltage variation is observed. During peak loading condition, a sustained voltage dip or under voltage is observed commonly. The practical range of voltage variation is about $\pm 15\%$ of the nominal voltage. Normally in such wide variation of distribution system the shunt connected converter trips frequently. However, in case of tripping of converter the PV generation is lost even when PV power is available. Therefore, minimizing converter trips Fig. 1 System layout of solar PV power fed battery charging indirectly increases energy yield from the installed plant. The proposed system is capable of working with wide range of voltage variation hence avoids the generation loss. The use of two stage SPV generation system has been proposed by several researchers [20]–[23]. Conventionally a DC-DC converter is used as first stage which serves the purpose of MPPT. The duty ratio of DC-DC converter is so adjusted that PV array operates at MPP point. The second stage is a grid tied VSC (Voltage Source Converter) which feeds the power into the distribution system. A single phase two stage grid tied PV generation system with constant DC link voltage is shown in [20]. Moreover, the three phase grid tied PV generation system with constant DC link voltage control is also shown in [21], [22]. The concept of loss reduction by adaptive DC link voltage for VSC in hybrid filters is shown in [23], [24] wherein, the DC link voltage is adjusted according to reactive power requirement of filter. However, in the proposed system the DC link voltage of VSC is made adaptive with respect to CPI voltage variation. Moreover, the circuit topologies in both the systems are different. Therefore, the work presented in [23], [24] is very different from the proposed work. For proper control of VSC currents, the DC link voltage reference is set more than peak of three phase line voltages. The limitation for current control in single-phase grid connected converter is shown in [25]. Considering the variation of CPI (Common Point of Interconnection) voltage, the reference DC link voltage is kept above the maximum allowable CPI voltage. Therefore in case of fixed DC link voltage control for VSC, the system always operates at a DC link voltage corresponding to worst case condition. In this paper, a simple control scheme is presented for grid interfaced PV system with adaptive DC link voltage structure for CPI voltage variation. A boost converter is used as the first stage and a two level VSC is used as the second stage. Unlike the earlier work with constant DC link voltage for VSC, the presented work proposes an adaptive DC link voltage structure for the VSC and associated benefits. The adaptive DC link voltage mainly reduces switching losses in all power devices and high frequency ohmic losses in the interfacing inductor. The maximum benefit of proposed DC link voltage structure is found not only during under voltage (common in far radial ends) but also under nominal grid voltage condition as the DC link voltage is kept just necessary for proper current control not according to worst case scenario. The claimed benefits of the system are verified experimentally along with comparison with conventional system. Moreover, the feed-forward term for PV contribution is included to improve the dynamic response. The PV feed forward term includes the effect of both CPI voltage variation and PV power variation. A linearised model of DC link voltage control and effect of PV feed forward component on the same is also analyzed in this paper. In the proposed system both the input and output voltages of DC-DC boost converter are adjusted in real time while keeping the objective of MPPT intact. The performance of proposed control algorithmis satisfactory under insolation change and sudden variation of CPI voltage. The two stage grid interfaced three phase systems are proposed by several researchers, however, none of them have Fig. 1. System configuration. shown performance for such wide range of CPI voltage variation (350 V to 480 V for nominal of 415 V). The operation oft he system for a wide range of CPI voltage variation increases the rating of the VSC and further the cost. However, small increment in the cost of VSC can be justified on account initial investment on PV array. The THD of grid current and voltages has been found well under IEEE-519 standard(less than 5%) under all operating conditions [26]. Moreover,it Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930** should be noted that none of the ratings of the power devices are compromised in the proposed system as compared to conventional system, as in both the cases the ratings are decided based on worst case scenario. Therefore, the system with proposed control approach yields more energy output with the same hardware resources. system configuration for the proposed system is shown in Fig. 1. A two stage system is proposed for grid tied SPV system. The first stage is a DC-DC boost converter serving for MPPT and the second stage is a two-level three phase VSC. The PV array is connected at the input of the boost converterand its input voltage is controlled such that PV array deliversthe maximum power at its output terminals. The outpuof boost converter is connected to DC link of VSC. The DClink voltage of VSC is dynamically adjusted by grid tied VSC on the basis of CPI voltage. The three phase VSC consists ofthree IGBT legs. The output terminals of VSC are connected to interfacing inductors and the other end of interfacing inductorsare connected to CPI. A ripple filter is also connected at CPIto absorb high frequency switching ripples generated by the VSC. The values of various components and parameters used in simulation and experimentation are given in Appendix A. #### III. CONTROL APPROACH The basic control approach for the SPV system is shown in Fig. 2. The control of the system can be divided into two main parts, which are control of the boost converter and control of a grid tied VSC. The input voltage of a boost converter is adjusted according to MPPT algorithm and the output voltage of boost converter, which is also the DC link voltage of VSC is also kept adaptive according to CPI voltage condition. In overall, the proposed system is operated such that both the input and output voltages of boost converter are adjusted according to Fig. 2. Block diagram for control approach. sensed variables of the circuit. The boost converter feeds the power to the DC link of VSC, which then feeds that power into the three-phase grid at unity power factor with respect to CPI.A composite InC based MPPT technique is used to estimate the reference PV array voltage and a PLL-less control is proposed for the control of the VSC. The amplitude of the refrence grid currents is estimated using a PV feed forward (PVFF) term and a PI controller DC link voltage error. A set of unit vectors is estimated from grid voltages to synchronize output currents of VSC. The estimated reference grid currents are compared with sensed grid currents and a hysteresis current controller is used to generate switching logic for VSC. The detailed formulation for control algorithm is presented in the later half of this section. #### III.Results and discussion Fig. 3 shows the simulation results for different operating condition. The simulation results for change in insolation level and voltage variation at CPI are shown. The simulations are carried out in MATLAB simulink and sim power system tool box. The SPV array of 25 kW is considered for simulation study. Other system parameters are given in Appendix. A. Performance Under Sudden Change in Solar Insolation Figs. 3(a)–(b) show performance of proposed system under sudden change in insolation from 1000 W/m2 to 500 W/m2 with and without feed forward compensation respectively. Before time t=0.3 s, the system is working under steady state condition with SPV insolation at 1000 W/m2. The grid currents are balanced and sinusoidal. At time t=0.3 s, the insolation is decreased from 1000 W/m2 to 500 W/m2. The PV array current decreases due to decrease in insolation and so is the PV array power. It can be easily observed that the dynamic response for sudden change in insolation level is better for proposed system. The DC link voltage for only PI controller based system shows more deviation and longer time to settle as compared toproposed system with feed forward compensation based control approach. The system with proposed control approach soon reaches the next state and it feeds the reduced power into the grid. No appreciable effect is observed on the DC link voltage of VSC. #### B. Performance for Under Voltage Operation Fig. 3(c) shows the steady state and dynamics performance of the system for under voltage operation at CPI. Before time t = 0.35 s, the system is operating at CPI voltage of 415 V. The CPI voltage decreases from 415 to 350 V during 0.35 s to 0.4 s. The adaptive nature of DC link voltage can be observed. The DC link voltage also decreases with the decrease in CPI voltage. The grid currents are maintained balanced and sinusoidal all the time however, an increase in grid currents is observed to feed the same PV power at reduced voltage. No appreciable effect is observed on PV array voltage (vpv), PV array current (ipv), and PV array power (Ppv). Volume: 09 Issue: 08 | Aug - 2025 #### C. Performance for Over Voltage Operation Fig. 3(d) shows the steady state and dynamics performances of the system for over voltage operation at CPI. Before time $t=0.35~\rm s$, the system is operating at CPI voltage of 415 V. The CPI voltage increases from 415 to 480 V during 0.35 s to 0.4 s. The DC link voltage also increases with an increase in CPI voltage, which shows the adaptive nature of DC link voltage. The grid currents are maintained balanced and sinusoidal all the time however, a decrease in grid currents is observed to feed the same PV power at the increased voltage. No appreciable effect is observed on PV array voltage (vpv), PV arraycurrent (ipv), and PV array power (Ppv). #### VI.CONCLUSION two-stage system has been proposed for three-phase grid connected solar PV generation. A composite InC based MPPT algorithm is used for control of the boost converter. The performance of proposed system has been demonstrated for wide range of CPI voltage variation. A simple and novel adaptive DC link voltage control approach has been proposed for control of grid tied VSC. The DC link voltage is made adaptive with respect to CPI voltage which helps in reduction of losses in the system. Moreover, a PV array feed forward term is used which helps in fast dynamic response. An approximate linear model of DC link voltage control loop has been developed and analyzed considering feed forward compensation. The PV array feed forward term is so selected that it is to accommodate for change in PV power as well as for CPI voltage variation. A full voltage and considerable power level prototype has verified the proposed concept. The concept of adaptive DC link voltage has been proposed for grid tied VSC for PV application however, the same concept can be extended for all shunt connected grid interfaced devices such as, STATCOM, D-STATCOM etc. The proposed system yields increased energy output using the same hardware resources just by virtue of difference in DC link voltage control structure. The THDs of the grid currents and voltages are found less than 5% The simulation results have confirmed the feasibility of proposed control algorithm. # **APPENDIX** Parameters for simulation: Three-phase grid voltage 415 V, frequency = 50Hz, supply inductance = 2.42mH and supply resistance = 0.76Ω , interfacing inductor = 4mH, ripple filter R = 5Ω , C = 5μ F, Kp = 1, Ki = 21, PV array open circuit voltage: 500 V, PV array short circuit current: 70 A, PV array peak power: 25 kW, $\mu = 1.1$. ## **V.References** SJIF Rating: 8.586 [1] M. Pavan and V. Lughi, "Grid parity in the Italian commercial and ISSN: 2582-3930 industrial electricity market," in Proc. Int. Conf. Clean Elect. Power (ICCEP'13), 2013, pp. 332–335. [2] M. Delfanti, V. Olivieri, B. Erkut, and G. A. Turturro, "Reaching PV grid parity: LCOE analysis for the Italian framework," in Proc. 22nd Int. Conf. Exhib. Elect. Distrib. (CIRED'13), 2013, pp. 1–4. [3] H.Wang and D. Zhang, "The stand-alone PV generation system with parallel battery charger," in Proc. Int. Conf. Elect. Control Eng. (ICECE'10), 2010, pp. 4450-4453. [4] M. Kolhe, "Techno-economic optimum sizing of a standalone solar photovoltaic system," IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 511-519, Jun. 2009. [5] D. Debnath and K. Chatterjee, "A two stage solar photovoltaic based stand alone scheme having battery as energy storage element for rural deployment," IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4148–4157, Jul. 2015. [6] S. Krithiga and N. G. Ammasai Gounden, "Power electronic configuration for the operation of PV system in combined grid-connected and stand-alone modes," IET Power Electron., vol. 7, no. 3, pp. 640–647. 2014. [7] I. J. Balaguer-Álvarez and E. I. Ortiz-Rivera, "Survey of distributed generation islanding detection methods," IEEE Latin Amer. Trans., vol. 8, no. 5, pp. 565–570, Sep. 2010. [8] C. A. Hill, M. C. Such, D. Chen, J. Gonzalez, and W. M. Grady, "Battery energy storage for enabling integration of distributed solar power generation," IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 850–857, Jun. 2012 [9] W. Xiao, F. F. Edwin, G. Spagnuolo, and J. Jatskevich, "Efficient approaches for modeling and simulating photovoltaic power systems." IEEE J. Photovoltaics, vol. 3, no. 1, pp. 500-508, Jan. 2013. [10] P. Chiradeja, "Benefit of distributed generation: A line loss reduction analysis," in Proc. IEEE/PES Transmiss. Distrib. Conf. Exhib.: Asia Pac., Volume: 09 Issue: 08 | Aug - 2025 2005, pp. 1-5. [11] A. Yadav and L. Srivastava, "Optimal placement of distributed generation: An overview and key issues," in Proc. Int. Conf. Power Signals Control Comput. (EPSCICON'14), 2014, pp. 1-6. [12] K. A. Joshi and N. M. Pindoriya, "Impact investigation of rooftop Solar PV system: A case study in India," in Proc. 3rd IEEE PES Int. Conf. Exhib. Innovative Smart Grid Technol. (ISGT Europe), 2012, pp. 1–8. [13] E. Drury, T. Jenkin, D. Jordan, and R. Margolis, "Photovoltaic investment risk and uncertainty for residential customers," IEEE J. Photovoltaics, vol. 4, no. 1, pp. 278-284, Jan. 2014. # ACKNOWLEDGMENT I am greatly indebted forever to my guide Prof. Seema N. Kharat and HOD K. Chandra Obula Reddy and to all teaching and non teaching staff who supported me directly and indirectly to complete my work. I am sincerely thankful to my principal Dr. S. K. Biradar for their continued encouragement and active interest in my progress throughout the work. I am grateful to be an M.Tech Electrical Power System student at Matsyodari Shikshan Sanstha 's College of Engineering and Technology, Jalna, Maharashtra. # Author - 1 Mr.Ghule Ashish Bhimrao is pursuing M.TECH degree in the stream of Electrical Power System from Matsyodari Shikshan Sanstha's College of Engineering and Technology, Jalna, DBATU University, Lonere. Hi has completed B.Tech in the stream of Electrical Engineering from MATOSHRI PRATISHTHAN'S Group of Institutions (Integrated Campus) School of Engineering khupsarwadi Nanded. ## Author2 Prof. Seema N. Kharat received Master of engineering in Electrical Power system from Matsyodari Shikshan Sanstha 's College of Engineering and Technology, Jalna. She is currently working as Assistant Professor in Department of Electrical Engineering at MSS's college of Engineering & Technology, Jalna. Mail ID. - kharatseema.5@gmail.com © 2025, IJSREM www.ijsrem.com DOI: 10.55041/IJSREM51770 Page 5