
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 1

Accelerating Image Classification Using

Transfer Learning in PyTorch

Akhilesh Rajendra Shinde Prof. Y.L. Puranik

SYMCA Assistant Professor,

PES Modern College of Engineering, MCA Department,

Pune-5 PES Modern College of Engineering,

 Pune-5

Abstract:

Transfer Learning for Image Classification in

PyTorch Transfer learning is a powerful

technique for training deep learning models,

especially for image classification tasks,

when datasets are limited. This approach

leverages a pre-trained model on a large

dataset like ImageNet, and then adapts it to a

new, smaller dataset for a specific

classification task. extend this no extra

heading Show drafts While transfer learning

excels in overcoming limited datasets for

image classification in PyTorch, its benefits

extend further. Pre-trained models on

massive datasets like ImageNet capture

generic image features, acting as a strong

foundation for new tasks. This translates to:

Faster Training: By leveraging pre-trained

weights, especially for early layers, training

becomes significantly faster compared to

training from scratch. Improved

Performance: Fine-tuning pre-trained models

on smaller datasets often leads to superior

performance compared to training a new

model entirely. This reduces the risk of

overfitting and leverages the power of

learned features. Efficient Model

Development: Transfer learning allows

developing image classification models for

specific tasks even with limited data. This

frees researchers from training from scratch,

accelerating the development process.

PyTorch offers a user-friendly environment

for implementing transfer learning: Pre-

trained Model Selection: Choose a pre-

trained model (ResNet, VGG, EfficientNet)

from PyTorch's torchvision library based on

factors like dataset size and desired accuracy.

Feature Extraction & Fine-tuning: Freeze the

pre-trained model's feature extractor (early

layers) to retain generic features. Replace the

classifier (final layers) with new ones

specific to the new dataset's number of

classes. Train these new layers on the smaller

dataset. Fine-tuning Strategies: Depending

on dataset complexity, techniques like

unfreezing a few layers closer to the classifier

can be used for further performance gains.

Beyond the basics, data augmentation

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 2

(artificially increasing data size and

diversity) and hyperparameter tuning

(optimizing learning rate, batch size) can

Further enhance transfer learning

effectiveness

Introduction
Transfer learning has revolutionized the

landscape of image classification in deep

learning by enabling the reuse of knowledge

gained from previously trained models on

large-scale datasets such as ImageNet.

Instead of building models from scratch,

which often demands vast computational

resources and massive labeled datasets,

transfer learning allows researchers and

practitioners to fine-tune pre-trained models

on specific tasks with significantly smaller

datasets. This not only cuts down training

time substantially but also improves

generalization and accuracy, especially in

scenarios where labeled data is scarce.

By leveraging deep convolutional neural

networks (CNNs) that have already learned

rich feature representations, transfer learning

Literature Survey
[1] :Yann LeCun ”Deep Learning for Image

Classification" (LeCun et al., 2015), Deep

learning has revolutionized image

classification by enabling models to

automatically learn hierarchical features

from raw data, rather than relying on hand-

crafted features. Convolutional Neural

Networks (CNNs), inspired by the human

visual cortex, have proven to be particularly

effective for this task. By using layers of

convolutional filters, pooling, and nonlinear

activations, CNNs can capture spatial

hierarchies in images, from edges and

textures in early layers to more complex

patterns like object parts in deeper layers.

This architecture has significantly improved

accuracy in tasks such as object recognition,

face detection, and scene labeling.

mitigates the risk of overfitting and

accelerates convergence during

training. It has become a standard approach

in computer vision applications, offering a

practical solution to real-world problems

ranging from medical imaging to

autonomous driving.

This research focuses on the implementation

of transfer learning in PyTorch, an open-

source deep learning framework that

provides dynamic computation graphs and

ease of use. We explore how different pre-

trained models, including ResNet, VGG, and

EfficientNet, can be adapted to specific

image classification tasks. The goal is to

demonstrate how transfer learning can not

only enhance performance but also make

image classification more accessible and

efficient for domains with limited

computational and data resources.

[2] :MaithraRaghu,SamyBengio"Understan

ding Transfer Learning for Medical

Imaging" (Raghu et al., 2019) , The paper

investigates the effectiveness of transfer

learning from large-scale natural image

datasets (like ImageNet) to medical imaging

tasks, which are often quite different in

content and structure. Surprisingly, the

authors found that transfer learning does

not always provide significant

performance improvements in medical

imaging, especially when the target datasets

are not too small. Shallow models trained

from scratch often performed competitively

or even better than fine-tuned deep models,

suggesting that the standard approach of

reusing deep pre-trained features may not be

optimal in specialized domains like

radiology or pathology.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 3

[3] Adam Paszke,Sam Gross ,"PyTorch: An

Imperative Style, High-Performance Deep

Learning Library" (Paszke et al.,

2019),PyTorch is built around an imperative

programming style, which means

computations are executed as they are

written, unlike static graph-based systems

where the entire computation graph must be

defined before execution. This dynamic

approach allows for greater flexibility and

easier debugging, making it especially

appealing to researchers. The paper

emphasizes how PyTorch blends deep

integration with Python and supports native

control flow, making model development

intuitive

[4] Pan & Young,"A Comprehensive Review

on Transfer Learning for Image

Classification" (Pan & Yang, 2010):

Transfer learning has emerged as a vital

technique in image classification, enabling

models to leverage knowledge gained from

one domain and apply it to another. This

approach is particularly beneficial when the

target dataset is limited or expensive to label.

The paper reviews various strategies

including feature extraction, fine-tuning, and

domain adaptation. It also explores how

models pre-trained on large datasets like

ImageNet can be adapted to more specialized

tasks such as satellite image recognition,

medical diagnosis, and facial emotion

detection.

Proposed Methodology

● Integrating Dataset Downloading

into Code

Deep learning libraries like PyTorch offer

functions such as download_url to automate

dataset downloading within code. This

function takes a URL and destination as

arguments, downloading the dataset from

[5] Howard & Ruder,"Transfer Learning from

Pre-trained Models" (Howard & Ruder,

2018),Howard and Ruder introduced

ULMFiT, a transfer learning method that

adapts pre-trained language models to text

classification tasks with remarkable

efficiency and accuracy. The method

involves three stages: (1) pre-training a

language model on a large general corpus

(like Wikipedia), (2) fine-tuning the model

on a target task corpus, and (3) training a

classifier on the adapted model. This

technique significantly reduces the need for

large labeled datasets in the target domain,

allowing models to generalize well even with

limited data.

[6] Zhu,"Transfer Learning in Convolutional

Neural Networks for Computer-Aided

Detection of Mammographic Masses" (Zhu

et al., 2016) The paper investigates how

transfer learning can be used to overcome the

limitations of small annotated datasets in

medical imaging, especially for

mammographic mass detection. By

employing convolutional neural networks

pre-trained on large natural image datasets

like ImageNet, and fine-tuning them on

mammogram images, the authors

demonstrate improved classification

performance compared to training CNNs

from scratch. This method allows the

network to retain low-level visual features

such as edges and textures while learning

domain-specific patterns related to tumor

appearance.

the specified URL to the designated location

on your local machine. Benefits include

convenience, integration with code, and

ensuring reproducibility of experiments.

Fig1:Dataet download

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 4

● Creating a Custom PyTorch

Dataset

Creating a custom PyTorch dataset involves

defining a class that inherits from

torch.utils.data.Dataset and implementing

methods like len to return the total

number of samples and getitem to load

and preprocess specific data samples. This

method encapsulates dataset handling logic,

promoting code organization and clarity.

Additionally, leveraging existing data

loading utilities for common operations like

image resizing or random cropping from

torchvision.transforms can streamline

dataset augmentation. This approach offers

flexibility in controlling data loading and

transformation while promoting reusability

across different projects.

Fig 2:Custom PyTorch Dataset

● Creating Training and Validation

Sets:

Splitting data into training and validation sets

is crucial in machine learning, particularly for

preventing overfitting. Common strategies

include random split, dividing the dataset into

training (70-80%) and validation (20-30%)

sets, and stratified split, which maintains

class proportions, useful for imbalanced

datasets. Validation sets allow for model

evaluation, hyperparameter tuning, and early

stopping to

Fig 3:Training and Validation

prevent overfitting by monitoring

performance on unseen data. This process

enhances generalization and ensures optimal

model performance.

● Modifying a Pretrained Model

(ResNet34)

Fig 4:Analysis

To modify a pre-trained ResNet-34 model for

transfer learning, you can employ either

feature extraction or fine-tuning techniques.

In feature extraction, you freeze most layers

of the pre-trained model, treating them as

fixed feature extractors, while adding a new

classifier head for task-specific learning. This

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 5

approach is efficient for smaller datasets and

prevents overfitting. Conversely, fine-tuning

involves unfreezing a few final layers,

allowing the model to adapt pre-learned

features to the new dataset through end-to-

end training. Fine-tuning may yield higher

performance, especially for larger datasets or

tasks with significant domain differences.

Your choice depends on factors like dataset

size, task similarity, and available

computational resources.

● GPU Utilities and Training Loop

Fig 5:GPU Utilities

GPUs are vital for deep learning training due

to their ability to handle parallel

computations efficiently. PyTorch offers

utilities like torch.device to specify GPU

usage and methods like model.to(device) for

moving models and data tensors to GPUs. In

the training loop, data loading, forward pass,

loss calculation, and optimizer update steps

are executed on GPUs for faster training.

GPU training offers significant speedups

over CPUs, enabling efficient training of

larger models and handling of complex

datasets.

● Fine Tuning the Pretrained Model

Fine-tuning a pre-trained model like ResNet-

50 for transfer learning involves adapting it

to a new, smaller dataset and task. Initially,

the pre-trained model is loaded, and its final

layers are modified to suit the new

classification task, typically by adding a new

classifier head. While most layers are frozen,

a few final convolutional layers might be

partially unfrozen to adapt to task-specific

features. Training the model with an

optimizer and loss function allows the frozen

layers to act as feature extractors while the

new layers learn task-specific features. Fine-

tuning offers faster training and potentially

improved performance, especially for smaller

datasets, but its effectiveness depends on the

similarity between the new and original tasks.

Implementation

● Downloading a Dataset:

The code utilizes the download_url function

from torchvision.datasets.utils to simplify dataset

downloading, specifying the dataset's URL

(https://s3.amazonaws.com/fast-ai-

imageclas/oxford-iiit-pet.tgz) and destination

(the current working directory). Upon

execution, download_url establishes a

connection to the URL, retrieves the dataset

file, and saves it at the designated location.

Additionally, the code imports the tarfile

module to handle compressed archive files

and extracts the downloaded ".oxford-iiit-

pet.tgz" file, placing its contents within a new

"data" directory in the current working

directory.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 6

● Creating a Custom PyTorch

Dataset

The code defines a class named PetsDataset

that inherits from

torch.utils.data.Dataset, designed for

handling a dataset containing pet images. It

includes initialization to store dataset root

and transformation objects, along with

methods to get dataset length and access

individual samples. The dataset instance is

created with transformations for image

resizing, padding, cropping, conversion to

tensors, and normalization. Additional helper

functions are provided for denormalization

and displaying images. However, it mentions

a missing parse_breed function to extract

breed labels from filenames.

● Creating Training and Validation Sets

The code for splitting the dataset imports the

random_split function from
torch.utils.data and defines the validation

data percentage (val_pct). It calculates the

validation size (val_size) based on the total

dataset size and uses random_split to split

the dataset into training and validation

datasets (train_ds and valid_ds). The

code then creates DataLoaders using the

DataLoader class from torch.utils.data,

specifying parameters such as batch size,

shuffle, number of workers, and pin memory

for both training and validation DataLoaders.

Lastly, it defines a function (show_batch) to

visualize a batch of images from the

DataLoader using make_grid from

torchvision.utils and Matplotlib for

plotting, denormalizing the images and

displaying them in a grid format.

● Modifying a Pretrained Model

(ResNet34)

The code defines an accuracy function that

calculates accuracy by comparing predicted

● Fine Tuning the Pretrained Model

The process starts by creating a PetsModel

instance with the number of output classes

labels with true labels using torch.max. It also

introduces an ImageClassificationBase class

serving as a base for image classification

models, containing methods for training,

validation, and evaluation steps.

Additionally, the PetsModel class inherits

from ImageClassificationBase and loads a

pretrained ResNet34 model, replacing its

final fully connected layer with a new one for

the given task. The forward pass simply

passes input data through the loaded

ResNet34 model.

● GPU Utilities and Training Loop

The code snippet introduces GPU utilities

and a training loop for deep learning models.

It includes functions for managing device

selection, training, and learning rate

scheduling. The fit function trains a model for

a specified number of epochs, while

fit_one_cycle implements a one-cycle

learning rate scheduler. The snippet also

demonstrates device usage by wrapping data

loaders in DeviceDataLoader instances to

ensure automatic data transfer to the chosen

device during training.

matching the dataset's unique breeds and

moving it to the appropriate device using

to_device. Then, an initial evaluation of the

untrained model on the validation set is

conducted using

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 7

model.evaluate(valid_dl), with results

stored in a list named history. Next, training

parameters such as the number of epochs,

maximum learning rate, gradient clipping
value, weight decay, and optimizer function

Future Scope

Model Improvements: Experiment with

different pre-trained CNN architectures like

EfficientNet, DenseNet, or VGG models for

potential performance enhancements.

Consider fine-tuning pre-trained models by

freezing earlier layers and training only

specific final layers tailored to your pet

classification task. Employ data

augmentation techniques such as random

cropping, flipping, rotation, and color

jittering to augment training data diversity,

potentially enhancing model robustness.

Leverage transfer learning by pre-training

models on similar classification tasks with

larger datasets before fine-tuning them on

your pet image dataset, especially beneficial

for smaller datasets. Advanced Training

Techniques: Explore various learning rate

scheduling techniques like cosine annealing

or cyclical learning rates for potential

performance improvements.

Conclusion
Functionality: Defines a custom dataset class

(PetsDataset) to handle pet image data.

Implements helper functions for data

management, device usage, training, and

evaluation. Creates a PetsModel that

leverages a pre-trained ResNet34

architecture for pet breed classification.

Trains the model using a one-cycle learning

rate scheduler for efficient optimization.

Strengths: Modular and well-organized code

structure. Leverages pre-trained models for

efficient learning. Employs a modern

learning rate scheduler for training. Includes

functionalities for data management, device

handling, and evaluation.

are defined. Finally, training with a one-cycle

scheduler is executed using fit_one_cycle,

passing the specified parameters. The %%time

magic command estimates the execution time

of the training process.

Future Enhancements: Experiment with

different model architectures and training

techniques. Consider data augmentation and

transfer learning if applicable. Explore

advanced evaluation metrics and

visualization tools. Deploy the trained model

for real-world applications.

Reference

[1] Kayla Mendel, Huili Wang, Daniel Sheth,

Maryellen Giger.Transfer Learning From

Convolutional Neural Networks for

Computer-Aided Diagnosis: A Comparison

of Digital Breast Tomosynthesis and Full-

Field Digital Mammography. This study

compares the performance of deep learning

CAD systems on Digital Breast

Tomosynthesis (DBT) and Full-Field Digital

Mammography (FFDM) images. Utilizing a

pre-trained CNN for feature extraction, the

researchers found that DBT images provided

superior diagnostic performance over FFDM,

particularly in classifying masses and

architectural distortions. This suggests that

DBT may offer more relevant information for

lesion malignancy assessment when analyzed

with CNN-based CAD systems.

[2] Ravi K. Samala, Heang-Ping Chan, This

paper introduces a multi-task transfer

learning approach using deep CNNs to

classify malignant and benign breast masses.

By training the network on both screen-film

and digital mammograms, the model

demonstrated improved generalization and

diagnostic accuracy compared to single-task

learning. The study highlights the

effectiveness of multi-task transfer learning

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 06 | June - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com | Page 8

in enhancing CAD systems for breast cancer

detection

[3] Aditya Khamparia, Subrato Bharati.

Diagnosis of Breast Cancer Based on Modern

Mammography Using Hybrid Transfer

Learning. The authors propose a hybrid

transfer learning model combining modified

VGG16 and ImageNet architectures to

improve breast cancer diagnosis from

mammograms. Evaluated on the DDSM

dataset, the hybrid model achieved an

accuracy of 88.3%, outperforming individual

architectures. This approach demonstrates

the potential of combining multiple pre-

trained models to enhance CAD performance

in mammography.

[4] Li Shen, Laurie R. Margolies. Deep

Learning to Improve Breast Cancer Early

Detection on Screening Mammography. This

study presents a deep learning algorithm

trained to detect breast cancer on screening

mammograms using an end-to-end approach.

The model achieved high accuracy on both

DDSM and INbreast datasets, with area

under the curve (AUC) values of 0.91 and

0.98, respectively. The research demonstrates

the feasibility of applying deep learning to

improve early breast cancer detection in

clinical settings.

[5] Hang Min, Devin Wilson. Fully

Automatic Computer-Aided Mass Detection

and Segmentation via Pseudo-Color

Mammograms and Mask R-CNN. The

researchers developed a fully automatic CAD

system that employs pseudo-color

mammograms and Mask R-CNN for

simultaneous mass detection and

segmentation. By enhancing grayscale

mammograms into pseudo-color images, the

model improved the performance of mass

detection and segmentation tasks. Evaluated

on the INbreast dataset, the system achieved

a true positive rate of 0.90 and a Dice

similarity index of 0.88, indicating high

accuracy in identifying and delineating breast

masses.

[6]S.R.SannasiChakravarthy,N.Bharanidhar

an. Transfer Learning for Deep Neural

Networks-Based Classification of

Mammograms. This study proposes a deep

learning model combining transfer learning

and long short-term memory (LSTM)

networks to enhance breast mass detection

and diagnosis. The model aims to improve

therapy outcomes and reduce mortality risks

by accurately identifying suspicious regions

in mammogram images.

[7] Daniel G. P. Petrini, Carlos Shimizu.

Breast Cancer Diagnosis in Two-View

Mammography Using End-to-End Trained

EfficientNet-Based Convolutional Network.

This paper presents a deep learning model

using EfficientNet for breast cancer diagnosis

in two-view mammography. The model

employs multiple transfer learning stages to

classify mammograms, achieving high

accuracy and sensitivity in detecting breast

cancer

http://www.ijsrem.com/

