
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53280 | Page 1

Accelerating Small Language Model via Quantization: A GPT-4 Guided

Approach for Low-Resource Story Completion

Rakshit Dabral*,

rakshitdabral1@gmail.com

Dr. Archana Kumar**

Professor, HOD

(AI&DS)

archna.kumar@adgitmdelhi.ac.in

* Scholar, Btech (AI&DS) 4th Year

** Department of Artificial Intelligence and Data Science

Dr. Akhilesh Das Gupta Institute of Professional Studies, New Delhi

Abstract- This paper introduces Story Completer, a

sophisticated and efficient engine for real-time children's

story completion, extending the foundational work of the

TinyStories project. While TinyStories demonstrated that

small models (<10M parameters) can generate coherent

narratives on simplified data, our work addresses the

challenge of deploying high-quality, context-aware

generative models on resource-constrained hardware. The

core innovation is a hybrid architecture that synergizes

the rich semantic knowledge of a large language model

with the computational efficiency of a smaller one. We

integrate pre-computed GPT-4 text-embedding-ada-002

vectors within a compact, 12-million-parameter decoder-

only transformer, effectively distilling the contextual

understanding of a massive model into a lightweight

system. Our methodology involved training this custom

model from scratch using a meticulous strategy designed

to adapt the model specifically for storytelling.

A key contribution of this project is the optimization of the

trained model for practical deployment on consumer-

grade hardware, including low-end PCs and CPUs. After

initial training, we applied post-training quantization,

converting the model's weights from 16-bit floating-point

precision (FP16) to 8-bit unsigned integers (uint8). This

optimization yielded significant performance gains

without a noticeable degradation in narrative quality.

Comparative analysis between the normal and quantized

models demonstrates the effectiveness of this approach.

The quantization process reduced the model size by

49.5%, from 1546.04 MB to 780.03 MB. Furthermore, it

achieved a 55.4% speedup in average inference time,

decreasing from 21.701 seconds to 9.671 seconds. This

project provides strong evidence for an efficient paradigm

in model design, where the distilled intelligence of larger

models, combined with optimization techniques like

quantization, can be leveraged to create smaller, faster,

and highly capable specialized systems.

Index Terms- GPT-4 Embeddings, Model Compression,

Quantization , Real-Time Text Generation, Small

Language Model

Abbreviations-

SLM : Small Language model

FP16 : 16-Bit Floating Point Precision

Uint8 : 8-bit unsigned integers

LLM : Large Language Model

GELU : Gaussian Error Linear Unit

GPU : Graphical Processing Unit

GPT : Generative Pre-Trained Transformer

MB : Megabytes

RAM : Random Access Memory

https://ijsrem.com/
mailto:rakshitdabral1@gmail.com
mailto:archna.kumar@adgitmdelhi.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53280 | Page 2

I. INTRODUCTION

he rapid advancement of Large Language Models

(LLM) such as GPT-4 has transformed natural language

processing, but their immense computational requirements

limit their accessibility for real-time and resource-

constrained environments. Conversely , Small Language

Models (SLMs) offer efficiency but often lack the creative

and semantic depth required for complex text generation

task. This work addresses the challenge of bridging the

gap between these two paradigms through a hybrid

architecture that combines pre-computed GPT-4

embeddings with a light weight transformer model. By

incorporating quantization, the system achieves reduced

latency and power consumption, making real-time story

completion feasible on standard or low-end devices. The

goal of this study is to explore how advanced compression

and embedding techniques can preserve linguistic quality

while significantly improving computational performance.

1.1 Challenges

The development of a quantized hybrid Small Language

Model (SLM) that integrates GPT-4 embeddings for real-

time story completion introduced several notable

challenges. The foremost difficulty lay in maintaining the

fine balance between computational efficiency and

creative fluency. Reducing model precision through

quantization often compromised the depth and coherence

of the generated narratives, making it difficult to preserve

the expressive quality of the text while improving speed.

Integrating pre-computed GPT-4 text-embedding-ada-002

vectors into a compact decoder-only transformer also

proved intricate, as aligning these external semantic

representations with the model’s internal processing

required careful architectural tuning to prevent instability

or loss of contextual understanding. The limited diversity

of the TinyStories dataset further constrained the model’s

generalization, as the simplified linguistic structure

restricted its exposure to varied vocabulary and

storytelling styles. Evaluating the creative quality of

generated stories posed another challenge, since existing

quantitative metrics could not adequately capture elements

such as imagination, flow, and emotional depth, while

qualitative assessments remained partially subjective.

Additionally, achieving uniform real-time performance

across different hardware environments, especially on

low-end systems, was hindered by inconsistencies in

computational optimization and memory constraints. The

process of transferring knowledge from a large model like

GPT-4 to a smaller one also introduced instability, often

resulting in partial knowledge retention or overfitting.

Together, these obstacles highlight the central tension

between efficiency, scalability, and expressive power in

language model design, emphasizing the need for

continuous research in adaptive quantization techniques,

robust embedding integration, and fair evaluation

frameworks for creative AI systems.

1.2 Need of Quantized Model

In recent years, the rapid growth of large language models

has revolutionized natural language processing, but their

immense size and computational demands have created

significant barriers to accessibility and deployment.

Quantized models have emerged as an essential solution

to this challenge, offering a way to drastically reduce the

memory footprint and inference time of neural networks

without severely compromising accuracy. The process of

quantization converts high-precision model parameters

into lower-bit representations, enabling models to run

efficiently on consumer-grade hardware, mobile devices,

and edge systems. This efficiency not only reduces energy

consumption and cost but also allows advanced AI

systems to be deployed in real-time environments where

latency and resource limitations are critical factors. For

applications such as story generation, virtual assistants,

and embedded AI systems, quantized models make it

possible to achieve near-instant responses while

maintaining coherent and contextually rich outputs.

Moreover, the growing emphasis on sustainable

computing has further increased the demand for

lightweight models that can deliver high performance with

minimal environmental impact. Thus, the development of

quantized language models bridges the gap between the

high capability of large-scale architectures and the

practical constraints of real-world deployment, making

artificial intelligence more inclusive, scalable, and energy-

efficient.

1.3 Applications

⚫ Conversational AI: Its lightweight design enables

deployment in chatbots , virtual assistants that require fast,

context aware responses without relying on cloud-based

large models

⚫ Edge and Mobile AI Applications : Quantized model

can run efficiently on mobile phones , tablets and

embedded devices, making advanced language generation

accessible without the need for high-end GPUs or internet

connectivity.

T

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53280 | Page 3

⚫ Low- Resource Environment : Enables AI-powered

text generation and assistance in areas with limited

computational infrastructure, supporting border digital

inclusion and sustainability.

II. LITERATURE REVIEW

[1] Ronen Eldan and Yuanzhi Li , in their paper “Tiny

Stories” proved how small can a Large Language Model

be and still be efficient in English Text Generation. They

did this by training on a curated, simplified dataset of

short children’s stories. This model was trained under

10M parameters and generated multi-paragraph text with

good grammar and surprising reasoning for their size.

This paper also proposes human like GPT-4 based

evaluation rubic for generative quality.

[2] The paper “Deep Compression” found a three stage

pipeline which included pruning, trained quantization and

entropy coding can reduce model storage drastically with

little to no accuracy loss on vision models.

[3] In the paper “Hinton el al. 2015” transfer of

knowledge from large model to smaller model , is shown

to increase the performance of small model beyond

training on original labels alone.

[4] The paper “FP8-BERT” shows that carefully applied

post-training quantization including INT8 and newer FP8

scheme can make a Transformer model run much faster

and smaller with minimal accuracy loss. Survey and

Transformer compression paper summarizes this process.

It suggests that FP8 often gives better accuracy than INT8

for many LLM models.

III. METHODOLOGY

3.1 Data Collections

Dataset: [5] The TinyStories dataset, created by Ronen

Eldan, is a collection of short stories generated by large

language models like GPT-3.5 and GPT-4. These stories

are designed to be simple enough for a young child to

understand, typically using a limited vocabulary and

straightforward sentence structures. The primary purpose

of this dataset is to facilitate research in smaller, more

efficient language models. By training on these simplified

stories, researchers can explore how to develop models

that comprehend and generate language without the

massive computational resources typically required for

state-of-the-art models. The dataset is particularly useful

for studying aspects of language acquisition and narrative

coherence in a controlled environment.

There are 2.12M rows in the training set and 22K rows in

validation set of this dataset.

To access the TinyStories dataset through the Hugging

Face Hub. It is available under the name

roneneldan/TinyStories. The data is provided in parquet

format, and can be loaded directly using the Hugging

Face datasets library in Python.

3.2 Data Preprocessing

The process of data preprocessing is divided into two

steps first is the Tokenization and the second one is

Serialization.

During the Tokenization step , the raw text data is

converted into a numerical format. This is done using

cl100k_base tokenizer from the tiktoken library. Each

story is broken down into a sequence of integers where

each integer represents a specific word. This step is

essential because machine learning models operate on

numbers and not on text data.

After tokenization , all the integer sequences from the

entire dataset are combined into a single, continuous

stream and saved to a binary (.bin) file. This is

accomplished using a technique called memory-mapping

(np.memmap), which allow the program to handle a

massive amount of data on disk as if it were on RAM ,

without actually loading it all at once. This process is

done for both the training and the validation set, creating

train.bin and validation.bin. The primary reason for this

preprocessing step is to increase the efficiency. During the

model training, the model needs to rapidly access random

small chunks of data. Reading from a single, compact

binary file is significantly faster and more memory-

efficient than parsing countless individual text files, which

is crucial for accelerating the training process.

3.3 Model Selection:

Architecture:

The model in this paper is a decoder-only transformer

built from scratch using PyTorch, closely following the

GPT architecture. Its configuration is defined by

GPTConfig dataclass, specifying a vocabulary size of

100,277 , a context length of 256 tokens (block_size), an

embedding dimension of 1024 (n_embd) , with 16

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53280 | Page 4

attention heads (n_head) and a stack of 24 transformer

layers (n_layers). This architecture begins by summing

token and

Positional embeddings, which are then processed through

24 stack of identical transformer blocks.

Each of these blocks uses a pre-norm design, applying

LayerNorm before its two main sub-layers:

A causal multi-head self-attention mechanism and a two

layer feed-forward network with a GELU activation.

Residual connections are used around both of these sub-

layers to aid gradient flow. After the final transformer

block, another LayerNorm is applied, followed by a final

linear layer (the language model head) that projects the

output back to the vocabulary size to produce logits for

the next token prediction. A key efficiency technique used

is weight tying, where the token embedding weights are

shared with this final language model head.

Python Libraries used:

1. Datasets

2. Tiktoken

3. Tqdm

4. Numpy

5. Hf_xet

6. PyTorch [6]

7. Matplotlib [7]

8. Seaborn [8]

9. Pandas [9]

3.4 Model Training

The model was trained for 20,000 iterations using the

AdamW optimizer [10] , which is well-suited for training

Transformers. A sophisticated learning rate schedule was

employed, beginning with a linear warmup phase for the

first 1,000 steps. During warmup, the learning rate

gradually increased from a small value to its peak of 1e-4.

This prevents large, unstable updates at the start of

training. After the warmup, the learning rate followed a

cosine annealing schedule, where it smoothly decreased

towards a minimum value, helping the model to settle into

a good minimum in the loss landscape.

Several key techniques were used to make the training

process both efficient and stable.

First the model is trained with mixed precision , the

training loop utilizes torch.amp.autocast which allow

operations to be performed in lower precision format like

float16. This significantly reduces GPU memory

consumption and accelerates calculations on compatible

hardwares.

Secondly, to prevent exploding gradient [11] , the

gradients were clipped to a maximum norm of 0.5 before

the optimizer step.

Through out the model training, the models performance

was closely monitored. For every 500 iterations, the

training was paused and the model loss was calculated for

both the subsets of training and the validation dataset.

This process was essential to diagnosing overfitting [12].

By comparing the training loss to the validation loss, it

was possible to ensure the model was generalizing well to

new, unseen data. The model's parameters (state_dict)

were saved to a file (best_model_params.pt) only when

the validation loss reached a new minimum, ensuring that

the final saved model was the one that performed best on

unseen data. The final loss curves showed a steady

decrease in both training and validation loss, indicating a

successful and stable training run.

 Fig 1. Training and Validation Loss

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53280 | Page 5

3.5 Evaluations

The evaluation process begins with loading the base line

model “Normal Model” and then creating a “Quantized

Model” by converting the weights of its linear layers from

16-bit floating point number to more efficient 8-bit

unsigned integers. The evaluation focused on key

efficiency metrics across five distinct test parameters :

model size, inference speed, memory usage, while also

qualitatively comparing the generated text.

The results clearly demonstrated the benefits of this

optimisation.

The Model size comparison shows that quantization

reduced models disk footprint from 1546.04 MB to 780.03

MB, a significant reduction of 49.5%

 Fig 2. Size Comparison

In terms of speed, the Average Inference Time chart

reveals that the quantized model was 55.4% faster, taking

an average of 9.671 seconds to generate a response

compared to the normal model's 21.701 seconds.

 Fig 3. Average Inference Time

The Inference Time per Prompt graph further confirms

that this speedup was consistent across all test inputs

 Fig 4. Inference time per prompt

In conclusion, the evaluation confirms that dynamic

quantization was highly effective, nearly halving the

model's size and more than doubling its inference speed

with a negligible impact on qualitative output.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM53280 | Page 6

IV. CONCLUSION

This project was undertaken to tackle a fundamental

challenge in the deployment of large language models: the

inherent conflict between high performance and the

substantial computational resources they demand. This

work successfully demonstrates that optimization

techniques can deliver a powerful yet efficient solution

without compromising the quality of the output. By

training a GPT-style, decoder-only transformer from

scratch and subsequently applying dynamic quantization,

the project validates the hypothesis that it is possible to

create a lightweight and performant model suitable for

real-world applications. The evaluation results provide

compelling evidence for this approach. The application of

8-bit unsigned integer quantization led to a remarkable

49.5% reduction in the model's size and a 55.4% speedup

in inference time, all while maintaining a high level of

narrative coherence in the generated text. This project

serves as a strong proof-of-concept for a more practical

paradigm in AI development, showcasing that with the

right optimization strategies, it is entirely feasible to build

specialized, highly efficient systems on accessible

hardware.

V. FUTURE SCOPE

Building on the initial implementation of dynamic

quantization, a key next step is to explore more advanced

optimization techniques such as quantization-aware

training or pruning to further reduce the model's size and

enhance inference speed.

Another valuable direction involves architectural scaling

and specialization; the current 24-layer model could be

scaled up or down to analyze the trade-offs between

performance and computational cost, or fine-tuned on

specialized datasets to create highly capable, domain-

specific variants.

Finally, the optimized model, currently evaluated in a

development environment, could be integrated into a real-

world, user-facing application, such as a web-based story

generator or an API, to demonstrate its practical utility

and gather user feedback for iterative improvements.

VI. REFERENCES

[1] Ronen Eldan & Yuanzhi Li , “TinyStories: How Small

Can Language Models Be and Still Speak Coherent

English? “ , published in April 2023

[2] Song Han, Huizi Mao & William J. Dally , “Deep

Compression : Compressing Deep Neural Networks with

Pruning, Train Quantization and Huffman Coding”,

published in Feburary 2016

[3] Geoffrey Hinton , Oriol Vinyals & Jeff Dean , “

Distilling the knowledge in a neural network” , published

in March 2015

[4] Jianwei Li , Tianchi Zhang, Ian En-Hus Yen &

Dongkua Xu, “FP8-BERT: Post-Training Quantization for

Transformer” , published in December 2023

[5] R.Eldan ,” TinyStories Dataset”

(https://huggingface.co/datasets/roneneldan/TinyStories)

[6] A.Paszke et al, “PyTorch: An impressive Style,High

Performance Deep Learning Library,” in advances in

Neural Information Processing System 32 published in

2019(https://pytorch.org/get-started/locally)

[7] J.D. Hunter, “Matplotlib: A 2D Graphics

Environment,” Computing in science and

Engineering,vol9 ,no.3 , pp. 90-95 , published in 2007

 (https://matplotlib.org/stable/users/index)

[8] Michael L. Waskom, “Seaborn : Statistical data

visualization “ , published in April 2021

[9] Wes McKinney, “Pandas: A foundational Python

Library for Data Analysis and Statistics”, published in

January 2011

[10] Ilya Loshchilov & Frank Hutter ,” Decoupled Weight

Decay Regularization”, published in January 2019

[11] George Phillip, Dawn Song & Jamie G.

Carbonell,”The exploding gradient problem demystified-

definition , prevalence , impact , origin, tradeoff and

solutions “ , published in April 2018

[12] Haidong Li, Jiongcheng Li, Xiaming Guan, Binghao

Liang , Yuting Lai & Xinglong Luo , “Research on

Overfitting of Deep Learning”, published in December

2019

https://ijsrem.com/
https://huggingface.co/datasets/roneneldan/TinyStories
https://pytorch.org/get-started/locally/
https://matplotlib.org/stable/users/index

