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Abstract- This paper introduces Story Completer, a 

sophisticated and efficient engine for real-time children's 

story completion, extending the foundational work of the 

TinyStories project. While TinyStories demonstrated that 

small models (<10M parameters) can generate coherent 

narratives on simplified data, our work addresses the 

challenge of deploying high-quality, context-aware 

generative models on resource-constrained hardware. The 

core innovation is a hybrid architecture that synergizes 

the rich semantic knowledge of a large language model 

with the computational efficiency of a smaller one. We 

integrate pre-computed GPT-4 text-embedding-ada-002 

vectors within a compact, 12-million-parameter decoder-

only transformer, effectively distilling the contextual 

understanding of a massive model into a lightweight 

system. Our methodology involved training this custom 

model from scratch using a meticulous strategy designed 

to adapt the model specifically for storytelling. 

A key contribution of this project is the optimization of the 

trained model for practical deployment on consumer-

grade hardware, including low-end PCs and CPUs. After 

initial training, we applied post-training quantization, 

converting the model's weights from 16-bit floating-point 

precision (FP16) to 8-bit unsigned integers (uint8). This 

optimization yielded significant performance gains 

without a noticeable degradation in narrative quality. 

Comparative analysis between the normal and quantized 

models demonstrates the effectiveness of this approach. 

The quantization process reduced the model size by 

49.5%, from 1546.04 MB to 780.03 MB. Furthermore, it 

achieved a 55.4% speedup in average inference time, 

decreasing from 21.701 seconds to 9.671 seconds. This 

project provides strong evidence for an efficient paradigm 

in model design, where the distilled intelligence of larger 

models, combined with optimization techniques like 

quantization, can be leveraged to create smaller, faster, 

and highly capable specialized systems. 

 

Index Terms-  GPT-4 Embeddings, Model Compression, 

Quantization , Real-Time Text Generation, Small 

Language Model 

 

Abbreviations- 

SLM : Small Language model 

FP16 : 16-Bit Floating Point Precision  

Uint8 : 8-bit unsigned integers 

LLM : Large Language Model 

GELU : Gaussian Error Linear Unit 

GPU : Graphical Processing Unit 

GPT :  Generative Pre-Trained Transformer 

MB : Megabytes 

RAM : Random Access Memory 
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I. INTRODUCTION 

he rapid advancement of Large Language Models 

(LLM) such as GPT-4 has transformed natural language 

processing, but their immense computational requirements 

limit their accessibility for real-time and resource-

constrained environments. Conversely , Small Language 

Models (SLMs) offer efficiency but often lack the creative 

and semantic depth required for complex text generation 

task.  This work addresses the challenge of bridging the 

gap between these two paradigms through a hybrid 

architecture that combines pre-computed GPT-4 

embeddings with a light weight transformer model. By 

incorporating quantization, the system achieves reduced 

latency and power consumption, making real-time story 

completion feasible on standard or low-end devices. The 

goal of this study is to explore how advanced compression 

and embedding techniques can preserve linguistic quality 

while significantly improving computational performance.  

 

1.1 Challenges 

 

The development of a quantized hybrid Small Language 

Model (SLM) that integrates GPT-4 embeddings for real-

time story completion introduced several notable 

challenges. The foremost difficulty lay in maintaining the 

fine balance between computational efficiency and 

creative fluency. Reducing model precision through 

quantization often compromised the depth and coherence 

of the generated narratives, making it difficult to preserve 

the expressive quality of the text while improving speed. 

Integrating pre-computed GPT-4 text-embedding-ada-002 

vectors into a compact decoder-only transformer also 

proved intricate, as aligning these external semantic 

representations with the model’s internal processing 

required careful architectural tuning to prevent instability 

or loss of contextual understanding. The limited diversity 

of the TinyStories dataset further constrained the model’s 

generalization, as the simplified linguistic structure 

restricted its exposure to varied vocabulary and 

storytelling styles. Evaluating the creative quality of 

generated stories posed another challenge, since existing 

quantitative metrics could not adequately capture elements 

such as imagination, flow, and emotional depth, while 

qualitative assessments remained partially subjective. 

Additionally, achieving uniform real-time performance 

across different hardware environments, especially on 

low-end systems, was hindered by inconsistencies in 

computational optimization and memory constraints. The 

process of transferring knowledge from a large model like 

GPT-4 to a smaller one also introduced instability, often 

resulting in partial knowledge retention or overfitting. 

Together, these obstacles highlight the central tension 

between efficiency, scalability, and expressive power in 

language model design, emphasizing the need for 

continuous research in adaptive quantization techniques, 

robust embedding integration, and fair evaluation 

frameworks for creative AI systems. 

 

 

1.2 Need of Quantized Model 

 

In recent years, the rapid growth of large language models 

has revolutionized natural language processing, but their 

immense size and computational demands have created 

significant barriers to accessibility and deployment. 

Quantized models have emerged as an essential solution 

to this challenge, offering a way to drastically reduce the 

memory footprint and inference time of neural networks 

without severely compromising accuracy. The process of 

quantization converts high-precision model parameters 

into lower-bit representations, enabling models to run 

efficiently on consumer-grade hardware, mobile devices, 

and edge systems. This efficiency not only reduces energy 

consumption and cost but also allows advanced AI 

systems to be deployed in real-time environments where 

latency and resource limitations are critical factors. For 

applications such as story generation, virtual assistants, 

and embedded AI systems, quantized models make it 

possible to achieve near-instant responses while 

maintaining coherent and contextually rich outputs. 

Moreover, the growing emphasis on sustainable 

computing has further increased the demand for 

lightweight models that can deliver high performance with 

minimal environmental impact. Thus, the development of 

quantized language models bridges the gap between the 

high capability of large-scale architectures and the 

practical constraints of real-world deployment, making 

artificial intelligence more inclusive, scalable, and energy-

efficient. 

 

1.3 Applications 

 

⚫ Conversational AI: Its lightweight design enables 

deployment in chatbots , virtual assistants that require fast, 

context aware responses without relying on cloud-based 

large models 

⚫ Edge and Mobile AI Applications : Quantized model 

can run efficiently on mobile phones , tablets and 

embedded devices, making advanced language generation 

accessible without the need for high-end GPUs or internet 

connectivity. 

T 
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⚫ Low- Resource Environment : Enables AI-powered 

text generation and assistance in areas with limited 

computational infrastructure, supporting border digital 

inclusion and sustainability. 

 

II. LITERATURE REVIEW 

 

[1] Ronen Eldan and Yuanzhi Li , in their paper “Tiny 

Stories” proved how small can a Large Language Model 

be and still be efficient in English Text Generation. They 

did this by training on a curated, simplified dataset of 

short children’s stories. This model was trained under 

10M parameters and generated multi-paragraph text with 

good grammar and surprising reasoning for their size. 

This paper also proposes human like GPT-4 based 

evaluation rubic for generative quality.  

 

[2] The paper “Deep Compression” found  a three stage 

pipeline which included pruning, trained quantization and 

entropy coding can reduce model storage drastically with 

little to no accuracy loss on vision models. 

 

[3] In the paper “Hinton el al. 2015”  transfer of 

knowledge from large model to smaller model , is shown 

to increase the performance of small model beyond 

training on original labels alone. 

 

[4] The paper “FP8-BERT”  shows that carefully applied 

post-training quantization including INT8 and newer FP8 

scheme can make a Transformer model run much faster 

and smaller with minimal accuracy loss. Survey and 

Transformer compression paper summarizes  this process. 

It suggests that FP8 often gives better accuracy than INT8 

for many LLM models. 

 

III. METHODOLOGY 

3.1 Data Collections  

Dataset:  [5]  The TinyStories dataset, created by Ronen 

Eldan, is a collection of short stories generated by large 

language models like GPT-3.5 and GPT-4. These stories 

are designed to be simple enough for a young child to 

understand, typically using a limited vocabulary and 

straightforward sentence structures. The primary purpose 

of this dataset is to facilitate research in smaller, more 

efficient language models. By training on these simplified 

stories, researchers can explore how to develop models 

that comprehend and generate language without the 

massive computational resources typically required for 

state-of-the-art models. The dataset is particularly useful 

for studying aspects of language acquisition and narrative 

coherence in a controlled environment. 

 

There are 2.12M rows in the training set and 22K rows in 

validation set of this dataset. 

 

To access the TinyStories dataset through the Hugging 

Face Hub. It is available under the name 

roneneldan/TinyStories. The data is provided in parquet 

format, and can be loaded  directly using the Hugging 

Face datasets library in Python. 

 

3.2 Data Preprocessing 

 

The process of data preprocessing is divided into two 

steps first is the Tokenization and the second one is 

Serialization. 

During the Tokenization step , the raw text data is 

converted into a numerical format. This is done using 

cl100k_base tokenizer from the tiktoken library. Each 

story is broken down into a sequence of integers where 

each integer represents a specific word. This step is 

essential because machine learning models operate on 

numbers and not on text data. 

After tokenization , all the integer sequences from the 

entire dataset are combined into a single, continuous 

stream and saved to a binary (.bin) file. This is 

accomplished using a technique called memory-mapping 

(np.memmap), which allow the program to handle a 

massive amount of data on disk as if it were on RAM , 

without actually loading it all at once. This process is 

done for both the training and the validation set, creating 

train.bin and validation.bin. The primary reason for this 

preprocessing step is to increase the efficiency. During the 

model training, the model needs to rapidly access random 

small chunks of data. Reading from a single, compact 

binary file is significantly faster and more memory-

efficient than parsing countless individual text files, which 

is crucial for accelerating the training process. 

 

3.3 Model Selection: 

 

Architecture: 

The model in this paper is  a decoder-only transformer  

built from scratch using PyTorch, closely following the 

GPT architecture. Its configuration is defined by 

GPTConfig dataclass, specifying a vocabulary size of 

100,277 ,  a context length of 256 tokens (block_size), an 

embedding dimension of 1024 (n_embd) , with 16 
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attention heads (n_head) and a stack of 24 transformer 

layers (n_layers). This architecture begins by summing 

token and  

Positional embeddings, which are then processed through 

24 stack of identical transformer blocks. 

Each of these blocks uses a pre-norm design, applying 

LayerNorm before its two main sub-layers: 

A causal multi-head self-attention mechanism and a two 

layer feed-forward network with a  GELU activation. 

Residual connections are used around both of these sub-

layers to aid gradient flow. After the final transformer 

block, another LayerNorm is applied, followed by a final 

linear layer (the language model head) that projects the 

output back to the vocabulary size to produce logits for 

the next token prediction. A key efficiency technique used 

is weight tying, where the token embedding weights are 

shared with this final language model head. 

 

 

 

Python Libraries used: 

 

1. Datasets 

2. Tiktoken 

3. Tqdm 

4. Numpy 

5. Hf_xet 

6. PyTorch [6] 

7. Matplotlib [7] 

8. Seaborn [8] 

9. Pandas [9] 

 

 

3.4 Model Training 

 

The model was trained for 20,000 iterations using the 

AdamW optimizer [10] , which is well-suited for training 

Transformers. A sophisticated learning rate schedule was 

employed, beginning with a linear warmup phase for the 

first 1,000 steps. During warmup, the learning rate 

gradually increased from a small value to its peak of 1e-4. 

This prevents large, unstable updates at the start of 

training. After the warmup, the learning rate followed a 

cosine annealing schedule, where it smoothly decreased 

towards a minimum value, helping the model to settle into 

a good minimum in the loss landscape. 

 

Several key techniques were used to make the training 

process both efficient and stable. 

 

First the model is trained with mixed precision , the 

training loop utilizes torch.amp.autocast which allow 

operations to be performed in lower precision format like 

float16. This significantly reduces GPU memory 

consumption and accelerates calculations on compatible 

hardwares. 

 

Secondly, to prevent exploding gradient [11] , the 

gradients were clipped to a maximum norm of 0.5 before 

the optimizer step. 

 

Through out the model training, the models performance 

was closely monitored. For every 500 iterations, the 

training was paused and the model loss was calculated for 

both the subsets of training and the validation dataset. 

This process was essential to diagnosing overfitting [12]. 

By comparing the training loss to the validation loss, it 

was possible to ensure the model was generalizing well to 

new, unseen data. The model's parameters (state_dict) 

were saved to a file (best_model_params.pt) only when 

the validation loss reached a new minimum, ensuring that 

the final saved model was the one that performed best on 

unseen data. The final loss curves showed a steady 

decrease in both training and validation loss, indicating a 

successful and stable training run. 

 

 
 

 

  Fig 1. Training and Validation Loss 
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3.5 Evaluations 

 

The evaluation process begins with loading the base line 

model “Normal Model” and then creating a “Quantized 

Model” by converting the weights of its linear layers from 

16-bit floating point number to more efficient 8-bit 

unsigned integers.  The evaluation focused on key 

efficiency metrics across five distinct test parameters : 

model size, inference speed, memory usage, while also 

qualitatively comparing the generated text. 

The results clearly demonstrated the benefits of this 

optimisation. 

The Model size comparison shows that quantization 

reduced models disk footprint from 1546.04 MB to 780.03 

MB, a significant reduction of 49.5%  

 

 

 

 
 

 

  Fig 2.  Size Comparison 

 

In terms of speed, the Average Inference Time chart 

reveals that the quantized model was 55.4% faster, taking 

an average of 9.671 seconds to generate a response 

compared to the normal model's 21.701 seconds. 

 

 

 

 

 

 

 

 
 

                                     Fig 3. Average Inference Time 

 

The Inference Time per Prompt graph further confirms 

that this speedup was consistent across all test inputs 

 

 
 

                              Fig 4. Inference time per prompt 

In conclusion, the evaluation confirms that dynamic 

quantization was highly effective, nearly halving the 

model's size and more than doubling its inference speed 

with a negligible impact on qualitative output. 
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IV. CONCLUSION 

 

This project was undertaken to tackle a fundamental 

challenge in the deployment of large language models: the 

inherent conflict between high performance and the 

substantial computational resources they demand. This 

work successfully demonstrates that optimization 

techniques can deliver a powerful yet efficient solution 

without compromising the quality of the output. By 

training a GPT-style, decoder-only transformer from 

scratch and subsequently applying dynamic quantization, 

the project validates the hypothesis that it is possible to 

create a lightweight and performant model suitable for 

real-world applications. The evaluation results provide 

compelling evidence for this approach. The application of 

8-bit unsigned integer quantization led to a remarkable 

49.5% reduction in the model's size and a 55.4% speedup 

in inference time, all while maintaining a high level of 

narrative coherence in the generated text. This project 

serves as a strong proof-of-concept for a more practical 

paradigm in AI development, showcasing that with the 

right optimization strategies, it is entirely feasible to build 

specialized, highly efficient systems on accessible 

hardware. 

V. FUTURE SCOPE 

Building on the initial implementation of dynamic 

quantization, a key next step is to explore more advanced 

optimization techniques such as quantization-aware 

training or pruning to further reduce the model's size and 

enhance inference speed.  

Another valuable direction involves architectural scaling 

and specialization; the current 24-layer model could be 

scaled up or down to analyze the trade-offs between 

performance and computational cost, or fine-tuned on 

specialized datasets to create highly capable, domain-

specific variants.  

Finally, the optimized model, currently evaluated in a 

development environment, could be integrated into a real-

world, user-facing application, such as a web-based story 

generator or an API, to demonstrate its practical utility 

and gather user feedback for iterative improvements. 
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