j.-t.' 1Y
@REME%
3 ©-Jeurnal

W Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

Accelerating Small Language Model via Quantization: A GPT-4 Guided
Approach for Low-Resource Story Completion

Rakshit Dabral*,
rakshitdabrall @gmail.com

Dr. Archana Kumar**

Professor, HOD
(AI&DS)
archna.kumar@adgitmdelhi.ac.in

* Scholar, Btech (AI&DS) 4th Year
** Department of Artificial Intelligence and Data Science
Dr. Akhilesh Das Gupta Institute of Professional Studies, New Delhi

Abstract- This paper introduces Story Completer, a
sophisticated and efficient engine for real-time children's
story completion, extending the foundational work of the
TinyStories project. While TinyStories demonstrated that
small models (<10M parameters) can generate coherent
narratives on simplified data, our work addresses the
of deploying high-quality,
generative models on resource-constrained hardware. The

challenge context-aware
core innovation is a hybrid architecture that synergizes
the rich semantic knowledge of a large language model
with the computational efficiency of a smaller one. We
integrate pre-computed GPT-4 text-embedding-ada-002
vectors within a compact, 12-million-parameter decoder-
only transformer, effectively distilling the contextual
understanding of a massive model into a lightweight
system. Our methodology involved training this custom
model from scratch using a meticulous strategy designed
to adapt the model specifically for storytelling.

A key contribution of this project is the optimization of the
trained model for practical deployment on consumer-
grade hardware, including low-end PCs and CPUs. After
initial training, we applied post-training quantization,
converting the model's weights from 16-bit floating-point
precision (FP16) to 8-bit unsigned integers (uint8). This
optimization yielded significant performance gains
without a noticeable degradation in narrative quality.

Comparative analysis between the normal and quantized
models demonstrates the effectiveness of this approach.
The quantization process reduced the model size by
49.5%, from 1546.04 MB to 780.03 MB. Furthermore, it
achieved a 55.4% speedup in average inference time,
decreasing from 21.701 seconds to 9.671 seconds. This
project provides strong evidence for an efficient paradigm
in model design, where the distilled intelligence of larger
models, combined with optimization techniques like
quantization, can be leveraged to create smaller, faster,
and highly capable specialized systems.

Index Terms- GPT-4 Embeddings, Model Compression,
Quantization , Real-Time Text Small
Language Model

Generation,

Abbreviations-

SLM : Small Language model

FP16 : 16-Bit Floating Point Precision
Uint8 : 8-bit unsigned integers

LLM : Large Language Model

GELU : Gaussian Error Linear Unit

GPU : Graphical Processing Unit

GPT : Generative Pre-Trained Transformer
MB : Megabytes

RAM : Random Access Memory

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53280 |

Page 1

https://ijsrem.com/
mailto:rakshitdabral1@gmail.com
mailto:archna.kumar@adgitmdelhi.ac.in

j” e 1Y
; IJSREM\

Sy e Jeurnal

W Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

L INTRODUCTION

The rapid advancement of Large Language Models
(LLM) such as GPT-4 has transformed natural language
processing, but their immense computational requirements
limit their accessibility for real-time and resource-
constrained environments. Conversely , Small Language
Models (SLMs) offer efficiency but often lack the creative
and semantic depth required for complex text generation
task. This work addresses the challenge of bridging the
gap between these two paradigms through a hybrid
architecture that combines pre-computed GPT-4
embeddings with a light weight transformer model. By
incorporating quantization, the system achieves reduced
latency and power consumption, making real-time story
completion feasible on standard or low-end devices. The
goal of this study is to explore how advanced compression
and embedding techniques can preserve linguistic quality
while significantly improving computational performance.

1.1 Challenges

The development of a quantized hybrid Small Language
Model (SLM) that integrates GPT-4 embeddings for real-
time story completion introduced notable
challenges. The foremost difficulty lay in maintaining the
fine balance between computational efficiency and

several

creative fluency. Reducing model precision through
quantization often compromised the depth and coherence
of the generated narratives, making it difficult to preserve
the expressive quality of the text while improving speed.
Integrating pre-computed GPT-4 text-embedding-ada-002
vectors into a compact decoder-only transformer also
proved intricate, as aligning these external semantic
representations with the model’s internal processing
required careful architectural tuning to prevent instability
or loss of contextual understanding. The limited diversity
of the TinyStories dataset further constrained the model’s
generalization, as the simplified linguistic structure
restricted its exposure to varied vocabulary and
storytelling styles. Evaluating the creative quality of
generated stories posed another challenge, since existing
quantitative metrics could not adequately capture elements
such as imagination, flow, and emotional depth, while
qualitative assessments remained partially subjective.
Additionally, achieving uniform real-time performance
across different hardware environments, especially on
low-end systems, was hindered by inconsistencies in
computational optimization and memory constraints. The
process of transferring knowledge from a large model like
GPT-4 to a smaller one also introduced instability, often
resulting in partial knowledge retention or overfitting.

Together, these obstacles highlight the central tension
between efficiency, scalability, and expressive power in
language model design, emphasizing the need for
continuous research in adaptive quantization techniques,
robust embedding integration, and fair
frameworks for creative Al systems.

evaluation

1.2 Need of Quantized Model

In recent years, the rapid growth of large language models
has revolutionized natural language processing, but their
immense size and computational demands have created
significant barriers to accessibility and deployment.
Quantized models have emerged as an essential solution
to this challenge, offering a way to drastically reduce the
memory footprint and inference time of neural networks
without severely compromising accuracy. The process of
quantization converts high-precision model parameters
into lower-bit representations, enabling models to run
efficiently on consumer-grade hardware, mobile devices,
and edge systems. This efficiency not only reduces energy
consumption and cost but also allows advanced Al
systems to be deployed in real-time environments where
latency and resource limitations are critical factors. For
applications such as story generation, virtual assistants,
and embedded Al systems, quantized models make it
possible to achieve near-instant responses while
maintaining coherent and contextually rich outputs.
Moreover, the growing emphasis on sustainable
computing has further
lightweight models that can deliver high performance with

increased the demand for

minimal environmental impact. Thus, the development of
quantized language models bridges the gap between the
high capability of large-scale architectures and the
practical constraints of real-world deployment, making
artificial intelligence more inclusive, scalable, and energy-
efficient.

1.3 Applications

® Conversational Al: Its lightweight design enables
deployment in chatbots , virtual assistants that require fast,
context aware responses without relying on cloud-based
large models

® FEdge and Mobile AI Applications : Quantized model
can run efficiently on mobile phones , tablets and
embedded devices, making advanced language generation
accessible without the need for high-end GPUs or internet
connectivity.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53280 |

Page 2

https://ijsrem.com/

j.-t' “ARe
@REME‘%
3 ©-Jeurnal

w Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

® Low- Resource Environment : Enables Al-powered
text generation and assistance in areas with limited
computational infrastructure, supporting border digital
inclusion and sustainability.

II. LITERATURE REVIEW

[1] Ronen Eldan and Yuanzhi Li , in their paper “Tiny
Stories” proved how small can a Large Language Model
be and still be efficient in English Text Generation. They
did this by training on a curated, simplified dataset of
short children’s stories. This model was trained under
10M parameters and generated multi-paragraph text with
good grammar and surprising reasoning for their size.
This paper also proposes human like GPT-4 based
evaluation rubic for generative quality.

[2] The paper “Deep Compression” found a three stage
pipeline which included pruning, trained quantization and
entropy coding can reduce model storage drastically with
little to no accuracy loss on vision models.

[3] In the paper “Hinton el al. 2015”
knowledge from large model to smaller model , is shown

transfer of

to increase the performance of small model beyond
training on original labels alone.

[4] The paper “FP8-BERT” shows that carefully applied
post-training quantization including INT8 and newer FP8
scheme can make a Transformer model run much faster
and smaller with minimal accuracy loss. Survey and
Transformer compression paper summarizes this process.
It suggests that FP8 often gives better accuracy than INTS
for many LLM models.

111 METHODOLOGY

3.1 Data Collections

Dataset: [5] The TinyStories dataset, created by Ronen
Eldan, is a collection of short stories generated by large
language models like GPT-3.5 and GPT-4. These stories
are designed to be simple enough for a young child to
understand, typically using a limited vocabulary and
straightforward sentence structures. The primary purpose
of this dataset is to facilitate research in smaller, more
efficient language models. By training on these simplified
stories, researchers can explore how to develop models
that comprehend and generate language without the

massive computational resources typically required for
state-of-the-art models. The dataset is particularly useful
for studying aspects of language acquisition and narrative
coherence in a controlled environment.

There are 2.12M rows in the training set and 22K rows in
validation set of this dataset.

To access the TinyStories dataset through the Hugging
Face Hub. It is available under the name
roneneldan/TinyStories. The data is provided in parquet
format, and can be loaded directly using the Hugging
Face datasets library in Python.

3.2 Data Preprocessing

The process of data preprocessing is divided into two
steps first is the Tokenization and the second one is
Serialization.

During the Tokenization step , the raw text data is
converted into a numerical format. This is done using
cl100k base tokenizer from the tiktoken library. Each
story is broken down into a sequence of integers where
each integer represents a specific word. This step is
essential because machine learning models operate on
numbers and not on text data.

After tokenization , all the integer sequences from the
entire dataset are combined into a single, continuous
stream and saved to a binary (.bin) file. This is
accomplished using a technique called memory-mapping
(np.memmap), which allow the program to handle a
massive amount of data on disk as if it were on RAM ,
without actually loading it all at once. This process is
done for both the training and the validation set, creating
train.bin and validation.bin. The primary reason for this
preprocessing step is to increase the efficiency. During the
model training, the model needs to rapidly access random
small chunks of data. Reading from a single, compact
binary file is significantly faster and more memory-
efficient than parsing countless individual text files, which
is crucial for accelerating the training process.

3.3 Model Selection:

Architecture:

The model in this paper is a decoder-only transformer
built from scratch using PyTorch, closely following the
GPT architecture. Its configuration is defined by
GPTConfig dataclass, specifying a vocabulary size of
100,277 , a context length of 256 tokens (block_size), an
embedding dimension of 1024 (n_embd) , with 16

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53280 |

Page 3

https://ijsrem.com/

International Journal of Scientific Research in Engineering and Management (IJSREM)

SO TY
@REM\
3 ©-Jeurnal
w Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

attention heads (n_head) and a stack of 24 transformer
layers (n_layers). This architecture begins by summing
token and

Positional embeddings, which are then processed through
24 stack of identical transformer blocks.

Each of these blocks uses a pre-norm design, applying
LayerNorm before its two main sub-layers:

A causal multi-head self-attention mechanism and a two
layer feed-forward network with a GELU activation.
Residual connections are used around both of these sub-
layers to aid gradient flow. After the final transformer
block, another LayerNorm is applied, followed by a final
linear layer (the language model head) that projects the
output back to the vocabulary size to produce logits for
the next token prediction. A key efficiency technique used
is weight tying, where the token embedding weights are
shared with this final language model head.

Python Libraries used:

Datasets
Tiktoken
Tqdm
Numpy

Hf xet
PyTorch [6]
Matplotlib [7]
Seaborn [8]
Pandas [9]

WX NN R WD -

3.4 Model Training

The model was trained for 20,000 iterations using the
AdamW optimizer [10] , which is well-suited for training
Transformers. A sophisticated learning rate schedule was
employed, beginning with a linear warmup phase for the
first 1,000 steps. During warmup, the learning rate
gradually increased from a small value to its peak of 1e-4.
This prevents large, unstable updates at the start of
training. After the warmup, the learning rate followed a
cosine annealing schedule, where it smoothly decreased
towards a minimum value, helping the model to settle into
a good minimum in the loss landscape.

Several key techniques were used to make the training
process both efficient and stable.

First the model is trained with mixed precision , the
training loop utilizes torch.amp.autocast which allow
operations to be performed in lower precision format like
floatl16. This significantly reduces GPU memory
consumption and accelerates calculations on compatible
hardwares.

Secondly, to prevent exploding gradient [11] , the
gradients were clipped to a maximum norm of 0.5 before
the optimizer step.

Through out the model training, the models performance
was closely monitored. For every 500 iterations, the
training was paused and the model loss was calculated for
both the subsets of training and the validation dataset.
This process was essential to diagnosing overfitting [12].
By comparing the training loss to the validation loss, it
was possible to ensure the model was generalizing well to
new, unseen data. The model's parameters (state dict)
were saved to a file (best model params.pt) only when
the validation loss reached a new minimum, ensuring that
the final saved model was the one that performed best on
unseen data. The final loss curves showed a steady
decrease in both training and validation loss, indicating a
successful and stable training run.

— train_loss

validation_loss

Loss

aa T - T T oy T T
0 5 10 15 20 25 30 35
Steps - Every 100 epochs

Fig 1. Training and Validation Loss

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53280 |

Page 4

https://ijsrem.com/

&2

W Volume: 09 Issue: 10 | Oct - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

3.5 Evaluations

The evaluation process begins with loading the base line
model “Normal Model” and then creating a “Quantized
Model” by converting the weights of its linear layers from
16-bit floating point number to more efficient 8-bit
unsigned integers. The evaluation focused on key
efficiency metrics across five distinct test parameters :
model size, inference speed, memory usage, while also
qualitatively comparing the generated text.

The results clearly demonstrated the benefits of this
optimisation.

The Model size comparison shows that quantization
reduced models disk footprint from 1546.04 MB to 780.03
MB, a significant reduction of 49.5%

Model Size Comparispn

1600 1546.04 MB

1400 ction: 49.5%
1200

1000

780.03 MB

800

600

Model Size (MB)

400

200

Normal
Model

Quantized
Model

Fig 2. Size Comparison

In terms of speed, the Average Inference Time chart
reveals that the quantized model was 55.4% faster, taking
an average of 9.671 seconds to generate a response
compared to the normal model's 21.701 seconds.

Average Inference Time
21.701s '

20 up: 55.4%
% B
o
c
o
o
Iy
LA
o 10
E
=
5
0
Normal Quantized
Model Model

Fig 3. Average Inference Time

The Inference Time per Prompt graph further confirms
that this speedup was consistent across all test inputs

Inference Time per Prompt
EE WNormal
3 Quantized

25
20
15
10
5
0
P1 P2 P3 P4 P5

Test Prompts

Time (seconds)

Fig 4. Inference time per prompt
In conclusion, the evaluation confirms that dynamic
quantization was highly effective, nearly halving the
model's size and more than doubling its inference speed
with a negligible impact on qualitative output.

© 2025, 1JSREM | https://ijsrem.com

DOI: 10.55041/1JSREM53280 |

Page 5

https://ijsrem.com/

Sy e Jeurnal

j.-t.' 1Y
@REME%

W Volume: 09 Issue: 10 | Oct - 2025

Iv.

V.

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

VL

CONCLUSION

This project was undertaken to tackle a fundamental
challenge in the deployment of large language models: the
inherent conflict between high performance and the
substantial computational resources they demand. This
work successfully demonstrates that optimization
techniques can deliver a powerful yet efficient solution
without compromising the quality of the output. By
training a GPT-style, decoder-only transformer from
scratch and subsequently applying dynamic quantization,
the project validates the hypothesis that it is possible to
create a lightweight and performant model suitable for
real-world applications. The evaluation results provide
compelling evidence for this approach. The application of
8-bit unsigned integer quantization led to a remarkable
49.5% reduction in the model's size and a 55.4% speedup
in inference time, all while maintaining a high level of
narrative coherence in the generated text. This project
serves as a strong proof-of-concept for a more practical
paradigm in Al development, showcasing that with the
right optimization strategies, it is entirely feasible to build

specialized, highly efficient systems on accessible
hardware.
FUTURE SCOPE

Building on the initial implementation of dynamic
quantization, a key next step is to explore more advanced
optimization techniques such as quantization-aware
training or pruning to further reduce the model's size and

enhance inference speed.

Another valuable direction involves architectural scaling
and specialization; the current 24-layer model could be
scaled up or down to analyze the trade-offs between
performance and computational cost, or fine-tuned on
specialized datasets to create highly capable, domain-
specific variants.

Finally, the optimized model, currently evaluated in a
development environment, could be integrated into a real-
world, user-facing application, such as a web-based story
generator or an API, to demonstrate its practical utility
and gather user feedback for iterative improvements.

REFERENCES

[1] Ronen Eldan & Yuanzhi Li, “TinyStories: How Small
Can Language Models Be and Still Speak Coherent
English? “, published in April 2023

[2] Song Han, Huizi Mao & William J. Dally , “Deep
Compression : Compressing Deep Neural Networks with
Pruning, Train Quantization and Huffman Coding”,
published in Feburary 2016

[3] Geoffrey Hinton , Oriol Vinyals & Jeff Dean , “
Distilling the knowledge in a neural network” , published
in March 2015

[4] Jianwei Li , Tianchi Zhang, Ian En-Hus Yen &
Dongkua Xu, “FP8-BERT: Post-Training Quantization for
Transformer” , published in December 2023

[5] R.Eldan ,” TinyStories Dataset”

(https://huggingface.co/datasets/roneneldan/TinyStories)

[6] A.Paszke et al, “PyTorch: An impressive Style,High
Performance Deep Learning Library,” in advances in
Neural Information Processing System 32 published in
2019(https://pytorch.org/get-started/locally)

A
in

[71J.D. Hunter, “Matplotlib:
Environment,” Computing
Engineering,vol9 ,no.3 , pp. 90-95 , published in 2007

2D Graphics
science and

(https://matplotlib.org/stable/users/index)

[8] Michael L. Waskom, “Seaborn : Statistical data

visualization “, published in April 2021

[9] Wes McKinney, “Pandas: A foundational Python
Library for Data Analysis and Statistics”, published in
January 2011

[10] Ilya Loshchilov & Frank Hutter ,” Decoupled Weight
Decay Regularization”, published in January 2019

[11] George Phillip, Dawn Song & Jamie G.
Carbonell,”The exploding gradient problem demystified-
definition , prevalence , impact , origin, tradeoff and
solutions “, published in April 2018

[12] Haidong Li, Jiongcheng Li, Xiaming Guan, Binghao
Liang , Yuting Lai & Xinglong Luo , “Research on
Overfitting of Deep Learning”, published in December
2019

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM53280 |

Page 6

https://ijsrem.com/
https://huggingface.co/datasets/roneneldan/TinyStories
https://pytorch.org/get-started/locally/
https://matplotlib.org/stable/users/index

