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Abstract  

The rapid expansion of metropolitan regions has intensified 

reliance on metro systems as the backbone of urban mobility. 

Accurate passenger flow prediction is essential for efficient 

scheduling, congestion management, and resource allocation. 

However, traditional statistical and survey-based methods fail to 

capture the complex, nonlinear, and dynamic patterns of metro 

ridership influenced by temporal, spatial, and external contextual 

factors. This paper presents a Metro Passenger Flow Prediction 

System using Adaptive Feature Fusion Networks (AFFNs), 

designed to integrate heterogeneous data sources such as historical 

travel records, weather conditions, holidays, and special events. 

The framework employs an Enhanced Multi-Graph Convolution 

with Gated Recurrent Units (EMGC-GRU) to model spatial 

dependencies across stations and temporal passenger flow trends. 

Additionally, a multi-task AFFN jointly predicts both Origin-

Destination (OD) and Inflow-Outflow (IO) flows, mitigating 

sparsity in OD matrices and improving accuracy. The system is 

implemented with Python, Django-ORM, MySQL, and a web-

based interface for real-time visualization and analytics. 

Experimental evaluation demonstrates significant improvements in 

forecasting accuracy and robustness, highlighting the model’s 

potential to enhance operational efficiency, passenger experience, 

and the development of smart city transportation solutions. 
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1.INTRODUCTION  

The rapid urbanization and continuous expansion of metropolitan 

regions have significantly increased reliance on metro systems for 

daily commuting. As the backbone of urban mobility, metro 

networks play a critical role in ensuring efficient, safe, and 

sustainable transportation. A key challenge in managing these 

systems is the accurate prediction of passenger flow, which 

directly impacts scheduling, congestion control, train deployment, 

and overall passenger experience.Traditional methods for demand 

estimation, such as statistical models and survey-based 

approaches, are often limited in their ability to capture the 

nonlinear, dynamic, and context-dependent nature of passenger 

behavior. Metro ridership is influenced by multiple factors 

including time-of-day, day-of-week, seasonal patterns, weather 

conditions, holidays, and special events. These variations create 

complex spatiotemporal dependencies that conventional 

techniques struggle to address, resulting in forecasting errors and 

operational inefficiencies. 

Recent advancements in machine learning and deep learning 

provide powerful alternatives by leveraging historical data and 

contextual features to learn hidden patterns in ridership trends. In 

particular, Adaptive Feature Fusion Networks (AFFNs) have 

emerged as a robust framework capable of dynamically 

integrating heterogeneous inputs such as origin-destination travel 

data, inflow–outflow records, and external contextual signals. By 

combining Convolutional Neural Networks (CNNs) for spatial 

feature extraction with Recurrent Neural Networks (RNNs/GRUs) 

for temporal sequence modeling, AFFNs can capture both station-

level dependencies and long-range passenger flow patterns.This 

research introduces a Metro Passenger Flow Prediction System 

based on AFFNs, designed to improve prediction accuracy and 

system adaptability. The framework extends to a multi-task 

learning model, where inflow–outflow (IO) predictions are used 

to strengthen origin–destination (OD) flow forecasting. The 

system also integrates external factors such as weather and events 

through an attention-based mechanism, ensuring context-aware 

adaptability. A web-based deployment using Python, Django-

ORM, and MySQL enables real-time accessibility, visualization, 

and decision support for metro operators. 

By bridging predictive modeling with practical deployment, this 

system contributes to smart transportation management, offering 

a scalable solution that can enhance passenger experience, 

optimize resource allocation, and support the development of 

resilient urban transit systems. 

 

II. LITERATURE SURVEY 

[1] Classical Time-Series Models (ARIMA/SARIMA). 

Early metro ridership forecasting relied on ARIMA/SARIMA to 

model seasonality and short-term autocorrelation. These methods 

are interpretable and lightweight but struggle with nonlinearities, 

regime shifts, and exogenous signals such as weather and events. 

[2] Feature-Engineered Regression and Tree Ensembles. 

Works using linear regression, Random Forests, and Gradient 

Boosting improved over pure ARIMA by ingesting engineered 

calendar/lag features. They remain limited in capturing complex 

spatiotemporal dependencies across stations and lines. 

[3] LSTM/GRU for Temporal Dynamics. 

Sequence models (LSTM/GRU) capture nonlinear temporal 

dependencies and outperform classical baselines for short-horizon 

inflow/outflow prediction; however, they typically treat stations 

independently and underutilize network structure. 

[4] CNN-LSTM Hybrids for Local Spatiotemporal Patterns. 

Convolution on grid-like representations followed by LSTM 

shows gains by extracting local spatial features before temporal 

modeling. Performance degrades when station topology is non-

Euclidean and irregular. 

[5] Graph Convolutional Networks (GCN) for Metro Topology. 

GCN-based methods encode station connectivity via adjacency 
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graphs (physical links or transfer relations), improving spatial 

representation but requiring careful graph design and often 

assuming static relationships. 

[6] Spatio-Temporal GCNs (STGCN/T-GCN). 

Coupling temporal modules (gated units) with spectral/spatial 

graph convolutions enhances forecasting by jointly learning along 

time and network axes. These models can still miss dynamic, 

context-driven changes in inter-station influence. 

[7] Diffusion/Flow-Based Graph Models (e.g., DCRNN). 

Diffusion convolutional recurrent networks capture directed, 

asymmetric flow on transit graphs, better reflecting passenger 

movement. Training can be data-hungry and sensitive to missing 

values and sensor noise. 

[8] Graph WaveNet and Multi-Graph Learning. 

Adaptive adjacency and multi-graph fusion (geodesic distance, 

ridership similarity, line membership) allow the model to learn 

latent station relationships, reducing manual graph engineering 

while improving long-range forecasting. 

[9] Transformer-Style Temporal Attention. 

Self-attention models learn long-range temporal dependencies and 

seasonality without recurrence, improving robustness to irregular 

intervals; pure Transformers, however, need large datasets and 

benefit from graph priors for space. 

[10] External Factor Fusion (Weather, Events, Holidays). 

Studies integrating exogenous variables via attention or gating 

consistently report accuracy gains, highlighting the importance of 

context. A key challenge is aligning noisy, heterogeneous signals 

with ridership time scales. 

[11] OD Matrix Estimation and Completion. 

Literature on OD estimation uses statistical calibration, matrix 

factorization, and Bayesian/EM approaches to infer sparse OD 

matrices from partial counts or AFC data. These help downstream 

prediction but may propagate bias if priors are mis-specified. 

[12] Multi-Task Learning for IO and OD. 

Joint training to predict inflow/outflow (easier, denser labels) and 

OD flows (sparser, high-dimensional) improves generalization 

and reduces data sparsity effects through shared representations 

and auxiliary losses. 

[13] Data Sparsity, Missingness, and Anomaly Handling. 

Robust imputation (graph-guided, low-rank, temporal 

smoothing), outlier detection, and event-aware training mitigate 

disruptions (special events, service incidents), enhancing stability 

under real-world noise. 

[14] Transfer Learning and Cross-City Adaptation. 

Domain adaptation and meta-learning transfer knowledge across 

lines/cities, reducing cold-start costs where historical data are 

limited. Aligning heterogeneous station layouts and travel 

behaviors remains a core difficulty. 

Synthesis and Gap. 

Across these strands, performance improves when models (i) 

respect network topology, (ii) capture long-range temporal 

structure, and (iii) fuse external context. Remaining gaps include 

dynamic relationship modeling between stations, robust learning 

under sparse OD labels, and principled fusion of heterogeneous 

exogenous signals. This motivates our Adaptive Feature Fusion 

Network (AFFN) with multi-graph spatial encoding, temporal 

gated units/attention, and multi-task OD–IO learning, designed to 

address these limitations while remaining deployable in real-time 

metro operations. 

 

III. EXISTING SYSTEM 

Traditional metro passenger flow prediction methods are 

primarily based on statistical regression models, survey-based 

demand estimation, and historical averages. While these 

approaches provide baseline insights, they suffer from limited 

adaptability to the dynamic and nonlinear nature of urban 

mobility. Direct estimation through passenger surveys is labor-

intensive and only reflects short-term demand, whereas 

regression-based models often assume static relationships 

between stations and fail to capture complex spatiotemporal 

dependencies. 

Another limitation is the inability to incorporate external 

contextual factors such as weather conditions, holidays, and 

special events, all of which significantly influence ridership. 

Existing systems also struggle with real-time adaptability, as most 

methods rely on offline data analysis and cannot adjust predictions 

when sudden disruptions occur. Furthermore, many traditional 

models operate on aggregated datasets that obscure fine-grained 

patterns such as station-level variations or peak-hour surges. 

Although some research prototypes attempted to use basic 

machine learning techniques (e.g., Decision Trees, Random 

Forests, Logistic Regression), these models showed inconsistent 

performance across diverse datasets and lacked robustness when 

handling sparse Origin-Destination (OD) matrices or incomplete 

inflow–outflow (IO) data. Consequently, existing systems are 

often reactive rather than predictive, offering descriptive statistics 

instead of actionable foresight for real-time metro operations. 

Disadvantages 

1. Inability to capture nonlinear, dynamic passenger flow 
patterns. 

2. Limited scalability and poor adaptability to large, 
complex metro networks. 

3. Failure to integrate external factors (weather, holidays, 
events). 

4. Dependence on static statistical assumptions with reduced 
predictive accuracy. 

5. Lack of real-time visualization and operator-friendly 
decision support tools. 

 

IV. PROPOSED SYSTEM 

The limitations of traditional forecasting approaches are 

addressed through an Adaptive Feature Fusion Network (AFFN)–

based framework designed for metro passenger flow prediction. 

The proposed system integrates both spatial dependencies across 

stations and temporal dynamics of ridership patterns, while 
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incorporating external contextual factors such as weather 

conditions, public holidays, and special events.At the core of the 

framework is the Enhanced Multi-Graph Convolution with Gated 

Recurrent Units (EMGC-GRU) model. Unlike conventional 

models that rely on a single predefined adjacency graph, EMGC-

GRU utilizes multiple knowledge graphs—including 

geographical proximity, ridership similarity, and functional 

connectivity—along with automatically learned hidden 

correlations. This ensures that both explicit and implicit inter-

station relationships are effectively captured.Each GRU layer is 

augmented with graph convolutional operations to extract 

temporal trends while preserving spatial dependencies. 

Furthermore, an attention-based mechanism dynamically adjusts 

the influence of external contextual factors, enabling the model to 

remain robust against irregular disturbances.To address the 

sparsity and incompleteness of Origin–Destination (OD) matrices, 

the proposed system extends AFFN into a multi-task learning 

framework. By jointly predicting both OD flows and Inflow–

Outflow (IO) volumes, the model leverages the denser IO data to 

improve the accuracy of OD flow estimation. This asymmetric 

multi-task learning significantly enhances prediction reliability in 

large-scale, real-world metro networks. 

Fig 

1: Proposed Model 

Advantages: 

·  Accuracy: The AFFN model, with multi-graph convolution and 

GRU integration, significantly improves prediction reliability 

compared to traditional statistical and single-model approaches. 

·  Scalability: Capable of handling large-scale metro networks 

with numerous stations, diverse passenger patterns, and multi-

source data inputs. 

·  Visualization: Interactive dashboards with heatmaps, line 

graphs, and trend analysis improve interpretability for operators 

and policymakers. 

·  User Accessibility: A web-based interface ensures cross-device 

usability, allowing access through desktops, tablets, and mobile 

devices. 

·  Context Awareness: Incorporates external factors such as 

weather conditions, holidays, and events through attention 

mechanisms, enabling robust and adaptive forecasting. 

·  Future Integration: Designed with modular architecture to 

support real-time ticketing data, IoT sensors, and multimodal 

transport datasets 

V. IMPLEMENTATION 

A. System Architecture 

The system is designed using a three-tier architecture 

comprising the frontend, backend, and machine learning (ML) 

layer. The frontend provides an interactive web-based dashboard 

for operators, the backend manages data communication and 

request handling, and the ML layer executes the Adaptive Feature 

Fusion Network (AFFN) model. This modular architecture 

ensures scalability, maintainability, and seamless integration of 

future upgrades such as real-time data streams or 

multimodal transport extensions. 

B. Authentication and User Management 

A secure authentication module is implemented to restrict access 

to authorized users. The login system manages registered 

operators, while administrative roles are granted additional 

privileges for data management and system configuration. This 

ensures that predictive results and analytics are accessible only to 

verified stakeholders, thereby maintaining system integrity. 

C. Input Handling 

The system accepts structured data such as Origin–Destination 

(OD) matrices, Inflow–Outflow (IO) counts, and contextual 

datasets (weather, holidays, special events). Input validation 

mechanisms identify missing or inconsistent entries, ensuring that 

the AFFN model operates on clean and reliable data. Automated 

preprocessing pipelines handle normalization, feature extraction, 

and temporal alignment of datasets. 

D. Model Processing and Prediction Workflow 

The AFFN model processes the input data through multi-graph 

convolution layers for spatial feature extraction, GRU units for 

temporal sequence modeling, and an attention mechanism for 

external factors. Predictions include both OD passenger flows and 

IO volumes, enabling metro operators to gain a holistic view of 

network-level demand. 

E. Visualization and Post-Processing 

Predictions are post-processed into operator-friendly outputs, 

which are visualized in the form of heatmaps, line charts, and 

trend analytics. These interactive dashboards allow decision-

makers to quickly interpret passenger demand patterns and plan 

operational strategies such as train frequency adjustments or 

crowd management. 
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F. Error Handling and Security 

Robust error-handling ensures uninterrupted system operation 

even when facing invalid inputs or partial data availability. 

Security features such as data encryption, secure API endpoints, 

and role-based access control safeguard sensitive ridership data 

and maintain system trustworthiness. 

VI. CONCLUSIONS 

This paper presented a Metro Passenger Flow Prediction System 

leveraging Adaptive Feature Fusion Networks (AFFNs) to 

address the limitations of traditional forecasting approaches. By 

integrating multi-graph convolution, gated recurrent units (GRU), 

and attention mechanisms, the system effectively captures both 

spatial dependencies across stations and temporal dynamics of 

passenger movement. The adoption of a multi-task learning 

framework further enhances performance by jointly predicting 

Origin–Destination (OD) flows and Inflow–Outflow (IO) 

volumes, thereby mitigating the challenge of sparse OD data. 

The implementation of the system using Python, Django-ORM, 

and MySQL, coupled with a web-based visualization interface, 

ensures practical usability for metro authorities. Experimental 

evaluation confirms improvements in accuracy, scalability, and 

robustness compared to conventional models. Moreover, the 

interactive dashboards make predictive insights accessible and 

actionable, supporting operational decision-making in areas such 

as congestion management, train scheduling, and passenger 

experience optimization. 

Overall, the proposed system demonstrates the potential of deep 

learning–driven forecasting frameworks in advancing smart urban 

transportation. By bridging advanced predictive modeling with 

real-world deployment, it contributes to the development of 

resilient, efficient, and intelligent metro systems that align with 

the broader vision of smart city initiatives. 

VII. FUTURE ENHANCEMENTS 

First, predictive accuracy can be further enhanced by 

incorporating additional features such as demographic, socio-

economic, and land-use indicators, which strongly influence 

metro travel behavior. Integrating more advanced architectures 

such as Graph Attention Networks (GATs), Transformer-based 

temporal models, and hybrid deep learning frameworks could 

capture deeper nonlinear patterns and improve robustness. 

Second, real-time data integration is a critical direction. The 

current system primarily utilizes retrospective datasets; extending 

it to ingest live streams from Automated Fare Collection (AFC) 

systems, IoT sensors, and passenger mobile applications would 

enable dynamic updates and timely responses to fluctuations in 

ridership demand. 

Third, the scope of datasets can be expanded beyond a single city 

to include multi-city or cross-regional data. Such an extension 

would enable comparative analysis across different urban 

networks and support transfer learning, where knowledge gained 

from one metro system is adapted to another with limited 

historical data. 

Fourth, advanced visualization and simulation tools can be 

incorporated. Interactive dashboards with heatmaps, flow 

animations, and “what-if” scenario simulators would allow metro 

operators to test alternative scheduling strategies, evaluate policy 

interventions, and assess the potential impacts of disruptions. 

Finally, passenger-oriented applications can be developed. By 

integrating the prediction system with mobile apps or journey 

planners, commuters could be informed about congestion levels, 

recommended travel times, and alternative routes, thus enhancing 

passenger experience while balancing network loads. 

Together, these enhancements would strengthen the system into a 

comprehensive decision-support platform, positioning it as a 

critical enabler of smart, adaptive, and sustainable urban 

transportation. 
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