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Abstract: Striped noise in remote sensing image (RSI) 

often caused by sensor companies significantly impedes 

the effectiveness of critical applications such as 

environmental surveillance and disaster responses. To 

improve this, we propose an improved fracture approach 

based on the Multiplier Directional Method  (ADMM). 

The extended model includes a robust weight 

mechanism, evidence-formed initialization strategies, and 

adaptive impulse-based step sizes to improve both 

accuracy and efficiency. This model has been rigorously 

tested on both synthetic data records (such as Cuprite and 

Pavia University) and real data sets (including Hyperion, 

M3, Aqua Modis and Terra Modis). This performance is 

evaluated based on a comprehensive statement of 

valuation metrics including PSNR, SSIM, D, ICV, and 1 

billion. The results consistently show that our approach 

surpasses major disruption technologies such as WTAF, 

UTV, GSR, DLS, RBS, LRHP, and GDF. Surprisingly, 

this method offers a profit of 2.5 dB  in PSNR, reducing 

execution time by about 1x. 15%, even under different 

strip noise. 

Keywords: Remote sensing, stripe noise removal, 

ADMM, optimization, weight-based detection, image 

restoration. 

1. INTRODUCTION 

     Furthermore, from forecasting environmental 

changes and natural disasters to managing natural 

resources, constraints (RSIs) are an important tool for a 

wide range of applications. These images are recorded 

via satellites or sensors in the air and provide detailed 

insights into land cover, climate behavior, and various 

Earth system processes. The persistent challenges 

affecting its quality are stripe sounds-hidden linear 

artifacts caused by sensor mismatch, calibration issues, 

or atmospheric interference during image acquisition. 

These artifacts not only affect the visual quality of the 

image, but also affect the accuracy of further analysis or 

interpretation. 

     Filing-based techniques, such as those using 

Fourier or wavelet transforms, work over the frequency 

range, but often obscure fine textures and details. 

Statistical methods such as histogram match typically 

require reference images that are not always accessible 

in real scenarios. Deep learning-based solutions, 

particularly those using folding networks (CNNS), have 

effectively learned complex noise patterns, but are 

computing and tend to be sensitive to domestic shifts. 

     Optimization-based methods such as low matrix 

recovery and tensor transformations, for example, 

provide a more mathematical approach to destruction, 

but are difficult to maintain details and can be used for 

large data records. Recognizes photos. Based on the 

original ADOM framework, our model presents three 

important improvements. Ensures sophisticated weight 

recognition strategies for more accurate identification of 

noise, an initialization mechanism of evidence control to 

ensure stable and accurate starting conditions, and 

immunity-inspired adaptation level size to significantly 

increase the rate of convergence without the influence 

of the quality of the results. 

      Together, these improvements will improve 

image structure storage and speed up processing. Both 

are extremely important for real remote sensing 

applications.  Evaluation metrics include top signal-to-

noise ratio (PSNR), structure-like index (SSIM), 

distortion (D), image contrast variation (ICV), and mean 

relative deviation (MRD). The results show that our 

model consistently outputs major destruction methods 

such as WTAF, UTV, GSR, DLS, RBS, LRHP, GDF, 

etc., with PSNR profits of up to 2.5 dB (to reach 38.1 

dB), 0.98, Crobration outputs about 15% on the 

computer. -rund -29 second approach.These results 

support the effective compensation of the model's 

capabilities, noise suppression, detail storage and 

computational efficiency, making them a powerful and 

http://www.ijsrem.com/
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practical solution for improving remote sensing images 

in many difficult conditions. 

2. LITERATURE REVIEW 

     Stripe noise removal in remote sensing images 

has been an active area of research for decades due to its 

critical impact on image interpretability and 

downstream tasks such as classification, change 

detection, and segmentation. Various approaches have 

been explored to address this challenge, each grounded 

in different theoretical frameworks, ranging from 

classical signal processing to modern machine learning 

and optimization techniques. 

 

2.1 Filtering-Based Approaches: 

     Filtering-based methods, such as Fourier 

transform and wavelet filtering, have been widely used 

to address stripe noise in remote sensing images (RSI) 

by exploiting frequency domain characteristics or multi-

resolution analysis. These techniques effectively 

suppress periodic noise patterns associated with sensor 

artifacts. However, they often introduce blurring 

artifacts, particularly along image edges and fine details, 

due to their reliance on global smoothing operations. 

This limitation makes them less suitable for applications 

requiring high-fidelity preservation of spatial features, a 

critical aspect addressed by the enhanced ADOM model 

in this project through its targeted optimization 

approach. 

2.2 Statistical-Based Approaches: 

     TStatistical-based techniques, including 

histogram matching and moment matching, leverage 

statistical properties of RSI to detect and mitigate stripe 

noise. These methods align the intensity distributions of 

noisy and reference images to restore uniformity.While 

effective in controlled scenarios with available reference 

data, their dependency on such references restricts their 

applicability to diverse real-world datasets, such as 

those used in this project (e.g., Hyperion, M3, Aqua 

MODIS, Terra MODIS). The enhanced ADOM 

overcomes this by eliminating the need for external 

references through its adaptive weight-based detection 

strategy. 

2.3 Deep Learning-Based Approaches: 

     Those using a deep learning-based approach, 

especially those using foldable folding networks 

(CNNS), have acquired importance for stripe noise 

removal by learning complex noise patterns. These 

models achieve high accuracy in monitored settings and 

can be generalized under similar imaging conditions. 

Their computing strength requires important training 

resources and natural limiting performance in the 

country on invisible data records. The extended ADOM 

model for this project provides an arithmetic efficient 

alternative that has been validated in both simulations 

(Cuprite, Pavia University) and in real data records, 

without the need for comprehensive training. 

   2.4 Optimization-Based Approaches: 

     Optimization-based methods such as repairs with 

low rank matrix  and low tensor apronation use 

mathematical framework conditions to isolate strip 

noise from the underlying image content by enforcing 

economic or low rank restrictions. 

These techniques improve intoxication by using 

previous knowledge of noise structures, but often affect 

the conservation of details, particularly slowing 

convergence on large scales. The expanded ADOM 

model deals with these defects by integrating  ADMM-

based acceleration strategies, evidence-based starting 

point control, and momentum-transferred step sizes. 

2.5 Summary of Literature Review: 

     After studying the landscape of Stripe-Decay 

removal technology, it is clear that each approach not only 

brings  valuable to the table, but also includes its own 

compromises. Filtering methods such as Fourier transform 

and wavelet filtering perform decent jobs when tackling 

noise from working in the frequency domain.  

     Statistical techniques such as histograms and 

moment matching provide clever ways to align beautiful 

photos at loud volumes, but if reference photos are not 

practical, they will hit a wall. Next, there is CNN from 

deep learning crowds with the ability to learn noise 

patterns, but requires strong computing power and can 

come across new data sets. It is particularly slow with 

large data records that deal with  remote sensing.  

     Here, the improved ADOM is coming out and 

combines these world's best. The optimization of starting 

points with weight-based, evidence-based smart, and 

acceleration in momentum-based step steps effectively 

ensures noise fits effectively, maintains image quality and 

reduces latency. Our experiments show that competition 

outweighs. 
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              3. PRELIMINARIES 

   3.1 Notations: 

 To establish a clear foundation for the mathematical 

framework of the enhanced ADOM     model, we 

define the following notations used throughout this 

paper: 

 Rm x n: Represents the space of real-valued 

matrices with dimensions m×n, corresponding 

to the structure of remote sensing images (RSI) 

in this study.  

 ∥⋅∥1: Denotes the L1-norm, which measures the 

sum of absolute values of a matrix or vector, 

often used to enforce sparsity in optimization 

problems like stripe noise removal.  

 ∥⋅∥wn,1: Refers to the weighted L1-norm, where 

wn is a weight matrix that adapts to the noise 

characteristics, enhancing the model's ability to 

target stripe noise while preserving image 

details.  

 ∥⋅∥wg,2,1: Indicates the weighted L2,1-norm, with 

wg as the group weight, promoting structured 

sparsity across groups of pixels, which is 

particularly useful for capturing the linear 

nature of stripe noise.  

 ∇y: Represents the vertical gradient operator, 

which computes the difference between 

adjacent pixels along the vertical direction, 

aiding in the detection of stripe patterns that 

typically align with sensor scan lines. 

 

These notations provide the building blocks for 

formulating the optimization problem          and 

implementing the ADMM-based solution in the 

enhanced ADOM framework. 

  3.2 Problem Formulation: 

  Stripe noise in remote sensing images is modeled as 

an additive component that corrupts    the underlying 

clean image. Mathematically, this can be expressed as: 

                             O=D+S 

where: 

 O∈Rm×n is the observed image, representing the 

noisy input captured by the remote sensing 

system. 

 D∈Rm×n is the desired noise-free image, which 

we aim to recover. 

 S∈Rm×n is the stripe noise component, 

characterized by its linear, periodic structure 

along the direction of sensor scanning. 

     This additive model assumes that stripe noise is 

independent of the image content and      can be isolated 

through optimization techniques. The goal of the 

enhanced ADOM model is to estimate S accurately and 

subtract it from O to recover D, while ensuring that the 

structural and textural details of the original image are 

preserved. The formulation aligns with the approach in 

the reference study, providing a foundation for the 

optimization framework developed in the subsequent 

sections 

   3.3 Additional Context: 

      The enhanced ADOM model builds on the 

ADMM framework by introducing adaptive strategies, 

such as weight adjustments and dynamic step-size 

control, to address these complexities. This approach is 

particularly relevant for the wide range of RSI datasets 

evaluated in this study, including simulated examples 

like Cuprite and Pavia University, as well as real-world 

cases like Hyperion, M3, Aqua MODIS, and Terra 

MODIS. By establishing a solid preliminary framework, 

we lay the groundwork for a robust and efficient 

solution tailored to the practical demands of remote 

sensing image processing. 

   3.4 Existing Techniques: 

     Existing techniques for stripe noise removal in 

remote sensing images include filtering-based methods 

like Fourier transform and wavelet decomposition, 

which target periodic noise; statistical-based approaches 

such as histogram and moment matching that align 

noisy images with references; deep learning methods 

using convolutional neural networks (CNNs) to learn 

noise patterns; and optimization-based techniques like 

low-rank matrix recovery and tensor approximation that 

enforce sparsity or low-rank constraints. The enhanced 

ADOM model builds on optimization-based methods, 

overcoming their limitations with adaptive strategies to 

improve performance and efficiency. 

3. PROPOSED ENHANCED ADOM 

MODEL 

A. Optimization Function 

4.1A Objective Function: 

    The enhanced ADOM minimizes the following 

objective function to estimate the stripe noise 

component  S: 

http://www.ijsrem.com/
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   argmin{ ∥  ∇yS  ∥1 +λ 1∥  ∇y(O−S)  ∥  wn,1+λ2  ∥  S  

∥  wg,2,1  } 

Here, the objective function comprises three terms, 

each serving a distinct purpose in the destriping process: 

1. ∥ ∇yS ∥1: This term enforces sparsity in the vertical 

gradient of the stripe noise S, leveraging the fact 

that stripe noise in RSI typically appears as linear 

patterns along the sensor scanning direction 

(vertical in most cases). The L1-norm encourages 

the noise component to have sparse gradients, 

effectively isolating the periodic noise patterns 

observed in datasets like Aqua MODIS and Terra 

MODIS. 

 

2.  λ1 ∥ ∇y (O−S) ∥ w n,1: This term focuses on 

preserving the details of the clean image D D, 

represented as O−S, where O is the observed noisy 

image.The weighted L1-norm, with wn as the 

adaptive weight, ensures that the vertical gradients 

of the clean image remain intact, minimizing 

artifacts in regions with high-frequency details, such 

as those in the Cuprite and Pavia University 

datasets. The weight wn dynamically adjusts based 

on noise intensity, as validated in the empirical 

analysis , ensuring robustness across varying noise 

levels. 

 

3. λ2 ∥ S ∥ wg,2,1: This term imposes a group sparsity 

constraint on the stripe noise S, using the weighted 

L2,1-norm with group weight wg. This is 

particularly effective for capturing the structured 

nature of stripe noise, which often affects groups of 

pixels in a correlated manner. The adaptive weight 

wg enhances the model’s ability to handle diverse 

noise patterns, contributing to the low Distortion 

(D) values (e.g., 0.03) and Mean Relative Deviation 

(MRD) scores (e.g., 0.02) observed in the project 

results. The regularization parameters λ1 and λ2 

balance the trade-off between noise removal and 

detail preservation. Optimal values (λ1=0.01, 

λ2=0.005) were determined through parameter 

selection experiments, ensuring the model achieves 

high PSNR (up to 38.1 dB) and SSIM (0.98) across 

all tested datasets. 

 

 

 

 

 

   4.2A FlowChart: 

 

 

 

   4.3A Constrained Objective Function: 

     To make the optimization problem more tractable 

and computationally efficient, the enhanced ADOM 

introduces auxiliary variables A A A, B B B, and C C 

C, reformulating the objective function into a 

constrained form: 

  argmin { ∥ ∇y S ∥1 + λ1 ∥ A ∥ wn,1 + λ2 

∥ C ∥ wg,2,1 } 

    S,A,B,C 

    subject to the following constraints: 

 A = ∇ y ( O – S ) 

 B = ∇ y S 

 C = S 

 

This reformulation decouples the original problem 

into smaller subproblems, facilitating the application of 

the ADMM framework. The auxiliary variables serve 

the following purposes: 

• A represents the vertical gradient of the clean 

image, allowing the model to focus on preserving 

structural details while applying the weighted L1-

norm. 

• B captures the vertical gradient of the stripe noise, 

aligning with the sparsity constraint enforced by 

the L1-norm. 

• C corresponds to the stripe noise itself, enabling 

the group sparsity constraint via the weighted 

Fig: 1 

Fig: 1 
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L2,1-norm. 

     This constrained formulation is key to achieving the 

computational efficiency observed in the project, with 

execution times reduced to 29.8 s on average, a 15% 

improvement over methods like GDF (35.0 s). 

  4.4A Augmented Lagrangian Function: 

       To solve the constrained optimization problem, the 

enhanced ADOM employs the augmented Lagrangian 

method, which incorporates the constraints into the 

objective function using Lagrange multipliers and 

penalty terms. The augmented Lagrangian function is 

defined as: 

L(S,A,B,C,τ1,τ2,τ3)=∥∇yS∥1+λ1∥A∥wn,1+λ2∥C∥wg

,2,1+2ρ1      ∥A−∇y(O−S)+τ1∥2+2ρ2∥B−∇yS+τ2∥2+2ρ3

∥C−S+τ3∥2 

where: 

• τ1,τ2,τ3 are the Lagrange multipliers associated 

with the constraints A=∇y(O−S), B=∇yS, C=S, 

respectively. 

• ρ1,ρ2,ρ3 are penalty parameters that control the 

strength of the constraint enforcement, ensuring 

convergence while maintaining numerical 

stability. 

 

B. Optimization Process 

     The optimization process of our enhanced 

ADOM model is the heart of its ability to clean up stripe 

noise in remote sensing images (RSI) while keeping 

things fast and effective. Using datasets like Cuprite, 

Pavia University, Hyperion, M3, Aqua MODIS, and 

Terra MODIS, we’ve fine-tuned this process to hit 

impressive numbers—think PSNR up to 38.1 dB, SSIM 

at 0.98, and a quick 29.8 s runtime. Here’s how it works 

in a nutshell, with a human touch. 

  4.1B Weight Control: 

     We tweak the weights wn w_n wn and wg w_g 

wg to match the noise patterns in each image, using a 

momentum factor α \alpha α and a residual parameter γ : 

wnk+1=(1−α)wnk+α∣∇y(O−Sk)∣ 

wgk+1=(1−α)wgk+α∣Sk∣γ 

Think of wn as a guide to preserve the clean image’s 

details—like the textures in Cuprite—while wg zeroes 

in on the noise itself, helping us nail structured patterns 

in Hyperion or M3. The momentum α keeps updates 

smooth, and γ highlights the noisy spots. This trick 

boosts PSNR by about 1.5 dB and keeps distortion (D) 

low at 0.03. 

   4.2B Starting Point Control: 

     We set a smart starting point by tweaking the 

initial threshold based on the noise level in the image. 

It’s like getting a head start—by gauging noise intensity 

(think variance or gradients), we make sure our first 

guess at the noise S S S is on point. This cuts down 

iterations to 15-20 (see Figure 16) and helps us hit high 

PSNR (38.1 dB) while keeping details sharp, with ICV 

at 0.05, unlike methods like GDF that miss this step. 

    4.3B Step-Size Control: 

     To speed things up without losing balance, we 

use momentum and damping in our updates: 

Sk+1=Sk+μ(Sk−Sk−1)−η∇L(Sk) 

The momentum μ gives us a push forward, helping 

us skip past roadblocks and converge faster—shaving 

15% off runtime. The damping η keeps us steady, 

avoiding wild jumps. This combo adds 0.5 dB to PSNR 

and ensures we handle noise levels smoothly across 

datasets. 

   4.4BADMM-Based Subproblem Sloving: 

      We use ADMM to break the problem into bite-

sized pieces, iteratively updating S, A, B, C, and the 

multipliers τ1,τ2,τ3. It’s like solving a puzzle—piece by 

piece, we adjust S(the noise), tweak A, B, and C to fit 

our constraints, and keep going until everything clicks 

(residuals are tiny or we hit our iteration cap). This 

approach, paired with our weight, starting point, and 

step-size tweaks, delivers top-notch results: PSNR of 

38.1 dB on Pavia University, 37.5 dB on Hyperion, and 

a solid SSIM of 0.98, all while staying fast and reliable. 

     

4.5B Future Scope: 

     The enhanced ADOM model excels in stripe 

noise removal for remote sensing images, achieving a 

PSNR of 38.1 dB, SSIM of 0.98, and a runtime of 29.8 s 

across datasets like Cuprite, Pavia University, Hyperion, 

M3, Aqua MODIS, and Terra MODIS. Future work 

could integrate deep learning to boost performance on 

complex noise patterns, extend the model to handle 

other noise types like Gaussian or speckle, and leverage 

GPU acceleration to further reduce processing time, 

enabling real-time applications in environmental 

monitoring and beyond. 

 

Fig: 3 (Table2) 
Fig: 3 (Table2) 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

A. Datasets and Evaluation Metrics: 

❖ Simulated Datasets: Cuprite, Pavia University.  

❖ Real Datasets: Hyperion, M3, Aqua MODIS, 

Terra MODIS.  

❖ Metrics: PSNR (dB), SSIM, D, ICV, MRD. 

 

B. Quantitative Evaluation: 

1) Simulated Image Data 

     Table 1 compares ADOM with WTAF, UTV, GSR, 

DLS, RBS, LRHP, and GDF on Cuprite and Pavia 

University across five cases. 

 

                                      Fig: 2 (Table1) 

ADOM shines here, hitting a PSNR of 38.1 dB—way 

ahead of GDF’s 35.6 dB—and an SSIM of 0.98, showing 

it keeps images structurally intact. It also minimizes 

errors, with D at 0.03, ICV at 0.05, and MRD at 0.02, 

meaning it preserves details and reduces noise better than 

the rest. Plus, it’s faster, taking only 29.8 seconds 

compared to GDF’s 35.0 seconds, a solid 15% time 

savings 

2) Real Image Data 

     Table 2 shows how ADOM performs on real-world 

datasets: Hyperion, M3, Aqua MODIS, and Terra 

MODIS. Since ADOM outperformed others in simulated 

tests, we focus on its results here across the same metrics. 

 

 

          On real datasets, ADOM keeps up its strong 

performance. Hyperion sees a PSNR of 37.5 dB and 

SSIM of 0.97, while Aqua MODIS hits 37.2 dB and 

0.97—showing consistent quality across datasets. The 

error metrics (D, ICV, MRD) stay low, with Hyperion 

and Aqua MODIS at D of 0.04 and MRD of 0.03, 

proving ADOM handles real-world noise well without 

losing details. Runtimes hover around 30 seconds, with 

Aqua MODIS at 29.8 seconds, making it practical for 

real-world use. 

C. Qualitative Evaluation: 

1) Simulated Image Data 

1.1 Cuprite shows reduced noise and preserved edges 

  

Fig: 3 (Table 2) 
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1.2 Performance Metrics for Cuprite Cases 

 

 

1.3 Pavia University shows reduced noise and preserved 

edges 

 

 

1.4 Performance Metrics for Pavia University Cases 

 

2) Real Image Data 

     The qualitative evaluation on real-world datasets—

Hyperion, M3, Aqua MODIS, and Terra MODIS—

demonstrates the enhanced ADOM model’s ability to 

effectively remove stripe noise while preserving image 

integrity. For Hyperion the destriping eliminates linear 

Fig: 5 

 

Fig: 7 

Fig: 4 

Fig: 6 
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noise patterns without blurring fine details, maintaining 

clarity in spectral features. Similarly, M3 shows restored 

uniformity in regions previously affected by noise, with 

no noticeable distortion. Aqua MODIS and Terra MODIS 

also exhibit clear noise removal, preserving critical 

textures and edges essential for applications like 

environmental monitoring. These visual outcomes align 

with the quantitative metrics (e.g., PSNR of 37.5 dB for 

Hyperion, SSIM of 0.97 for Aqua MODIS), confirming 

ADOM’s robust performance on real RSI data with 

diverse noise characteristics. 

D. Empirical Analysis: 

     This section highlights how well the improved ADOM 

model performs in real-world scenarios, using datasets 

like Cuprite, Pavia University, Hyperion, M3, and 

MODIS. 

1) Noise Handling: ADOM stays strong even under 

different noise levels, keeping image quality high with 

PSNR values between 37.1 and 38.1 dB. This makes it 

reliable for remote sensing tasks with varying noise 

conditions. 

 

 

 

 

2) PSNR w.r.t λ1 and λ2 iteration number: 

 

 

3) PSNR w.r.t threshold parameter: 

 

 

4) Iteration number w.r.t threshold parameter 

 

 

6. CONCLUSION 

     The enhanced ADOM model marks a significant step 

forward in stripe noise removal for remote sensing 

images (RSI), delivering impressive results across both 

simulated and real-world datasets. It achieves a peak 

PSNR of 38.1 dB, an SSIM of 0.98, and a swift execution 

time of 29.8 seconds, outperforming existing methods 

like WTAF, UTV, GSR, DLS, RBS, LRHP, and GDF. 

These metrics highlight ADOM’s ability to effectively 

eliminate noise while preserving critical image details, all 

while being 15% faster than its closest competitor, GDF. 

Looking ahead, future work will explore integrating deep 

learning techniques to further enhance the model’s 

capabilities, broadening its applications to tackle more 

complex image restoration challenges in remote sensing 

and beyond. 

Fig: 8 

Fig: 10 

Fig: 11 

Fig: 12 

Fig: 9 
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