
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 07 | July - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 1

 Advanced Bug Report Prediction Through Nature-Based Ensemble

Machine Learning

Abhijeet. Premanand. Naik1, Dr. T Vijaya Kumar2

1 Student, Department of MCA, Bangalore Institute of Technology, Karnataka, India
 2Professor & Head, Department of MCA, Bangalore Institute of Technology, Karnataka, India
---***---
Abstract - In today's software development world, quickly

and accurately classifying bug reports is crucial for fixing

issues on time and keeping software quality high. Bugs are a

vital part of this process, carrying detailed information such as

description, status, reporter, assignee, priority, severity,

among others. It becomes tiresome and time-consuming to

analyze these reports manually in search of all defects,

especially when the size of these reports increases. Thus,

automation is one of the best solutions. While current research

is focused mainly on automating the identification of bug

severity or priority, they often forget identification based on

the nature of the bugs, which requires multi-class

classification. A new prediction model has been used that

analyzes BRs for the prediction of nature of the bugs. This

model will combine the ensemble ML algorithm with NLP

and ML techniques. In particular, the model is tested against

publicly available datasets from Mozilla and Eclipse, which

further categorize the bugs into six types: program anomaly,

GUI, network or security, configuration, performance, and

test-code. The results indicate that our model gave

significantly higher accuracy compared to many pre-existing

models without text augmentation, at 90.42 percent and with

text augmentation at 96.72 percent.

Keywords: Natural language Processing (NLP), Machine

Learning (ML), Bug Reports (BRs)

I. INTRODUCTION

In the modern digital age, software systems are important to

many aspects of our life and advance technology throughout a

broad spectrum of industries. Software becomes increasingly

difficult to maintain dependable and functional as it becomes

more complicated. Finding defects in software is a significant

problem that may have an impact on both the program's

functionality and user experience. As a solution to this issue,

our project sorts and detects software faults using state-of--art

machine learning techniques with the goal of improving

software maintenance. Software bugs are difficult to prevent

and this might result in anything from minor glitches to

catastrophic malfunctions. These problems may jeopardize the

security and functionality of the software. Although

conventional bug prediction techniques are helpful, they

frequently cannot keep up with the intricacy of today's

software. To increase the accuracy and dependability of bug

prediction, our project combines ML techniques with NLP.

These integrated methods leverage each model's strengths by

combining multiple learning algorithms. More accurate

projections are produced by this collaborative method than by

using a single model alone.

Our methodology focuses on classifying six report categories

Program Anomaly GUI, Network or Security, Configuration,

Performance, and Test-Code based on type of bug. By

addressing a broad spectrum of software bugs, this grouping

improves prediction accuracy. Our model integrates both NLP

and ML techniques to build a unified algorithm that evaluates

reports of bug and identifies the various vulnerabilities. We

use the public datasets from two popular online bug databases,

Eclipse and Mozilla, to test our proposed methodology. These

datasets provide a multitude of reports that are listed into the

six previously described classes. Our methodology entails

compiling and sanitizing bug report data, followed by the

identification and selection of the critical components most

influential in the incidence of bugs.

While simultaneously speeding up the resolution process, the

suggested method automatically categorizes the different

kinds of issues based on text and context. In addition to saving

manual work, this automated classification increases triage

and resolution speed and accuracy. This kind of model

concentrates based on the attributes of the bug; this aids in

setting priorities and, consequently, in assigning the bug to the

developer, which results in the advantages of addressing key

concerns first. Furthermore, the automation and simplification

of the problem management procedure itself ought to result

from the integration of the suggested model with the current

bug tracking tools. As soon as a new bug report is submitted,

it can help with the real-time classification process, providing

instant insight into the type of bug. Development teams'

workflow will be substantially streamlined as a result,

allowing them to focus more on resolution than on completing

classification processes.

II. LITERATURE SURVEY

Goyal et al. investigated the five ensemble-based

categorization strategies of bug reports and showed that,

compared to traditional ML approaches, these collective

methods greatly improve the procedure for matching each

report of bug to most suitable developer [1]. Patil et al. used

NLP to automatically label bugs reports by identifying

duplicates in bug report and examining both their structured

and unstructured features. This method finds duplicates before

they are added to the system, which lowers operating

expenses and eliminates the creation of redundant data [2].

Aburakhia et al. provided a method Based on ML to Establish

the Default Level of Bug Severity, according to recent studies

the default severity rating assigned to the majority of bug

reports in these systems sometimes misrepresents the true

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 07 | July - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 2

severity of bug. Aburakhia et al. suggested a new technique to

automatically label default bug reports as non-severe or severe

to deal with this issue [3]. Shatnawi et al. work presents a

fully automated Machine Learning model to estimate problem

severity and priority in the Eclipse dataset. [4]. Several

metrics, such as component name, summary, assignee, and

reporter, are derived from bug reports in closed-source

projects using the JIRA bug-tracking system and are included

in the model. High accuracy bug priority level prediction is

made possible by use of the 5-layer deep learning RNN-

LSTM neural network [5]. Capbug: An Automated System for

classifying and prioritizing Bug Reports provide a brand-new

framework called CaPBug that is intended to automatically

classify and rank bug reports. In order to put the concept into

practice, Ahmed et al. examined more than 2,000 bug reports

from the bug repositories to create baseline corpus with six

categories and five priority levels [6]. Immaculate et al. in his

study used Random Forest ensemble classifiers to be able to

increase prediction accuracy and reliability in various

software development environment while validating the K-

Fold cross-validation. This approach's byproducts will

improve software quality and save development resources by

minimizing the result of errors on system coherence and

performance during later phases of development [7]. Yadav et

al. used HAN model is able to utilize attention methods to

capture hierarchical relationships inside Bug reports. Rich

functionality in text normalization from the DistilBERT

tokenizer and fine-grained comprehension from bidirectional

GRU layers make it possible [8]. Zheng et al. used text that is

represented as a Text CNN and contains a bug report. The

average experimental findings across five different datasets

show that CorNER achieves significant improvement,

attesting to 6.24% F1-Score [9]. A recommendation engine is

being developed in a different study to effectively allocate

developers who possess the necessary expertise to handle

problem complaints in software repositories [10]. Lamkanfi et

al. study contains reports of bugs from Eclipse Platform, JDT,

CDT, PDE, Core, Firefox, Thunderbird, Bugzilla [11]. Kukkar

et al provided a hybrid approach with the goal of correctly

classifying reports of bugs as either bugs or non-bugs. Paper

uses the BRs to incorporate four more textual fields and

makes use of Bigram feature extraction techniques and TF-

IDF [12]. Hirsch et al. in the study used dataset spanning over

70 projects, together with unique preprocessing methods, to

assess and train the models. Models with macro average F1

scores as high as 0.69% indicate that they have potential to be

used as efficient bug classifiers in a various project [13].
Comprehensive analysis of DBRP models for each of the five

main BRP tasks. Papers from global databases released

between 2015 and 2023 are included in the review. They are

graded according to how well they use deep neural networks,

word embedding and text representation models, and bug

report feature extraction approaches [14]. Using heuristics,

Thomas et al. gathered and analyzed 54,755 closed bug

reports from the issue trackers of 103 GitHub projects to

produce a benchmark dataset of 10,459 complaints. Based on

the main problem of semantic, memory, and concurrency, a

subset of this dataset was manually categorized into three

groups. A NLP algorithm used these reports as input,

evaluating many classifiers for root cause prediction [15].

III. EXISTING SYSTEM

In many software development environments, bug report

classification is often a manual process. Developers and

testers read through bug reports, categorize them based on

their understanding, and then assign them to the appropriate

team for resolution. This process is not only time-consuming

but also prone to human error and inconsistency. Automated

systems for bug report classification do exist, but they

typically rely on single machine learning algorithms. These

systems use text classification techniques to analyze the

content of bug reports and predict the category of the bug.

However, these single-classifier systems often face limitations

in accuracy and efficiency. They may struggle with the

diverse and complex nature of bug reports, leading to

incorrect classifications and delayed issue resolution.

Moreover, existing systems generally do not incorporate

advanced techniques like text augmentation to enhance

prediction accuracy. As a result, the effectiveness of these

systems is limited, and they may not perform well across

different datasets or adapt to new types of bugs reports easily.

Disadvantages

• A hybrid deep learning detection policy to increase

the efficacy and efficiency of report generation is

absent from the current systems.

• Their attempt to classify problem reports based on

nature categories is unsuccessful. which produce

better accurate forecasts.

IV. PROPOSED SYSTEM

This approach integrates ML, NLP and text mining

approaches to achieve optimal accuracy and efficacy in bug

prediction. In order to find the best classifiers for automatic

nature-based bug report classification, the system first

evaluates various approaches. Through the identification and

application of the top-performing classifiers, the system

establishes a solid basis for precise bug prediction. Using an

ensemble machine learning approach, the suggested system

builds on this basis. By combining the benefits of many

classifiers, this method enhances overall prediction

performance and guarantees a solid and trustworthy

classification procedure.

Advantages:

• By using multiple machines learning base classifiers

trained on a benchmark dataset, the proposed

technique improves nature-based bug prediction and

ensures reliable and accurate results.

• A thorough and efficient bug prediction model is

produced by combining ML, NLP, and text-mining

techniques.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 07 | July - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 3

 Fig -1: Proposed Model

V. IMPLEMENTATION

Bug Reports Collection:

We use public datasets from sources like Mozilla and Eclipse

to train our model. These datasets provide the information

needed to teach our system how to classify bug reports

accurately. Each report includes at least a title, a description,

status, and metadata.

Data Cleaning:

Data cleaning is a process to turn raw bug reports into a

format suitable for processing. These techniques involve

Removing Noise, Text Normalization, Stop Words Removal.

 Text Augmentation:

Text augmentation enriches the dataset and strengthens

models by artificially creating more data. It generates new

variations of existing reports to expand the dataset.

Lemmatization:

Lemmatization lowers all words to their basic form or root,

which contributes to the size reduction of the text.

Tokenization:

Tokenization transforms the cleaned and lemmatized text into

separate tokens or words. Here, this process involves the

application of tokenization tools for breaking the sentences

down into words or subwords.

Transformation:

Next, these tokens are changed into numerical forms so that

ML processing can be done.

TF-IDF:

This comes with two metrics: Term Frequency and, Inverse

Document Frequency. The first one, Term Frequency (TF),

looks at the occurrences of the word within a document. The

second, Inverse Document Frequency (IDF), measures how

rarely a word occurs across all documents.

Voting Classifier

To develop more accurate prediction model, the Voting

Classifier shall be used. The work is that the predictions by

individual classifiers are aggregated inside the voting classier

such that the final prediction benefits from the strengths of all

the classifiers participating in this process.

Prediction Model

Again, these results obtained by the voting classifier in the

report are predefined categories such as Program Anomaly,

GUI, Network or Security, Configuration, Performance, or

even Test-Code. In this context, accuracy will be appraised

based on the metrics defined as follows: accuracy, precision,

recall, F1-score, and confusion matrix. This will ensure that

the model generalizes well on unseen data using cross-

validation.

VI. CONCLUSION

In this study, we have combined ML learning with NLP to

create a potent system that can predict type of bug. Six major

categories are used to categorize the issue reports: Program

Anomaly, GUI, Network or Security, Configuration,

Performance, and Test-Code increase bug precision. We

discovered that using datasets from Mozilla and Eclipse gave

us a strong basis on which to train and evaluate our models.

Several ml classifiers were integrated into ensemble learning,

which has the potential to improve prediction accuracy. By

addressing the shortcomings we saw in previous research, our

novel text augmentation methodology has also helped us

increase the strength of our system. Results of test fully

demonstrated the effectiveness of our strategy, which could

prove to be useful tool for project managers and software

engineers alike. Our model is designed to overcome the

limitations of existing systems, which often rely on a single

classifier and struggle with accuracy. By using an ensemble

approach, our system combines the strengths of different

classifiers, leading to better performance. Testing with a

benchmark dataset shows that our model is more accurate and

efficient at predicting bugs compared to traditional methods

VII. FUTURE ENHANCEMENTS

Subsequent improvements to the present problem

classification system can be made to make it more adaptive

and proactive. By using models like transformers and RNNs,

bug reports' textual data can be better understood, perhaps

leading to an increase in classification accuracy. Adding more

open-source projects to the dataset will increase the model's

sturdiness and ability to handle a variety of inputs. By adding

more categories, defects can be identified and categorized in

more depth, increasing the coverage and specificity of the

system. Furthermore, suggesting potential workarounds for

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 07 | July - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com | Page 4

anticipated faults can help developers by offering potential

patches associated with categories. Lastly, the process will be

streamlined by linking the bug prediction system with

development platforms like GitLab, GitHub, or JIRA, which

will improve the tool's usability and convenience for

developers.

VIII. REFERENCES

[1] Goyal, Anjali, and Neetu Sardana. "Empirical analysis

of ensemble machine learning techniques for bug

triaging." 2019 Twelfth International Conference on

Contemporary Computing (IC3). IEEE, 2019.

[2] Patil, Avinash, and Aryan Jadon. "Auto-labelling of

bug report using natural language processing." 2023

IEEE 8th International Conference for Convergence in

Technology (I2CT). IEEE, 2023.

[3] Aburakhia, Abdalrahman, and Mohammad Alshayeb.

"A Machine Learning Approach for Classifying the

Default Bug Severity Level." Arabian Journal for

Science and Engineering (2024): 1-18.

[4] Shatnawi, Mohammed Q., and Batool Alazzam. "An

Assessment of Eclipse Bugs' Priority and Severity

Prediction Using Machine Learning." International

Journal of Communication Networks and Information

Security 14.1 (2022): 62-69.

[5] Bani-Salameh, Hani, Mohammed Sallam, and Bashar

Al shboul. "A deep-learning-based bug priority

prediction using RNN-LSTM neural networks." e-

Informatica Software Engineering Journal 15.1 (2021).

[6] Ahmed, Hafiza Anisa, Narmeen Zakaria Bawany, and

Jawwad Ahmed Shamsi. "Capbug-a framework for

automatic bug categorization and prioritization using

nlp and machine learning algorithms." IEEE Access 9

(2021): 50496-50512.

[7] Immaculate, S. Delphine, M. Farida Begam, and M.

Floramary. "Software bug prediction using supervised

machine learning algorithms." 2019 International

conference on data science and communication

(IconDSC). IEEE.

[8] Yadav, Anurag, and Santosh Singh Rathore. "A

Hierarchical Attention Networks based Model for Bug

Report Prioritization." Proceedings of the 17th

Innovations in Software Engineering Conference. 2024.

[9] Zheng, Wei, et al. "Duplicate Bug Report detection

using Named Entity Recognition." Knowledge-Based

Systems 284 (2024): 111258.

[10] Al-Bayati, Jalal Sadoon Hameed, Mohammed Al-

Shamma, and Furat Nidhal Tawfeeq. "Enhancement of

Recommendation Engine Technique for Bug System

Fixes." Journal of Advances in Information

Technology 15.4 (2024).

[11] Lamkanfi, Ahmed, Javier Pérez, and Serge Demeyer.

"The eclipse and mozilla defect tracking dataset: a

genuine dataset for mining bug information." 2013 10th

Working Conference on Mining Software Repositories

(MSR). IEEE, 2013.

[12] Kukkar, Ashima, and Rajni Mohana. "A supervised bug

report classification with incorporate and textual field

knowledge." Procedia computer science 132 (2018):

352-361.

[13] Hirsch, Thomas, and Birgit Hofer. "Using textual bug

reports to predict the fault category of software

bugs." Array 15 (2022): 100189.

[14] Ahmad, Aminu Abdullahi, et al. "Deep Bug Reports

Processing (DBRP): A Systematic Literature Review."

(2023).

[15] Thomas, and Birgit Hofer. "Root cause prediction

based on bug reports” IEEE, 2020.

http://www.ijsrem.com/

