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Abstract - In today's software development world, quickly 

and accurately classifying bug reports is crucial for fixing 

issues on time and keeping software quality high. Bugs are a 

vital part of this process, carrying detailed information such as 

description, status, reporter, assignee, priority, severity, 

among others. It becomes tiresome and time-consuming to 

analyze these reports manually in search of all defects, 

especially when the size of these reports increases. Thus, 

automation is one of the best solutions. While current research 

is focused mainly on automating the identification of bug 

severity or priority, they often forget identification based on 

the nature of the bugs, which requires multi-class 

classification. A new prediction model has been used that 

analyzes BRs for the prediction of nature of the bugs. This 

model will combine the ensemble ML algorithm with NLP 

and ML techniques. In particular, the model is tested against 

publicly available datasets from Mozilla and Eclipse, which 

further categorize the bugs into six types: program anomaly, 

GUI, network or security, configuration, performance, and 

test-code. The results indicate that our model gave 

significantly higher accuracy compared to many pre-existing 

models without text augmentation, at 90.42 percent and with 

text augmentation at 96.72 percent. 

Keywords: Natural language Processing (NLP), Machine 

Learning (ML), Bug Reports (BRs) 

 

I. INTRODUCTION 

 
In the modern digital age, software systems are important to 

many aspects of our life and advance technology throughout a 

broad spectrum of industries. Software becomes increasingly 

difficult to maintain dependable and functional as it becomes 

more complicated. Finding defects in software is a significant 

problem that may have an impact on both the program's 

functionality and user experience. As a solution to this issue, 

our project sorts and detects software faults using state-of--art 

machine learning techniques with the goal of improving 

software maintenance. Software bugs are difficult to prevent 

and this might result in anything from minor glitches to 

catastrophic malfunctions. These problems may jeopardize the 

security and functionality of the software. Although 

conventional bug prediction techniques are helpful, they 

frequently cannot keep up with the intricacy of today's 

software. To increase the accuracy and dependability of bug 

prediction, our project combines ML techniques with NLP. 

These integrated methods leverage each model's strengths by 

combining multiple learning algorithms. More accurate 

projections are produced by this collaborative method than by 

using a single model alone. 

Our methodology focuses on classifying six report categories 

Program Anomaly GUI, Network or Security, Configuration, 

Performance, and Test-Code based on type of bug. By 

addressing a broad spectrum of software bugs, this grouping 

improves prediction accuracy. Our model integrates both NLP 

and ML techniques to build a unified algorithm that evaluates 

reports of bug and identifies the various vulnerabilities. We 

use the public datasets from two popular online bug databases, 

Eclipse and Mozilla, to test our proposed methodology. These 

datasets provide a multitude of reports that are listed into the 

six previously described classes. Our methodology entails 

compiling and sanitizing bug report data, followed by the 

identification and selection of the critical components most 

influential in the incidence of bugs. 

 
While simultaneously speeding up the resolution process, the 

suggested method automatically categorizes the different 

kinds of issues based on text and context. In addition to saving 

manual work, this automated classification increases triage 

and resolution speed and accuracy. This kind of model 

concentrates based on the attributes of the bug; this aids in 

setting priorities and, consequently, in assigning the bug to the 

developer, which results in the advantages of addressing key 

concerns first. Furthermore, the automation and simplification 

of the problem management procedure itself ought to result 

from the integration of the suggested model with the current 

bug tracking tools. As soon as a new bug report is submitted, 

it can help with the real-time classification process, providing 

instant insight into the type of bug. Development teams' 

workflow will be substantially streamlined as a result, 

allowing them to focus more on resolution than on completing 

classification processes. 

  

 

II. LITERATURE SURVEY 

 

Goyal et al. investigated the five ensemble-based 

categorization strategies of bug reports and showed that, 

compared to traditional ML approaches, these collective 

methods greatly improve the procedure for matching each 

report of bug to most suitable developer [1].  Patil et al. used 

NLP to automatically label bugs reports by identifying 

duplicates in bug report and examining both their structured 

and unstructured features. This method finds duplicates before 

they are added to the system, which lowers operating 

expenses and eliminates the creation of redundant data [2]. 

Aburakhia et al.  provided a method Based on ML to Establish 

the Default Level of Bug Severity, according to recent studies 

the default severity rating assigned to the majority of bug 

reports in these systems sometimes misrepresents the true 
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severity of bug. Aburakhia et al. suggested a new technique to 

automatically label default bug reports as non-severe or severe 

to deal with this issue [3]. Shatnawi et al. work presents a 

fully automated Machine Learning model to estimate problem 

severity and priority in the Eclipse dataset. [4]. Several 

metrics, such as component name, summary, assignee, and 

reporter, are derived from bug reports in closed-source 

projects using the JIRA bug-tracking system and are included 

in the model. High accuracy bug priority level prediction is 

made possible by use of the 5-layer deep learning RNN-

LSTM neural network [5]. Capbug: An Automated System for 

classifying and prioritizing Bug Reports provide a brand-new 

framework called CaPBug that is intended to automatically 

classify and rank bug reports. In order to put the concept into 

practice, Ahmed et al. examined more than 2,000 bug reports 

from the bug repositories to create baseline corpus with six 

categories and five priority levels [6]. Immaculate et al. in his 

study used Random Forest ensemble classifiers to be able to 

increase prediction accuracy and reliability in various 

software development environment while validating the K-

Fold cross-validation. This approach's byproducts will 

improve software quality and save development resources by 

minimizing the result of errors on system coherence and 

performance during later phases of development [7]. Yadav et 

al. used HAN model is able to utilize attention methods to 

capture hierarchical relationships inside Bug reports. Rich 

functionality in text normalization from the DistilBERT 

tokenizer and fine-grained comprehension from bidirectional 

GRU layers make it possible [8]. Zheng et al. used text that is 

represented as a Text CNN and contains a bug report. The 

average experimental findings across five different datasets 

show that CorNER achieves significant improvement, 

attesting to 6.24% F1-Score [9]. A recommendation engine is 

being developed in a different study to effectively allocate 

developers who possess the necessary expertise to handle 

problem complaints in software repositories [10]. Lamkanfi et 

al. study contains reports of bugs from Eclipse Platform, JDT, 

CDT, PDE, Core, Firefox, Thunderbird, Bugzilla [11]. Kukkar 

et al provided a hybrid approach with the goal of correctly 

classifying reports of bugs as either bugs or non-bugs. Paper 

uses the BRs to incorporate four more textual fields and 

makes use of Bigram feature extraction techniques and TF-

IDF [12]. Hirsch et al. in the study used dataset spanning over 

70 projects, together with unique preprocessing methods, to 

assess and train the models. Models with macro average F1 

scores as high as 0.69% indicate that they have potential to be 

used as efficient bug classifiers in a various project [13]. 
Comprehensive analysis of DBRP models for each of the five 

main BRP tasks. Papers from global databases released 

between 2015 and 2023 are included in the review. They are 

graded according to how well they use deep neural networks, 

word embedding and text representation models, and bug 

report feature extraction approaches [14]. Using heuristics, 

Thomas et al. gathered and analyzed 54,755 closed bug 

reports from the issue trackers of 103 GitHub projects to 

produce a benchmark dataset of 10,459 complaints. Based on 

the main problem of semantic, memory, and concurrency, a 

subset of this dataset was manually categorized into three 

groups. A NLP algorithm used these reports as input, 

evaluating many classifiers for root cause prediction [15]. 

 

 

 

III. EXISTING SYSTEM 

In many software development environments, bug report 

classification is often a manual process. Developers and 

testers read through bug reports, categorize them based on 

their understanding, and then assign them to the appropriate 

team for resolution. This process is not only time-consuming 

but also prone to human error and inconsistency. Automated 

systems for bug report classification do exist, but they 

typically rely on single machine learning algorithms. These 

systems use text classification techniques to analyze the 

content of bug reports and predict the category of the bug. 

However, these single-classifier systems often face limitations 

in accuracy and efficiency. They may struggle with the 

diverse and complex nature of bug reports, leading to 

incorrect classifications and delayed issue resolution. 

Moreover, existing systems generally do not incorporate 

advanced techniques like text augmentation to enhance 

prediction accuracy. As a result, the effectiveness of these 

systems is limited, and they may not perform well across 

different datasets or adapt to new types of bugs reports easily. 

 
Disadvantages 

• A hybrid deep learning detection policy to increase 

the efficacy and efficiency of report generation is 

absent from the current systems. 

•  Their attempt to classify problem reports based on 

nature categories is unsuccessful. which produce 

better accurate forecasts. 

 

IV. PROPOSED SYSTEM 

 

This approach integrates ML, NLP and text mining 

approaches to achieve optimal accuracy and efficacy in bug 

prediction. In order to find the best classifiers for automatic 

nature-based bug report classification, the system first 

evaluates various approaches. Through the   identification and 

application of the top-performing classifiers, the system 

establishes a solid basis for precise bug prediction. Using an 

ensemble machine learning approach, the suggested system 

builds on this basis. By combining the benefits of many 

classifiers, this method enhances overall prediction 

performance and guarantees a solid and trustworthy 

classification procedure.  

 

Advantages: 

• By using multiple machines learning base classifiers 

trained on a benchmark dataset, the proposed 

technique improves nature-based bug prediction and 

ensures reliable and accurate results.  

• A thorough and efficient bug prediction model is 

produced by combining ML, NLP, and text-mining 

techniques. 
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                   Fig -1: Proposed Model 

 

V. IMPLEMENTATION 

 

 

Bug Reports Collection: 

We use public datasets from sources like Mozilla and Eclipse 

to train our model. These datasets provide the information 

needed to teach our system how to classify bug reports 

accurately. Each report includes at least a title, a description, 

status, and metadata.  

 

Data Cleaning: 

Data cleaning is a process to turn raw bug reports into a 

format suitable for processing. These techniques involve 

Removing Noise, Text Normalization, Stop Words Removal. 

 

 Text Augmentation: 

Text augmentation enriches the dataset and strengthens 

models by artificially creating more data. It generates new 

variations of existing reports to expand the dataset. 

 

Lemmatization: 

Lemmatization lowers all words to their basic form or root, 

which contributes to the size reduction of the text.  

 

Tokenization: 

Tokenization transforms the cleaned and lemmatized text into 

separate tokens or words. Here, this process involves the 

application of tokenization tools for breaking the sentences 

down into words or subwords.  

 

Transformation: 

Next, these tokens are changed into numerical forms so that 

ML processing can be done. 

 

TF-IDF: 

This comes with two metrics: Term Frequency and, Inverse 

Document Frequency. The first one, Term Frequency (TF), 

looks at the occurrences of the word within a document. The 

second, Inverse Document Frequency (IDF), measures how 

rarely a word occurs across all documents.  

 

Voting Classifier 

To develop more accurate prediction model, the Voting 

Classifier shall be used. The work is that the predictions by 

individual classifiers are aggregated inside the voting classier 

such that the final prediction benefits from the strengths of all 

the classifiers participating in this process. 

 

Prediction Model 

Again, these results obtained by the voting classifier in the 

report are predefined categories such as Program Anomaly, 

GUI, Network or Security, Configuration, Performance, or 

even Test-Code. In this context, accuracy will be appraised 

based on the metrics defined as follows: accuracy, precision, 

recall, F1-score, and confusion matrix. This will ensure that 

the model generalizes well on unseen data using cross-

validation. 

 

 

VI. CONCLUSION 

 
In this study, we have combined ML learning with NLP to 

create a potent system that can predict type of bug. Six major 

categories are used to categorize the issue reports: Program 

Anomaly, GUI, Network or Security, Configuration, 

Performance, and Test-Code increase bug precision. We 

discovered that using datasets from Mozilla and Eclipse gave 

us a strong basis on which to train and evaluate our models. 

Several ml classifiers were integrated into ensemble learning, 

which has the potential to improve prediction accuracy. By 

addressing the shortcomings we saw in previous research, our 

novel text augmentation methodology has also helped us 

increase the strength of our system. Results of test fully 

demonstrated the effectiveness of our strategy, which could 

prove to be useful tool for project managers and software 

engineers alike. Our model is designed to overcome the 

limitations of existing systems, which often rely on a single 

classifier and struggle with accuracy. By using an ensemble 

approach, our system combines the strengths of different 

classifiers, leading to better performance. Testing with a 

benchmark dataset shows that our model is more accurate and 

efficient at predicting bugs compared to traditional methods 

 

VII. FUTURE ENHANCEMENTS 
 

Subsequent improvements to the present problem 

classification system can be made to make it more adaptive 

and proactive. By using models like transformers and RNNs, 

bug reports' textual data can be better understood, perhaps 

leading to an increase in classification accuracy. Adding more 

open-source projects to the dataset will increase the model's 

sturdiness and ability to handle a variety of inputs. By adding 

more categories, defects can be identified and categorized in 

more depth, increasing the coverage and specificity of the 

system. Furthermore, suggesting potential workarounds for 
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anticipated faults can help developers by offering potential 

patches associated with categories. Lastly, the process will be 

streamlined by linking the bug prediction system with 

development platforms like GitLab, GitHub, or JIRA, which 

will improve the tool's usability and convenience for 

developers. 
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