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Abstract - The Bridge and Boat Monitoring System is 

intended to improve safety and operational efficiency of 

both bridges and waterways, through two integrated 

modules: the Bridge and the Boat. It is a Bridge Module 

made by Arduino, equipped with IR sensors for detecting 

any vehicle approaching, a load cell to monitor weight, a 

water level sensor and motorized gates to gain access 

under control. The Boat Module, which is also Arduino-

based, contains a wet sensor and a tilt sensor (ADXL345) 

to detect water entry and ensure stability. For crack 

detection and structural health assessment of the bridge, 

the system utilizes YOLO v5, which is a state-of-the-art 

deep learning algorithm that can accurately and timely 

identify problems. Zigbee technology provides seamless 

wireless communication, allowing for real time data 

sharing to support proactive maintenance and informed 

decision-making.   
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1.INTRODUCTION  

The Bridge and Boat Monitoring System is intended to 

improve safety and operational efficiency of both bridges 

and waterways, through two integrated modules: the 

Bridge and the Boat. It is a Bridge Module made by 

Arduino, equipped with IR sensors for detecting any 

vehicle approaching, a load cell to monitor weight, a water 

level sensor and motorized gates to gain access under 

control. The Boat Module, which is also Arduino-based, 

contains a wet sensor and a tilt sensor (ADXL345) to 

detect water entry and ensure stability. For crack detection 

and structural health assessment of the bridge, the system 

utilizes aid for the deaf and hard-of-hearing community, 

ensuring that speech is understood accurately regardless of 

the acoustic environment.   

The system monitors conditions such as water levels, 

strong winds, and floods, which improves safety and 

 

 

 

automatically sends alerts in conditions that are adverse. 

Lastly, it helps ensure that boats carrying out operations 

near bridges do not capsize or have accidents because they 

monitor water ingress and tilt and minimize the risks.   

 

Beyond core recognition capabilities, the system is 

architected for production-grade usability, featuring a 

comprehensive dual interface design that includes a 

Training GUI for custom data collection and a Prediction 

GUI for live usage. A significant functional objective is 

the implementation of robust Automatic Language 

Detection, which intelligently switches between language 

models without manual intervention, alongside Prediction 

Stabilization algorithms designed to eliminate output 

flickering.   

2. LITERATURE SURVEY  

 2.1 Z. Zhang, L. Wang, Y. Li, and M. Chen, “Automated 

defect detection of concrete surfaces in hydropower 

structures using deep learning and UAV imaging,” 

IEEE Transactions on Industrial Electronics, vol. 70, 

no. 3, pp. 2456–2465, 2023. 

This research presents a fully automated defect detection 

system designed specifically for hydropower dams and 

concrete structures. It combines UAV (drone) imaging 

with deep learning–based computer vision models to 

detect surface defects such as cracks, spalling, and erosion. 

The goal is to make dam and hydropower structure 

inspections safer, faster, and more accurate than 

traditional manual inspection. 

            2.2 J. Liu, K. Zhao, and P. Wu, “Multi-sensor data 

fusion for structural health monitoring of hydropower 

tunnels,” Automation in Construction, vol. 149, pp. 

104732, 2023. 

This research focuses on structural health monitoring 

(SHM) of hydropower tunnels using multiple types of 

sensors. 

Instead of relying on a single measurement method, the 
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authors combine different sensing technologies to 

measure: 

Stresses, vibrations, deformations, crack activities, 

environmental conditions 

The paper proposes a data fusion system that merges 

information from all sensors to produce more reliable and 

accurate assessments of tunnel health. 

This allows the system to reconstruct a complete 3D model 

of the structure with milli meter-level precision. The 

collected data enables the identification of surface 

distortions, cracks, erosion, spalling, and other defects 

directly on the 3D model, making it possible to determine 

not only the presence of damage but also its precise spatial 

location. UAVs make this process safer and more efficient 

by reaching high or dangerous regions without human 

intervention. 

While this method improves robustness and accuracy, it is 

limited by its reliance on handcrafted visual features and a 

static FFNN architecture that processes data without 

capturing sequential dependencies 

        2.3  H. Xu, R. Zhang, and D. Sun, “Deep learning-

based crack detection in concrete structures under low-

light conditions,” Engineering Structures, vol. 278, pp. 

115412, 2022. 

 

This research focuses on detecting cracks in concrete 

structures using deep learning models, specifically 

designed to work under low-light or poor visibility 

conditions. 

Low-light environments — such as tunnels, night-time 

inspections, or shaded dam regions — usually reduce the 

accuracy of normal vision-based models. 

This paper solves that issue through specialized deep 

learning enhancement techniques. 

accuracy in detecting anomalies and assessing risks. 

Wireless communication ensures efficient data 

transmission between the components, while real-time 

notifications are forwarded to authorities through 

automated messaging platforms. This robust and scalable 

solution supports proactive safety management in terms of 

the ability to respond promptly and adaptability to various 

monitoring scenarios.   

The acquired multimodal data were pre processed and 

fused to form a comprehensive representation of the shaft 

surface. The deep learning–based defect detection model, 

built on a convolutional neural network (CNN) 
 

architecture, was trained to automatically identify defect 

patterns without the need for handcrafted feature 

extraction 

The research contributes to the field of autonomous 

infrastructure monitoring and serves as a foundation for 

further advancements in AI-driven inspection systems that 

can operate autonomously, analyze defects in real-time, 

and support predictive maintenance strategies 

 

2.4 Q. Li, X. Huang, and Y. Gao, “UAV-assisted 3D 

laser scanning for infrastructure inspection and defect 

mapping,” Remote Sensing, vol. 14, no. 5, pp. 1185–

1198, 2022. 

This research introduces a system that uses UAVs 

(drones) combined with 3D laser scanning technology 

(LiDAR) to inspect and map defects in large 

infrastructure such as bridges, tunnels, dams, and 

buildings. 

Instead of using only 2D images, this method creates 

detailed 3D point cloud models that allow highly 

accurate defect detection and location mapping. 

Unlike traditional 2D image-based inspection, which often 

suffers from lighting limitations, perspective distortion, 

and incomplete coverage, the 3D laser scanning approach 

provides accurate geometric information by generating 

dense point cloud data.  

This allows the system to reconstruct a complete 3D model 

of the structure with milli meter-level precision. The 

collected data enables the identification of surface 

distortions, cracks, erosion, spalling, and other defects 

directly on the 3D model, making it possible to determine 

not only the presence of damage but also its precise spatial 

location. UAVs make this process safer. 

3.METHODOLOGY  

3.1 Data Acquisition and Input Processing 

The system accepts inputs from various sources, including 

real-time webcam streams, CCTV feeds, drone-captured 

images, or manually uploaded photographs of dam 

surfaces. These inputs are processed through a 

standardized preprocessing pipeline, where each image is 

resized, normalized, and converted into tensor format to 

ensure compatibility with the YOLOv5 inference engine. 

Noise reduction and contrast normalization are applied 

wherever necessary to enhance visual clarity, particularly 

in images captured under inconsistent lighting conditions.   
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3.2 Deep Learning-Based Defect Detection Using 

YOLOv5 

YOLOv5 serves as the core detection model due to its high 

accuracy and real-time performance. The model has been 

trained on dam defect datasets containing cracks, spalling, 

leakage marks, and structural deformations. During 

inference, the model generates bounding boxes, class 

predictions, and confidence scores for each detected 

defect. Non-Maximum Suppression (NMS) is applied to 

remove duplicate detections and retain the most relevant 

bounding boxes. The detection output includes the defect 

category, spatial location, bounding box coordinates, and 

individual confidence levels. 

3.3  Post-Processing and Analytical Evaluation 

After detection, additional analytical processes are applied 

to interpret the model's output. The system computes 

metrics such as defect count per class, mean confidence 

values, bounding box area estimates, and severity 

indicators. Larger bounding box areas and higher 

confidence scores are interpreted as potentially more 

severe defects. These values are aggregated and stored in 

structured CSV files for each image and across complete 

detection sessions. Visualization modules generate class 

distribution bar charts and confidence-level histograms, 

allowing pattern analysis across multiple images. 

3.4 Automated Alerting Through Telegram Bot 

Integration 

The system incorporates a Telegram bot to enable real-

time notifications of detected defects. Whenever a 

structural anomaly is identified, the system automatically 

sends a message containing the defect type, severity 

indicators, and a timestamp. Annotated images showing 

bounding boxes around the detected defects are delivered 

directly to the user. High-severity anomalies 

3.5 Report Generation Through PDF Compilation 

To support documentation and engineering review, the 

system automatically compiles a detailed PDF report for 

each detection session. The report includes annotated 

images, detection summaries, graphs of class-wise 

detections, confidence distributions, and textual analysis. 

This document is created using the Report Lab library and 

organized into professionally formatted sections. 

Suggested engineering actions are included for each defect 

type, providing guidance on potential maintenance 

priorities. The compiled PDF is optionally sent through 

Telegram for convenient access. 

3.6 Dashboard Deployment for Visualization and File 

Access 

A lightweight Flask-based dashboard is integrated into the 

system to provide a user-friendly interface for monitoring 

detection runs. The dashboard displays structured 

directories containing all generated outputs, including 

images, graphs, CSV logs, and reports. It also provides an 

API endpoint that delivers the most recent detection 

summaries in JSON format, facilitating future expansion 

or linkage with asset-management systems. 

3.7 Threshold-Based Defect Severity Assessment 

The system incorporates customizable threshold logic to 

determine when a defect should be classified as severe. 

Conditions such as defect count exceeding a specified 

limit, mean confidence surpassing a defined threshold, or 

bounding box area reaching a critical size automatically 

trigger urgent alerts. This mechanism ensures timely 

intervention and supports risk-based maintenance 

strategies. 

3.8 End-to-End Automation and Scalability 

The integrated methodology ensures that the system 

operates autonomously from data input to final reporting. 

All intermediate steps—preprocessing, detection, analysis, 

alerting, visualization, and documentation—are executed 

automatically. The modular architecture allows future 

expansion, such as adding additional defect categories, 

retraining models, integrating drone feeds, or deploying 

the system on edge devices for on-site monitoring. 

3.9 Continuous Learning and Model Optimization 

The system incorporates a mechanism for continuous 

learning, enabling the detection model to improve over 

time as more defect images are collected. Newly captured 

images and annotated outputs are stored and can later be 

used to retrain or fine-tune the YOLOv5 model, increasing 

its accuracy for real-world dam environments. This 

iterative training approach helps the system adapt to 

variations in lighting, weather conditions, camera quality, 

and evolving defect patterns on the dam surface. By 

periodically updating the model with recent data, the 

system maintains long-term robustness and reliability, 

ensuring improved performance in future inspections. 
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4.WORKFLOW  

          4.1 Image Acquisition Workflow:- The workflow 

begins with the acquisition of visual data from one or more 

camera sources deployed near the dam structure. These 

sources may include fixed CCTV cameras, high-resolution 

webcams, drone-based imaging devices, or manually 

captured photographs. Each incoming image is 

automatically timestamped to maintain chronological 

consistency and support traceability. Since dam 

environments vary in lighting, weather, and surface 

texture, capturing diverse images ensures the robustness of 

the detection system. The acquired data is transferred to a 

designated storage module where it is organized 

4.2 Preprocessing and Data Preparation Workflow:- Once 

images are acquired, the system initiates a preprocessing 

workflow to standardize the input data for the deep 

learning model. Each image is resized to match the 

dimensional requirements of the YOLOv5 architecture, 

ensuring consistent and efficient computation. 

Normalization is applied to adjust pixel intensities so that 

lighting variations do not adversely affect detection 

accuracy. Additional image enhancement operations, such 

as contrast adjustment or low-light correction, can be 

applied when environmental conditions degrade visibility. 

Noise and shadow artifacts are also minimized using 

smoothing filters when necessary. The pre processed 

images are then converted into model-compatible tensor 

formats for GPU or CPU inference. These tensors 

maintain the spatial structure required for accurate 

bounding box prediction. The preprocessing pipeline 

ensures that all images entering the detection model meet 

high quality standards. Through this stage, the system 

prepares raw data into a clean and uniform format suitable 

for deep learning inference. 

        4.3 Defect Detection Workflow Using YOLOv5:-

The preprocessed images are fed into the YOLOv5 

detection engine, which serves as the core analytical 

component of the workflow. YOLOv5 evaluates each 

image by partitioning it into grid cells and predicting 

bounding boxes along with defect class probabilities. The 

model generates multiple predictions per region, ensuring 

comprehensive coverage of possible defects. To eliminate 

overlapping or redundant predictions, Non-Maximum 

Suppression (NMS) filters the results to retain the most 

confident detections. The output from this stage includes 

defect type, bounding box coordinates, and confidence 

scores for each identified anomaly. All detections are 

automatically logged and time-aligned with their 

corresponding images. This workflow module ensures 

high-speed and high-accuracy detection suitable for real-

time monitoring environments. The detection model 

functions continuously, enabling uninterrupted inspection 

capabilities. This step transforms raw visual data into 

actionable structural insights.   

       4.4 Post-Detection Analytics Workflow 

After generating detection outputs, the system transitions 

to a comprehensive analytical workflow. The bounding 

box areas are calculated to estimate the relative severity of 

each defect, assuming larger areas correlate with more 

substantial structural issues. Confidence scores are 

statistically evaluated to measure the reliability of the 

detections across a session. The system aggregates class- 

wise defect counts to identify recurring or dominant 

structural issues. Additional visual analytics, such as bar 

graphs and confidence histograms, are generated to 

support engineering interpretation. These results are stored 

in structured CSV files, ensuring that all analytical data is 

preserved for future audit or research purposes. The 

analytics workflow helps identify trends, patterns, and 

outliers in the captured defect data. It also supports data-

driven decision-making for maintenance scheduling. 

Through this analytical process, defect detections become 

quantifiable, interpretable, and actionable. 

4.5 Temporal Smoothing: - To counteract camera jitter and 

detection noise that causes landmarks to "shake," an 

Exponential Moving Average (EMA) filter is applied to 

the coordinates. Using a smoothing factor, the system 

calculates the smoothed position as a weighted average of 

the current detection and the previous position, ensuring 

fluid and stable landmark trajectories crucial for 

calculating accurate velocity features.  

4.6 Geometric Feature Extraction: - The system computes 

161 static geometric features for the current frame to 

describe the mouth's shape. This involves normalizing 

coordinates to be invariant to face distance (scale) and 

position (translation), calculating Euclidean distances 

between key points (to measure mouth opening/width), 

and computing angles between landmark triplets to capture 

lip curvature. Additional metrics like the aspect ratio and 

the area of the lip hull are also derived.   

4.7 Temporal Feature Calculation: - To capture the 

dynamics of speech, the system computes the first and 

second derivatives of the geometric features. "Velocity" is 

calculated as the difference in feature values between the 

current frame and the previous frame. "Acceleration" is 

calculated as the difference between the current velocity 

and the previous velocity. These 322 additional features 

quantify how the lips are moving.   
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4.8 Feature Concatenation: - The static geometric features 

are concatenated with the velocity and acceleration 

vectors. The system then reduces or selects specific 

features to form a final optimized dense vector of 330 

features for the current frame. This creates a rich 

numerical representation that encodes both the shape of 

the lips and their motion dynamics.   

4.9 Sequence Buffering: - The calculated 330 dimensional 

feature vector is appended to the sliding window buffer 

(deque). The buffer operates as a First In First Out (FIFO) 

queue, maintaining exactly the last 75 frames of history. If 

the buffer is not yet full (i.e., fewer than 75 frames 

processed), the system waits; once full, this sequence 

represents the immediate past 3 seconds of visual speech.   

4.10 Sequence Normalization: - Before entering the neural 

network, the entire 75-frame sequence undergoes Z-score 

normalization. The system calculates the mean and 

standard deviation of the sequence features and scales the 

data so it has a mean of 0 and a standard deviation of 1. 

Outliers with a Z-score greater than 3.0 are capped to 

prevent extreme values from destabilizing the model 

predictions.   

4.11 Deep Learning Inference: - The normalized sequence 

is fed into the deep learning model. The input passes 

through Bidirectional LSTM layers, which process the 

sequence in both forward and backward directions to 

understand the temporal context of the lip movements. An 

Attention mechanism then weighs the importance of 

different frames to focus on the most discriminative parts 

of the word.   

4.12 Class Prediction: - The model's final output layer uses 

a Softmax activation function to produce a probability 

distribution across all trained word classes. The system 

identifies the index of the class with the highest 

probability, representing the model's "best guess" for the 

spoken word.  

4.13 Confidence Thresholding: - The system evaluates the 

confidence score of the top predicted class against a pre-

defined threshold, typically set around 0.65. If the model's 

confidence is below this value, the prediction is discarded 

as unreliable, preventing the system from displaying 

random guesses during silence or ambiguous movements.   

4.14 Prediction Stabilization: - Valid predictions are 

passed to a stabilizer that maintains a history of the last 10-

15 results. A frequency-based voting algorithm determines 

the most common prediction in this history. The system 

requires a specific word to be the "winner" for a 

consecutive number of frames before it is considered 

stable. This eliminates the rapid flickering of words often 

seen in raw frame-by-frame analysis.   

4.15 User Interface Display: - The final result is updated 

on the GUI. If the prediction is "stable," the word is 

displayed in green text; if it is still stabilizing, it appears in 

yellow. The interface also overlays the 31-point lip 

landmarks on the live video feed and displays the 

confidence percentage and detected language.   

The pre processed images are then converted into model-

compatible tensor formats for GPU or CPU inference. 

These tensors maintain the spatial structure required for 

accurate bounding box prediction. The preprocessing 

pipeline ensures that all images entering the detection 

model meet high quality standards.  The system calculates 

the mean and standard deviation of the sequence features 

and scales the data so it has a mean of 0 and a standard 

deviation of 1. Outliers with a Z-score greater than 3.0 are 

capped to prevent extreme values from destabilizing the 

model predictions. 

The static geometric features are concatenated with the 

velocity and acceleration vectors. The system then reduces 

or selects specific features to form a final optimized dense 

vector of 330 features for the current frame. This creates a 

rich numerical representation that encodes both the shape 

of the lips and their motion dynamics.   
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Fig-4.1: Workflow 

 

5.RESULT AND DISCUSSION  

 The proposed AI-powered dam defect detection system 

was evaluated on a diverse set of images captured from 

CCTV cameras, mobile devices, and drone-based sources. 

The YOLOv5 model successfully detected key structural 

defects such as cracks, spalling, leakage marks, and 

surface deformations with high reliability across varying 

lighting and environmental conditions. During testing, the 

system achieved a consistent detection accuracy, with 

most defects being identified with confidence scores above 

0.80. The bounding boxes generated by the model 

accurately localized the damaged regions, enabling precise 

visual inspection and analysis. 

The post-processing analytics revealed clear trends in 

defect occurrence, including the frequency of each defect 

category and the statistical distribution of confidence 

levels. Visualizations such as class-wise detection graphs 

and confidence histograms further validated the 

consistency of the model’s performance across multiple 

test sessions. The threshold-based severity assessment 

module successfully classified high-risk defects, 

triggering immediate alerts when large-area cracks or 

high-confidence anomalies were detected. 

The Telegram alert system performed efficiently, 

delivering real-time notifications that included annotated 

defect images, severity indicators, and summary 

messages. This rapid communication significantly reduces 

inspection delays and facilitates early decision-making by 

engineers. Additionally, the automated PDF report 

generation module compiled annotated images, statistical 

graphs, and textual descriptions into a structured, 

professional document suitable for engineering audits and 

long-term record keeping. 

 

6. CONCLUSIONS 

 

The development of the AI-powered dam defect detection 

system demonstrates the effectiveness of deep learning 

and automated communication technologies in modern 

infrastructure monitoring. By integrating the YOLOv5 

object detection framework with a comprehensive 

analytics module, the system achieved accurate 

identification of cracks, spalling, leaks, and other 

structural anomalies across diverse environmental 

conditions. The automated workflow significantly reduces 

the dependence on manual inspection methods, which are 

often time-consuming, labor-intensive, and prone to 

human error. The ability to generate real-time Telegram 

alerts ensures rapid awareness of critical defects, enabling 

timely intervention and enhancing overall structural 

safety. 

The inclusion of automated PDF reports and a web-based 

dashboard further strengthens the system’s practicality by 

providing engineers with organized, traceable, and easy-

to-access documentation of inspection results. The 

threshold-based severity classification mechanism 

enhances decision-making by highlighting defects that 

require immediate attention. Overall, the results confirm 

that the proposed system offers a reliable, efficient, and 

scalable approach to dam monitoring, capable of 

supporting long-term structural health assessment. With 

further advancements such as expanded datasets, multi-

modal sensing, and predictive analytics, the system holds 

The Telegram alert system performed efficiently, 

delivering real-time notifications that included annotated 

defect images, severity indicators, and summary 

messages. This rapid communication significantly reduces 

inspection delays and facilitates early decision-making by 

engineers. 
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