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Abstract - The Bridge and Boat Monitoring System is
intended to improve safety and operational efficiency of
both bridges and waterways, through two integrated
modules: the Bridge and the Boat. It is a Bridge Module
made by Arduino, equipped with IR sensors for detecting
any vehicle approaching, a load cell to monitor weight, a
water level sensor and motorized gates to gain access
under control. The Boat Module, which is also Arduino-
based, contains a wet sensor and a tilt sensor (ADXL345)
to detect water entry and ensure stability. For crack
detection and structural health assessment of the bridge,
the system utilizes YOLO v5, which is a state-of-the-art
deep learning algorithm that can accurately and timely
identify problems. Zigbee technology provides seamless
wireless communication, allowing for real time data
sharing to support proactive maintenance and informed
decision-making.
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1L.INTRODUCTION
The Bridge and Boat Monitoring System is intended to

improve safety and operational efficiency of both bridges
and waterways, through two integrated modules: the
Bridge and the Boat. It is a Bridge Module made by
Arduino, equipped with IR sensors for detecting any
vehicle approaching, a load cell to monitor weight, a water
level sensor and motorized gates to gain access under
control. The Boat Module, which is also Arduino-based,
contains a wet sensor and a tilt sensor (ADXL345) to
detect water entry and ensure stability. For crack detection
and structural health assessment of the bridge, the system
utilizes aid for the deaf and hard-of-hearing community,
ensuring that speech is understood accurately regardless of
the acoustic environment.

The system monitors conditions such as water levels,
strong winds, and floods, which improves safety and

automatically sends alerts in conditions that are adverse.
Lastly, it helps ensure that boats carrying out operations
near bridges do not capsize or have accidents because they
monitor water ingress and tilt and minimize the risks.

Beyond core recognition capabilities, the system is
architected for production-grade usability, featuring a
comprehensive dual interface design that includes a
Training GUI for custom data collection and a Prediction
GUI for live usage. A significant functional objective is
the implementation of robust Automatic Language
Detection, which intelligently switches between language
models without manual intervention, alongside Prediction
Stabilization algorithms designed to eliminate output
flickering.

2. LITERATURE SURVEY

2.1Z.Zhang, L. Wang, Y. Li, and M. Chen, “Automated
defect detection of concrete surfaces in hydropower
structures using deep learning and UAV imaging,”

IEEE Transactions on Industrial Electronics, vol. 70,
no. 3, pp. 2456-2465, 2023.

This research presents a fully automated defect detection
system designed specifically for hydropower dams and
concrete structures. It combines UAV (drone) imaging
with deep learning—based computer vision models to
detect surface defects such as cracks, spalling, and erosion.

The goal is to make dam and hydropower structure
inspections safer, faster, and more accurate than
traditional manual inspection.

2.2 J. Liu, K. Zhao, and P. Wu, “Multi-sensor data
fusion for structural health monitoring of hydropower

tunnels,” Automation in Construction, vol. 149, pp.
104732, 2023.

This research focuses on structural health monitoring
(SHM) of hydropower tunnels using multiple types of
sensors.

Instead of relying on a single measurement method, the
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authors combine different sensing technologies to
measure:

Stresses, vibrations, deformations, crack activities,

environmental conditions

The paper proposes a data fusion system that merges
information from all sensors to produce more reliable and
accurate assessments of tunnel health.

This allows the system to reconstruct a complete 3D model
of the structure with milli meter-level precision. The
collected data enables the identification of surface
distortions, cracks, erosion, spalling, and other defects
directly on the 3D model, making it possible to determine
not only the presence of damage but also its precise spatial
location. UAVs make this process safer and more efficient
by reaching high or dangerous regions without human
intervention.

While this method improves robustness and accuracy, it is
limited by its reliance on handcrafted visual features and a
static FFNN architecture that processes data without
capturing sequential dependencies

2.3 H. Xu, R. Zhang, and D. Sun, “Deep learning-
based crack detection in concrete structures under low-

light conditions,” Engineering Structures, vol. 278, pp.
115412, 2022.

This research focuses on detecting cracks in concrete
structures using deep learning models, specifically
designed to work under low-light or poor visibility
conditions.

Low-light environments — such as tunnels, night-time
inspections, or shaded dam regions — usually reduce the
accuracy of  normal vision-based  models.
This paper solves that issue through specialized deep
learning enhancement techniques.

accuracy in detecting anomalies and assessing risks.
Wireless communication ensures efficient data
transmission between the components, while real-time
notifications are forwarded to authorities through
automated messaging platforms. This robust and scalable
solution supports proactive safety management in terms of
the ability to respond promptly and adaptability to various
monitoring scenarios.

The acquired multimodal data were pre processed and
fused to form a comprehensive representation of the shaft
surface. The deep learning—based defect detection model,
built on a convolutional neural network (CNN)

architecture, was trained to automatically identify defect
patterns without the need for handcrafted feature
extraction

The research contributes to the field of autonomous
infrastructure monitoring and serves as a foundation for
further advancements in Al-driven inspection systems that
can operate autonomously, analyze defects in real-time,
and support predictive maintenance strategies

2.4 Q. Li, X. Huang, and Y. Gao, “UAV-assisted 3D
laser scanning for infrastructure inspection and defect
mapping,” Remote Sensing, vol. 14, no. 5, pp. 1185—
1198, 2022.

This research introduces a system that uses UAVs
(drones) combined with 3D laser scanning technology
(LiDAR) to inspect and map defects in large
infrastructure such as bridges, tunnels, dams, and
buildings.

Instead of using only 2D images, this method creates
detailed 3D point cloud models that allow highly
accurate defect detection and location mapping.

Unlike traditional 2D image-based inspection, which often
suffers from lighting limitations, perspective distortion,
and incomplete coverage, the 3D laser scanning approach
provides accurate geometric information by generating
dense point cloud data.

This allows the system to reconstruct a complete 3D model
of the structure with milli meter-level precision. The
collected data enables the identification of surface
distortions, cracks, erosion, spalling, and other defects
directly on the 3D model, making it possible to determine
not only the presence of damage but also its precise spatial
location. UAVs make this process safer.

3.METHODOLOGY
3.1 Data Acquisition and Input Processing

The system accepts inputs from various sources, including
real-time webcam streams, CCTV feeds, drone-captured
images, or manually uploaded photographs of dam
surfaces. These inputs are processed through a
standardized preprocessing pipeline, where each image is
resized, normalized, and converted into tensor format to
ensure compatibility with the YOLOVS inference engine.
Noise reduction and contrast normalization are applied
wherever necessary to enhance visual clarity, particularly
in images captured under inconsistent lighting conditions.
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3.2 Deep Learning-Based Defect Detection Using
YOLOvVS

YOLOVS serves as the core detection model due to its high
accuracy and real-time performance. The model has been
trained on dam defect datasets containing cracks, spalling,
leakage marks, and structural deformations. During
inference, the model generates bounding boxes, class
predictions, and confidence scores for each detected
defect. Non-Maximum Suppression (NMS) is applied to
remove duplicate detections and retain the most relevant
bounding boxes. The detection output includes the defect
category, spatial location, bounding box coordinates, and
individual confidence levels.

3.3 Post-Processing and Analytical Evaluation

After detection, additional analytical processes are applied
to interpret the model's output. The system computes
metrics such as defect count per class, mean confidence
values, bounding box area estimates, and severity
indicators. Larger bounding box areas and higher
confidence scores are interpreted as potentially more
severe defects. These values are aggregated and stored in
structured CSV files for each image and across complete
detection sessions. Visualization modules generate class
distribution bar charts and confidence-level histograms,
allowing pattern analysis across multiple images.

3.4 Automated Alerting Through Telegram Bot
Integration

The system incorporates a Telegram bot to enable real-
time notifications of detected defects. Whenever a
structural anomaly is identified, the system automatically
sends a message containing the defect type, severity
indicators, and a timestamp. Annotated images showing
bounding boxes around the detected defects are delivered
directly to the user. High-severity anomalies

3.5 Report Generation Through PDF Compilation

To support documentation and engineering review, the
system automatically compiles a detailed PDF report for
each detection session. The report includes annotated
images, detection summaries, graphs of class-wise
detections, confidence distributions, and textual analysis.
This document is created using the Report Lab library and
organized into professionally formatted sections.
Suggested engineering actions are included for each defect
type, providing guidance on potential maintenance
priorities. The compiled PDF is optionally sent through
Telegram for convenient access.

3.6 Dashboard Deployment for Visualization and File
Access

A lightweight Flask-based dashboard is integrated into the
system to provide a user-friendly interface for monitoring
detection runs. The dashboard displays structured
directories containing all generated outputs, including
images, graphs, CSV logs, and reports. It also provides an
API endpoint that delivers the most recent detection
summaries in JSON format, facilitating future expansion
or linkage with asset-management systems.

3.7 Threshold-Based Defect Severity Assessment

The system incorporates customizable threshold logic to
determine when a defect should be classified as severe.
Conditions such as defect count exceeding a specified
limit, mean confidence surpassing a defined threshold, or
bounding box area reaching a critical size automatically
trigger urgent alerts. This mechanism ensures timely
intervention and supports
strategies.

risk-based maintenance

3.8 End-to-End Automation and Scalability

The integrated methodology ensures that the system
operates autonomously from data input to final reporting.

All intermediate steps—preprocessing, detection, analysis,
alerting, visualization, and documentation—are executed
automatically. The modular architecture allows future
expansion, such as adding additional defect categories,
retraining models, integrating drone feeds, or deploying
the system on edge devices for on-site monitoring.

3.9 Continuous Learning and Model Optimization

The system incorporates a mechanism for continuous
learning, enabling the detection model to improve over
time as more defect images are collected. Newly captured
images and annotated outputs are stored and can later be
used to retrain or fine-tune the YOLOv5 model, increasing
its accuracy for real-world dam environments. This
iterative training approach helps the system adapt to
variations in lighting, weather conditions, camera quality,
and evolving defect patterns on the dam surface. By
periodically updating the model with recent data, the
system maintains long-term robustness and reliability,
ensuring improved performance in future inspections.
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4.WORKFLOW

4.1 Image Acquisition Workflow:- The workflow
begins with the acquisition of visual data from one or more
camera sources deployed near the dam structure. These
sources may include fixed CCTV cameras, high-resolution
webcams, drone-based imaging devices, or manually
captured photographs. Each incoming image is
automatically timestamped to maintain chronological
consistency and support traceability. Since dam
environments vary in lighting, weather, and surface
texture, capturing diverse images ensures the robustness of
the detection system. The acquired data is transferred to a
designated storage module where it is organized

4.2 Preprocessing and Data Preparation Workflow:- Once
images are acquired, the system initiates a preprocessing
workflow to standardize the input data for the deep
learning model. Each image is resized to match the
dimensional requirements of the YOLOvS architecture,
ensuring  consistent and efficient computation.
Normalization is applied to adjust pixel intensities so that
lighting variations do not adversely affect detection
accuracy. Additional image enhancement operations, such
as contrast adjustment or low-light correction, can be
applied when environmental conditions degrade visibility.
Noise and shadow artifacts are also minimized using
smoothing filters when necessary. The pre processed
images are then converted into model-compatible tensor
formats for GPU or CPU inference. These tensors
maintain the spatial structure required for accurate
bounding box prediction. The preprocessing pipeline
ensures that all images entering the detection model meet
high quality standards. Through this stage, the system
prepares raw data into a clean and uniform format suitable
for deep learning inference.

4.3 Defect Detection Workflow Using YOLOVS5:-
The preprocessed images are fed into the YOLOvS
detection engine, which serves as the core analytical
component of the workflow. YOLOVS evaluates each
image by partitioning it into grid cells and predicting
bounding boxes along with defect class probabilities. The
model generates multiple predictions per region, ensuring
comprehensive coverage of possible defects. To eliminate
overlapping or redundant predictions, Non-Maximum
Suppression (NMS) filters the results to retain the most
confident detections. The output from this stage includes
defect type, bounding box coordinates, and confidence
scores for each identified anomaly. All detections are
automatically logged and time-aligned with their
corresponding images. This workflow module ensures

high-speed and high-accuracy detection suitable for real-
time monitoring environments. The detection model
functions continuously, enabling uninterrupted inspection
capabilities. This step transforms raw visual data into
actionable structural insights.

4.4 Post-Detection Analytics Workflow

After generating detection outputs, the system transitions
to a comprehensive analytical workflow. The bounding
box areas are calculated to estimate the relative severity of
each defect, assuming larger areas correlate with more
substantial structural issues. Confidence scores are
statistically evaluated to measure the reliability of the
detections across a session. The system aggregates class-
wise defect counts to identify recurring or dominant
structural issues. Additional visual analytics, such as bar
graphs and confidence histograms, are generated to
support engineering interpretation. These results are stored
in structured CSV files, ensuring that all analytical data is
preserved for future audit or research purposes. The
analytics workflow helps identify trends, patterns, and
outliers in the captured defect data. It also supports data-
driven decision-making for maintenance scheduling.
Through this analytical process, defect detections become
quantifiable, interpretable, and actionable.

4.5 Temporal Smoothing: - To counteract camera jitter and
detection noise that causes landmarks to "shake," an
Exponential Moving Average (EMA) filter is applied to
the coordinates. Using a smoothing factor, the system
calculates the smoothed position as a weighted average of
the current detection and the previous position, ensuring
fluid and stable landmark trajectories
calculating accurate velocity features.

crucial for

4.6 Geometric Feature Extraction: - The system computes
161 static geometric features for the current frame to
describe the mouth's shape. This involves normalizing
coordinates to be invariant to face distance (scale) and
position (translation), calculating Euclidean distances
between key points (to measure mouth opening/width),
and computing angles between landmark triplets to capture
lip curvature. Additional metrics like the aspect ratio and
the area of the lip hull are also derived.

4.7 Temporal Feature Calculation: - To capture the
dynamics of speech, the system computes the first and
second derivatives of the geometric features. "Velocity" is
calculated as the difference in feature values between the
current frame and the previous frame. "Acceleration" is
calculated as the difference between the current velocity
and the previous velocity. These 322 additional features
quantify how the lips are moving.
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4.8 Feature Concatenation: - The static geometric features
are concatenated with the velocity and acceleration
vectors. The system then reduces or selects specific
features to form a final optimized dense vector of 330
features for the current frame. This creates a rich
numerical representation that encodes both the shape of
the lips and their motion dynamics.

4.9 Sequence Buffering: - The calculated 330 dimensional
feature vector is appended to the sliding window buffer
(deque). The buffer operates as a First In First Out (FIFO)
queue, maintaining exactly the last 75 frames of history. If
the buffer is not yet full (i.e., fewer than 75 frames
processed), the system waits; once full, this sequence
represents the immediate past 3 seconds of visual speech.

4.10 Sequence Normalization: - Before entering the neural
network, the entire 75-frame sequence undergoes Z-score
normalization. The system -calculates the mean and
standard deviation of the sequence features and scales the
data so it has a mean of 0 and a standard deviation of 1.
Outliers with a Z-score greater than 3.0 are capped to
prevent extreme values from destabilizing the model
predictions.

4.11 Deep Learning Inference: - The normalized sequence
is fed into the deep learning model. The input passes
through Bidirectional LSTM layers, which process the
sequence in both forward and backward directions to
understand the temporal context of the lip movements. An
Attention mechanism then weighs the importance of
different frames to focus on the most discriminative parts
of the word.

4.12 Class Prediction: - The model's final output layer uses
a Softmax activation function to produce a probability
distribution across all trained word classes. The system
identifies the index of the class with the highest
probability, representing the model's "best guess" for the
spoken word.

4.13 Confidence Thresholding: - The system evaluates the
confidence score of the top predicted class against a pre-
defined threshold, typically set around 0.65. If the model's
confidence is below this value, the prediction is discarded
as unreliable, preventing the system from displaying
random guesses during silence or ambiguous movements.

4.14 Prediction Stabilization: - Valid predictions are
passed to a stabilizer that maintains a history of the last 10-
15 results. A frequency-based voting algorithm determines
the most common prediction in this history. The system
requires a specific word to be the "winner" for a

consecutive number of frames before it is considered
stable. This eliminates the rapid flickering of words often
seen in raw frame-by-frame analysis.

4.15 User Interface Display: - The final result is updated
on the GUI. If the prediction is "stable," the word is
displayed in green text; if it is still stabilizing, it appears in
yellow. The interface also overlays the 31-point lip
landmarks on the live video feed and displays the
confidence percentage and detected language.

The pre processed images are then converted into model-
compatible tensor formats for GPU or CPU inference.
These tensors maintain the spatial structure required for
accurate bounding box prediction. The preprocessing
pipeline ensures that all images entering the detection
model meet high quality standards. The system calculates
the mean and standard deviation of the sequence features
and scales the data so it has a mean of 0 and a standard
deviation of 1. Outliers with a Z-score greater than 3.0 are
capped to prevent extreme values from destabilizing the
model predictions.

The static geometric features are concatenated with the
velocity and acceleration vectors. The system then reduces
or selects specific features to form a final optimized dense
vector of 330 features for the current frame. This creates a
rich numerical representation that encodes both the shape
of the lips and their motion dynamics.
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Fig-4.1: Workflow

S.RESULT AND DISCUSSION

The proposed Al-powered dam defect detection system
was evaluated on a diverse set of images captured from
CCTYV cameras, mobile devices, and drone-based sources.
The YOLOvS model successfully detected key structural
defects such as cracks, spalling, leakage marks, and
surface deformations with high reliability across varying
lighting and environmental conditions. During testing, the
system achieved a consistent detection accuracy, with
most defects being identified with confidence scores above
0.80. The bounding boxes generated by the model
accurately localized the damaged regions, enabling precise
visual inspection and analysis.

The post-processing analytics revealed clear trends in
defect occurrence, including the frequency of each defect
category and the statistical distribution of confidence
levels. Visualizations such as class-wise detection graphs
and confidence histograms further wvalidated the
consistency of the model’s performance across multiple
test sessions. The threshold-based severity assessment
classified high-risk defects,

module  successfully

triggering immediate alerts when large-area cracks or
high-confidence anomalies were detected.

The Telegram alert system performed efficiently,
delivering real-time notifications that included annotated
defect images, severity indicators, and summary
messages. This rapid communication significantly reduces
inspection delays and facilitates early decision-making by
engineers. Additionally, the automated PDF report
generation module compiled annotated images, statistical
graphs, and textual descriptions into a structured,
professional document suitable for engineering audits and
long-term record keeping.

6. CONCLUSIONS

The development of the Al-powered dam defect detection
system demonstrates the effectiveness of deep learning
and automated communication technologies in modern
infrastructure monitoring. By integrating the YOLOVS5
object detection framework with a comprehensive
analytics module, the system achieved accurate
identification of cracks, spalling, leaks, and other
structural anomalies across diverse environmental
conditions. The automated workflow significantly reduces
the dependence on manual inspection methods, which are
often time-consuming, labor-intensive, and prone to
human error. The ability to generate real-time Telegram
alerts ensures rapid awareness of critical defects, enabling
timely intervention and enhancing overall structural
safety.

The inclusion of automated PDF reports and a web-based
dashboard further strengthens the system’s practicality by
providing engineers with organized, traceable, and easy-
to-access documentation of inspection results. The
threshold-based severity classification —mechanism
enhances decision-making by highlighting defects that
require immediate attention. Overall, the results confirm
that the proposed system offers a reliable, efficient, and
scalable approach to dam monitoring, capable of
supporting long-term structural health assessment. With
further advancements such as expanded datasets, multi-
modal sensing, and predictive analytics, the system holds
The Telegram alert system performed efficiently,
delivering real-time notifications that included annotated
defect severity
messages. This rapid communication significantly reduces
inspection delays and facilitates early decision-making by

images, indicators, and summary

engineers.
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