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Abstract—This research explores a comprehensive machine 
learning approach to predict wear rates in coated materials under 
varying conditions. Five tree-based ensemble regression models 
Gradient Boosting, XGBoost, Stacking Regressor, Extra Trees, 
and Random Forest were evaluated for their predictive accuracy. 
The Gradient Boosting Regressor demonstrated superior perfor- 
mance with 98.20% test accuracy, followed by XGBoost (98.05%) 
and Stacking Regressor (97.88%). The models effectively cap- 
tured complex relationships between material properties, coating 
characteristics, speed, ash type, concentration, and time. A Voting 
Regressor ensemble was developed to enhance stability and 
leverage the strengths of individual models. Residual analysis 
revealed minimal bias across predictions, with performance 
metrics including mean squared error below 0.03 and R² values 
exceeding 0.99 for top models. This study shifts the approach 
to wear prediction from a reactive maintenance strategy to a 
proactive optimization method, which holds considerable promise 
for lowering equipment replacement expenses and minimizing 
downtime in industrial settings. The economic evaluation suggests 
potential reductions of 28-34% in maintenance expenditures 
through the adoption of predictive wear models for mineral 
processing machinery. The proposed framework serves as a basis 
for real-time monitoring systems with established confidence 
intervals to aid maintenance decisions. Subsequent efforts will 
aim to enhance the model by accounting for combined wear 
mechanisms and integrating online learning features to adapt to 
changing operational conditions. 

Index Terms—Keywords — Wear Rate Prediction, Machine 
Learning, Performance Metrics, Random Forest, Gradient Boost- 
ing, XGBoost, Stacking Regressor, Extra Trees, Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), R² Score, 
Predictive Modeling, Error Rates, Material Coatings. 

 

 

 

 

 

 

 

 

I. INTRODUCTION 

Material wear caused by erosion is a common and expensive 

problem in many industries, such as power plants, mining, 

oil and gas, and manufacturing. Equipment often fails due 

to wear, leading to costly repairs and downtime. As a result, 

companies around the world spend billions of dollars each year 

on maintenance and replacing damaged parts. [1] Traditional 

methods for predicting wear mainly depend on physical testing 

and expert knowledge, which take a lot of time and resources. 

Wear mechanisms are complex because they are influenced 

by many interacting factors, such as the properties of the 

materials and coatings, operating conditions like speed and 

time, and the characteristics of the erosive particles, including 

their type and concentration [1], [2].These factors interact 

in complicated and non-linear ways, making it difficult to 

predict wear accurately using traditional methods. Conven- 

tional analytical models often assume simplified relationships 

between variables, which limits their ability to capture the true 

behavior of wear. They struggle to account for the combined 

effects of multiple factors, rely heavily on expensive and time- 

consuming experiments, and are not easily adaptable to new 

materials or changing working conditions. 

Recent advances in machine learning offer new ways to 

model complex relationships and predict wear rates more accu- 

rately. Machine learning can find patterns and connections that 

older methods might miss, changing how industries predict 
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wear and choose materials. [3]When materials wear down, 

many factors come into play at once. The type of material, 

its coating, how fast parts move, and what kind of particles 

cause the wear all affect how quickly something wears out. 

These factors interact in ways that are hard to capture with 

simple formulas or testing. This research tackles the need 

for better wear prediction by testing and comparing several 

machine learning models. We focus on predicting how quickly 

different material-coating combinations wear down under var- 

ious conditions of speed, time, ash type, and concentration. 

Using powerful learning techniques like Gradient Boosting, 

XGBoost, and Random Forest, we aim to build a framework 

that gives more reliable predictions. [3], [4] 

For decades, engineers have relied on laboratory testing and 

past experience to understand wear. These methods require 

extensive time in testing facilities, with each new material or 

condition needing fresh testing. Results from one setting may 

not apply to another, and traditional approaches struggle to 

account for how multiple factors work together. [5] Testing 

is expensive and uses significant resources. The traditional 

approach is reactive - waiting for problems to appear before 

making changes. This leads to unexpected breakdowns, costly 

repairs, and production losses across industries. 

Machine learning offers several advantages for wear pre- 

diction. It can process large datasets with many variables at 

once and automatically detects relationships between factors 

without being explicitly programmed. It improves predictions 

as more data becomes available and handles non-linear re- 

lationships that standard statistical methods struggle with. 

[6] Machine learning can make predictions for conditions 

not directly tested. Our research uses ensemble methods - 

techniques that combine multiple models to achieve better 

results than any single model could provide. These methods 

are particularly good at handling the complex nature of wear 

processes. 

Our research aims to develop machine learning models that 

accurately predict wear rates across many different operating 

conditions and find which factors most strongly influence 

wear through analysis of what the models learn. [6], [7] We 

will compare how well different tree-based machine learning 

methods perform for wear prediction and create a step-by- 

step approach for selecting and testing models for wear 

applications. Additionally, we aim to build a combined model 

that uses the strengths of multiple algorithms for more stable 

predictions. [8] 

This research has practical uses beyond scientific interest. 

Companies can schedule repairs before equipment fails, and 

engineers can select the best materials for specific work- 

ing conditions. Understanding wear mechanisms helps design 

more durable parts, leading to less downtime and fewer 

replacements that save money. Previous research has mostly 

used either physical testing or basic mathematical models that 

can’t capture all the complexities of wear. Some researchers 

have used simple machine learning approaches, but few have 

thoroughly tested advanced methods or combined them into 

ensemble models. By shifting wear prediction from guesswork 

to data-driven science, this research helps both scientists 

understand wear mechanisms and gives industries practical 

tools to make better decisions. [8], [9]As industries face in- 

creasing pressure to reduce costs and improve reliability, these 

predictive tools offer a competitive advantage by reducing the 

trial and error approach traditionally used in material selection 

and maintenance planning. 

This paper is organized as follows: Section 2 describes 

the proposed system and algorithm design provides a de- 

tailed explanation of the dataset, feature selection process,pre- 

processing and division of dataset,data grouping and visualiza- 

tion and the computation of correlation matrix. Section 3 gives 

the detail explanation of different machine learning model 

used. Section 4 presents the evaluation results of model per- 

formance, followed by a discussion of key findings in Section 

5. Lastly, Section 6 concludes the study with recommenda- 

tions for future research and the practical implementation of 

machine learning in wear rate prediction. 

II. PROPOSED SYSTEM AND ALGORITHM DESIGN 

The aim of this work is to design a machine learning model 

that has the ability to predict wear rates in an industrial setting. 

The procedure involves four major steps: preparation of the 

data, model training, evaluation of the model performance, and 

further optimization for maximizing improvement. A flowchart 

describing the whole process is presented in Figure 1. All steps 

are elaborated in the subsequent section. 

A. Data Set 

The dataset used in this study consists of detailed wear 

testing results collected from various combinations of base 

materials and protective coatings, tested under different oper- 

ating conditions. It includes several key features such as the 

type of material and coating (both categorical variables), the 

type of ash used as the erosive medium (either fly ash or 

bottom ash), and numerical variables such as rotational speed 

(in RPM), test duration (in minutes), and ash concentration (as 

a percentage). The target variable is the wear rate, measured 

in grams per square meter per minute (g/m²·min) [10], [11], 

which indicates the rate of material loss during testing.The 

sample dataset values are shown in Table 1. 

 
TABLE I 

TABLE 1. SAMPLE RECORDS OF WEAR RATE DATASET. 
 

Sr.no Coating Material Ash Time Concentration Speed Wear rate 

1 Uncoated SS202 Fly 90 0.3 600 2.17 

2 Uncoated SS202 Fly 90 0.4 600 2.74 

3 Uncoated SS202 Fly 90 0.5 600 3.13 

4 Uncoated SS202 Fly 90 0.3 600 3.31 

 

This dataset offers a wide range of parameter combinations, 

enabling a thorough analysis of how different variables interact 

to affect wear rates. An initial exploratory data analysis 

showed noticeable patterns in wear behavior across different 

material-coating pairs and test conditions. These findings sug- 

gest the existence of complex, non-linear relationships among 

the variables, supporting the need for a machine learning-based 

predictive approach. 

http://www.ijsrem.com/
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B. Pre-Processing and Division of Dataset 

The preprocessing of data had a couple of important steps 

in order to validate that the data was of good quality and to 

improve how well the model would perform. [10], [12] Firstly, 

data cleaning was performed where outliers or untypical values 

that could potentially harm the precision of the model were 

identified and removed. The dataset was also checked for 

missing values; none were found, however, in the final one 

that was modelled. Second, categorical features like Material, 

Coating, and Ash were transformed into numeric form via 

Label Encoding in order to allow them to work with machine 

learning algorithms. Finally, all numeric features were nor- 

malized with a Standard Scaler so that variables with higher 

scales did not dominate others in learning. 

The data was split into two sets: training and testing sets. 

We used stratified sampling, where 80% of the data was routed 

to training and 20% to testing. Stratified sampling ensured an 

even rate of wear in both sets. The training set was used to 

train the machine learning models and tune their parameters. 

[13], [14] On the other hand, the testing set was kept intact and 

only used for final model assessment to ensure we objectively 

assess its performance. 
 

Fig. 1. Proposed System for Ware Rate 

 

C. Data Grouping and Visualization 

In this study, the data analysis was conducted through 

systematic grouping and visualization techniques to inves- 

tigate the relationships influencing wear rate behavior. The 

dataset was organized into relevant categories based on key 

parameters, including material type, coating status, rotational 

speed, test duration, and ash concentration. [13], [15], [16] The 

visualization strategy focused on three primary relationships to 

facilitate a comprehensive understanding of wear mechanisms 

under varying operational conditions. 

The first analysis explored the relationship between wear 

rate and rotational speed, as shown in Figure 2. This ex- 

amination enabled the comparison of material performance 

across different speeds and provided insights into the influ- 

ence of speed on coating effectiveness. The second analy- 

sis focused on the relationship between wear rate and ash 

concentration—particularly fly ash—to assess how varying 

concentrations impacted material degradation and the protec- 

tive capabilities of coatings, as illustrated in Figure 3. [17], 

[18]The third analysis evaluated wear rate over time, offering 

a temporal perspective on wear progression. This allowed 

for the observation of long-term material behavior and the 

comparative performance of coated versus uncoated samples, 

as shown in Figure 4. 

Collectively, these visual analyses offered critical insights 

into the complex interactions between materials, coatings, and 

operational parameters. Such findings significantly contribute 

to the development of more robust and accurate machine 

learning models for predicting wear rate behavior in industrial 

applications. 

 

Fig. 2. Ware Rate vs Speed for fly Ash on Different Models 

 

 

Fig. 3. Ware Rate vs Time for fly Ash on Different Models 

 

 

Fig. 4. Ware Rate vs Concentration for fly Ash on Different Models 

 

D. Computation of Correlation Matrix 

A correlation matrix was computed to identify the re- 

lationships between input features and the target variable, 
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n 

providing valuable insights into the factors most strongly 

influencing wear rates. This analysis also helped detect poten- 

tial multi collinearity among predictors. [19], [20]To enhance 

interpretability, the correlation matrix was visualized using a 

heatmap (Figure 5). 

B. 

XGBoost Regressor 

XGBoost is a highly scalable and efficient version of the 

gradient boosting algorithm. It builds trees sequentially, and 

each tree attempts to fit a regularized objective function. [22], 

[25] The objective function is a combination of the training 

loss of the model and a regularization term that includes 

penalties for complexity, leading to improved generalization 

and overfitting protection. 

obj(θ) = 
Σ 

l(yi, yˆi) + 
Σ 

Ω(fk) (2) 

 

where: 

i=1 k 

 
 
 
 

 
Fig. 5. Correlation matrix heatmap of features and wear rate. 

• l(yi, yˆi) is the loss function that measures the difference 

between the predicted value yˆi and the true value yi, 

• Ω(fk) is the regularization term for the k-th tree. 

The regularization term Ω(f ) is given by: 

 

The results showed that the rotational speed exhibited a 

high positive correlation with the wear rate, i.e., higher speeds 

 

 
where: 

Ω(f ) = γT + 
1 

λ||w||2 
2 

(3) 

always translated to higher material loss. Similarly, the ash 

concentration showed a positive correlation with the wear rate, 

thus confirming that higher concentrations of erosive media 

allowed for an increase in wear acceleration. The type of 

material and the presence of a coating both showed moderate 

correlations with the wear rate, highlighting the extremely 

critical role of material selection and protective coatings in 

enhancing wear resistance. In contrast, the test duration (time) 

exhibited a relatively weaker correlation with the wear rate, 

i.e., the wear process could actually become stabilized after 

some exposure time. [21], [22] Overall, this correlation anal- 

ysis helped the feature selection process and offered valuable 

context for the interpretation of the performance and outcomes 

of the machine learning models. 

III. MACHINE LEARNING MODELS 

• T is the number of leaves in the tree, 

• w is the vector of scores on each leaf, 

• γ is the regularization parameter for the number of leaves, 

• λ is the L2 regularization term on the leaf weights. 

The model was optimized with 300 estimators, a learning 

rate of 0.1, maximum depth of 20, and a subsample rate of 

0.5. 

C. Random Forest Regressor 

Random Forest achieves this by constructing an ensemble 

of decision trees and then voting among them to estimate 

their average and hence making the model more accurate and 

avoiding overfitting. Random Forest’s prediction for an input 

x is given by: 

B 
f (x) = 

 1 Σ 
T (x) (4) 

A. Gradient Boosting Regressor 

Gradient Boosting is an ensemble technique that builds re- 

gression trees sequentially, where each new tree aims to correct 

 

 

where: 

RF 
B 

b 

b=1 

the errors made by the previous ensemble. [23], [24]The model 

can be mathematically expressed as: 

 

Fm(x) = Fm−1(x) + η · hm(x) (1) 

• Fm(x) is the model after m iterations, 

• Fm−1(x) is the model from the previous iteration, 

• η is the learning rate (0.05 in our optimized model), 

• hm(x) is the regression tree fit to the negative gradient 

of the loss function. 

The final prediction is then derived by adding the predictions 

from every individual tree, with each prediction weighted 

by the learning rate. In running our model, we utilized 300 

estimators, where we set a maximum tree depth to 10, a 

minimum samples split to 5, and employed a subsample rate 

of 0.7. 

• B is the number of trees in the forest (set to 200 in our 

implementation), 

• Tb(x) is the prediction of the b-th tree for input x. 

Our implementation employed trees with a maximum depth 

of 10, a minimum samples leaf of 1, and a minimum samples 

split of 2 to optimize model performance while avoiding 

overfitting. 

D. Extra Trees Regressor 

The Extra Trees Regressor, or Extremely Randomized 

Trees, takes the Random Forest technique a step further by 

adding additional randomization to the process of building 

decision trees. [26] Unlike Random Forest, which does an 

exhaustive search for the optimal split at each node, Extra 

Trees randomly chooses split thresholds for each feature 

and then chooses the best among them. This feature brings 

http://www.ijsrem.com/
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Σ 

1 Σ 

2   i=1  

Σ 

additional diversity between the trees and can lead to improved 

generalization performance. 

The prediction formula remains similar to that of Random 

Forest: 

1  
B 

f (x) = T (x) (5) 

weaker models are still able to contribute valuable diversity. 

The Voting Regressor leverages the principle of model aver- 

aging to reduce generalization error and enhance robustness. 

Unlike Stacking, which relies on a meta-model, Voting offers 

a simpler but effective method of aggregating diverse learners 

for improved predictive performance. 

 
where: 

ET 
B b 

b=1 IV. MACHINE LEARNING MODEL EVALUATION 

For the performance estimation of the regression models, 

• B is the number of trees in the ensemble (set to 500 in 

our implementation), 

• Tb(x) is the prediction of the b-th tree for input x. 

In our implementation, we utilized 500 estimators with 

a maximum depth of 20 to balance model complexity and 

performance. 

E. Stacking Regressor 

Stacking is a form of ensemble learning in which several 

base regressors are ensembled using a meta-regressor that 

learns how to best combine their predictions. The final pre- 

a suite of complementary metrics was utilized. Overall, these 

metrics collectively provide an overall view of the prediction 

ability, accuracy, and robustness of the models in different 

perspectives. 

A. Coefficient of Determination (R2 Score) 

The R2 score measures the proportion of variance in the 

dependent variable that is predictable from the independent 

variables. [27] A value closer to 1 indicates a model that 

explains a high proportion of the variance: 
Σn  

(yi − yˆi)2 

diction of the model is expressed as:  
Where: 

R = 1 − n 
i=1 (yi 

(8) 
— y¯)2 

fstack(x) = g(f1(x), f2(x), ..., fk(x)) (6) 

where: 

• f1, f2, ..., fk are the base models (in our case, Random 

Forest and Gradient Boosting), 

• g is the meta-regressor, which was implemented as Ridge 

Regression with α = 0.1. 

This methodology allows the collective to leverage the 

unique advantages of various algorithms, thereby enhancing 

predictive precision while simultaneously minimizing the bi- 

ases and variances associated with individual models. 

• yi is the actual value, 

• yˆi is the predicted value, 

• y¯ is the mean of actual values, 

• n is the number of observations. 

B. Adjusted R2 Score 

Adjusted R2 penalizes the addition of unnecessary pre- 

dictors to the model. It adjusts the standard R2 score by 

accounting for the number of predictors (p) and the number 

of data points (n): 

F. Voting Regressor 
2 
adj 

= 1 − (1 − R2) · 
n − 1 

n − p − 1 
(9) 

The Voting Regressor is a method of ensemble that aggre- 

gates the predictions of many base regressors by computing a 

weighted average of their respective outputs. It is especially 

useful when the models are complementary and describe 

unique features of the underlying distribution of the data well. 

The prediction at the end can be expressed as: 

k 

This metric is especially useful for comparing models with 

different numbers of predictors. 

C. Mean Squared Error (MSE) 

MSE is the average of the squared differences between the 

actual and predicted values. It emphasizes larger errors due to 

the squaring operation: 

fvote (x) = 
Σ 

wi 
i=1 

· fi(x) (7) 
n 

MSE = 
n 

 

(yi − yˆi)2 (10) 

where: 

• wi is the weight assigned to the ith model, optimized 

through grid search and cross-validation, 

• fi(x) is the prediction from the ith base regressor, 

• k is the total number of base models in the ensemble. 

In our implementation, the ensemble incorporated the top 

five performing models: Random Forest, Gradient Boosting, 

i=1 

Lower MSE values indicate better model performance. 

D. Mean Absolute Error (MAE) 

MAE calculates the average absolute difference between 

actual and predicted values. Unlike MSE, it treats all errors 

equally without penalizing large errors more heavily: 

1 Σ 
XGBoost, Extra Trees, and Ridge Regression. The weights 

for each model were fine-tuned using cross-validation to max- 

MAE = n 
i=1 

|yi − yˆi| (11) 

imize prediction accuracy. This approach ensures that stronger 

models contribute more significantly to the final output, while 

MAE is more robust to outliers and provides a clearer 

interpretation of typical prediction error. 

R 

n 
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E. Root Mean Squared Error (RMSE) 

RMSE is the square root of the MSE, and it provides an 

error measure in the same units as the target variable, making 

it easier to interpret in real-world terms: 

TABLE III 
TABLE 1. MODEL-WISE PERFORMANCE COMPARISON ON WEAR RATE 

DATASET 

RMSE = 

,
u
, 1 

 

Σ 

i=1 

 

(yi − yˆi)2 (12) 

RMSE is sensitive to outliers and is commonly used in many 

regression tasks. Together, these measurements give a broad 

view of model performance. Whereas R2 and Adjusted R2 

indicate the goodness-of-fit level, MSE and RMSE penalize 

larger errors, and MAE provides a broad view of average 

error. [28], [29] These assessments facilitated the selection of 

the most accurate model for wear rate prediction, taking both 

accuracy and generalization ability into consideration. 
 

 

V. RESULT AND DISCUSSION 

In order to examine wear rates and determine the inter- 

relationship between various factors, we employed multiple 

regression techniques and conducted meticulous examinations 

of the techniques. The five machine learning techniques had 

varying degrees of success in predicting the wear rates of 

various coatings. 

 

A. Experimental Set 

Python and the scikit-learn library were employed for model 

development of machine learning in the study. The data were 

split into two different subsets, such that 80% were utilized for 

training and the other 20% were held apart for testing. [30], 

[31]Hardware configurations utilized in the simulation stage 

are shown in Table 2. 

 
TABLE II 

SYSTEM HARDWARE SPECIFICATIONS 
 

Component Specification 
Processor Speed 2.40 GHz 
RAM 16 GB 
L1 Cache 512 KB 
L2 Cache 2 MB 

L3 Cache 12 MB 
 

 

 

B. Model Performance Comparison 

The performance evaluation of various regression models is 

summarized in Table 3, sorted by test accuracy (R² score). 

The top-performing models demonstrated excellent predic- 

tive capabilities with the Gradient Boosting Regressor achiev- 

ing the highest test accuracy of 98.20%, followed by XGBoost 

(98.05%) and the Stacking Regressor (97.88%). All models 

performed well on new data with very minimal overfitting 

and the small difference between training and testing accuracy 

shown in (Figure 6). 

 

 

 

 

 

 

Fig. 6. Model Comparison Across Various Metrics 

 

 

C. Model Diagnostics and Error Analaysis 

The actual vs. predicted value plots revealed that all top- 

performing models accurately captured the underlying patterns 

in the data as shown in (Figure 7). The reference line (y = 

x) showed that the predictions were very close to the actual 

values, with slightly bigger differences at the highest and 

lowest wear rates. 

 

 
Fig. 7. Experimental and predictive values from different machine learning 
algorithms 

 

The residual analysis showed that the prediction errors were 

mostly small and spread out randomly around zero, meaning 

the models made fair and unbiased predictions as shown in 

(Figure 8). There were no clear patterns in the errors, showing 

that the models handled the complex relationships in the data 

well. The Gradient Boosting Regressor and Stacking Regressor 

n 

Model Train 

Accuracy 

Test 

Accuracy 

Test 

MSE 

Test 

MAE 

Test 

RMSE 

Test 

R2 

Test 

Adj R2 

Gradient 
Boosting 

0.9957 0.9820 0.0226 0.0821 0.1504 0.9983 0.9983 

XGBoost 0.9957 0.9805 0.0270 0.0871 0.1642 0.9980 0.9979 

Stacking 
Regressor 

0.9964 0.9788 0.0234 0.0832 0.1530 0.9983 0.9982 

Extra 
Trees 

0.9904 0.9745 0.0550 0.1387 0.2345 0.9960 0.9958 

Random 
Forest 

0.9876 0.9716 0.0545 0.1414 0.2336 0.9960 0.9958 
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had especially consistent errors, meaning they made reliable 

predictions across all wear rate values. 

 

Fig. 8. Error Analysis from different machine learning model 

 

Given the strong individual performance of several models, 

a Voting Regressor ensemble was developed to leverage the 

strengths of multiple algorithms. The ensemble combined the 

predictions from Gradient Boosting, XGBoost, Stacking Re- 

gressor, ExtraTrees, and Random Forest models. Hyperparam- 

eter tuning for the Voting Regressor focused on optimizing the 

weights assigned to each base model. The ensemble achieved 

comparative performance metrics to the best individual mod- 

els, offering a best solution with enhanced stability. In below 

table 4, the performance evaluation of Voting Regressor model 

metrices is mentioned. 

TABLE IV 
TABLE 4. VOTING REGRESSOR MODEL PERFORMANCE ON WEAR RATE 

DATASET 
 

 

 

 

 

 

 

 

 

 

D. Discussion of Model Application and Implemecation 

The strong performance of tree-based ensemble methods 

(Gradient Boosting, XGBoost, Random Forest, and Extra- 

Trees) suggest that wear rate prediction is enhanced by models 

that can effectively capture complex, nonlinear correlations 

among variables. These models good at identifying interaction 

effects between elements like material type, coating, speed, 

and concentration, all of which play a critical role in in influ- 

encing wear behavior. The gradient boosting algorithms have 

consistently demonstrated other approaches, likely due to their 

ability to progressively correct errors throughout iterations, 

thereby improving predictions in areas where earlier versions 

failed. This suggests that wear rate prediction contains subtle 

patterns that benefit from this iterative refinement approach. 

This comprehensive study of wear rate prediction using 

machine learning represents a critical advancement in under- 

standing and mitigating material degradation in industrial en- 

vironments. By developing highly accurate predictive models, 

with the Gradient Boosting Regressor achieving an impressive 

98.20% test accuracy, the research uncovered that speed, 

ash concentration, material properties, and coating charac- 

teristics fundamentally drive erosion mechanisms. Ultimately, 

this research provides engineers and material scientists with 

a powerful predictive tool that bridges advanced machine 

learning techniques with real-world tribological challenges, 

offering a systematic method to optimize material selection, 

predict wear patterns, and design more resilient components 

across multiple industrial applications. 

 

VI. CONCLUSIONS 

This study efficiently developed robust and highly accurate 

machine learning models for wear rate predictions of coated 

materials under various operating conditions. Ensemble tree- 

based methodologies, i.e., Gradient Boosting and XGBoost, 

were found to be uniformly superior performing among tested 

models, achieving test accuracies above 98%, thus confirming 

their ability to capture complex wear dynamics. Very high 

congruence between training and testing measurements en- 

sured high generalization, and the Voting Regressor aided in 

improving the stability of prediction through model fusion. 

In conclusion, the research demonstrates the ability of ma- 

chine learning to revolutionize wear prediction from conven- 

tional empirical methods to a predictive, data-driven method. 

The models can handle non-linear interactions and hold a 

high potential for use in wear-sensitive industries like mining, 

energy, and manufacturing. Future research can be focused 

on the inclusion of other environmental and material-specific 

variables, the use of deep learning for improved modeling, 

and the development of user-friendly tools to make extensive 

industrial application possible. 
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