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Abstract: 

  This paper introduces a new sorting algorithm 

designed to sort array elements directly within the array 

itself. The algorithm features a best-case time 

complexity of O(n) and an average and worst-case time 

complexity of O (n log n). It achieves this performance 

through a method that combines recursive breakdown 

with in-place merging techniques. We compare this 

new approach with existing popular sorting algorithms 

to assess its relative effectiveness. The paper concludes 

with insights into the algorithm's strengths and 

limitations, and proposes potential areas for further 

development and refinement. 

Keywords - Complexity Analysis, In-Place Sorting, 

Recursive Breakdown 

Introduction: 

Sorting is a fundamental problem in computer science, 

crucial for data organization, retrieval, and processing. 

Among the variety of sorting algorithms, merge sort 

stands out due to its stability and reliable (O (n log n)) 

time complexity in both average and worst-case 

scenarios. However, a significant limitation of 

traditional merge sort is its requirement for additional 

space proportional to the size of the input array, which 

poses challenges in memory-constrained 

environments. 

To overcome this limitation, we propose an advanced 

in-place merge sort approach designed to optimize 

sorting performance while minimizing memory usage. 

This innovative technique leverages the strengths of 

merge sort’s stable sorting while incorporating in-place 

operations to reduce space requirements. Our approach 

achieves a best-case time complexity of (O(n)) and 

maintains (O (n log n)) time complexity on average and 

in the worst case, making it both efficient and memory-

conserving. 

The essence of this advanced in-place merge sort lies 

in its dual-phase strategy. The first phase involves 

rearranging the unsorted array in place to form 

segments that are ordered relative to each other, though 

elements within each segment remain unsorted. This 

phase operates in linear time. The second phase sorts 

the elements within each segment in-place with a time 

complexity of (O (z log z)), where (z) is the size of the 

segment, and requires only (O (1)) auxiliary storage. 

This approach ensures that element comparisons and 

moves are constrained to (O (n log z)), with no extra 

arithmetic operations on indices. 

In this paper, we present a comprehensive analysis of 

this advanced in-place merge sort approach, comparing 

its performance with other popular sorting algorithms. 

Our empirical and theoretical evaluations highlight 

scenarios where this method excels and identify its 

limitations. By exploring its strengths and weaknesses, 

we aim to provide insights into its practical 
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applications, particularly in large-scale data processing 

and memory-constrained systems. 

The implications of in-place sorting are significant, as 

it allows processing of larger datasets within main 

memory without frequent input/output operations. This 

paper also discusses the practical relevance of our 

algorithm, supported by experimental results that 

demonstrate its superiority over existing in-place 

sorting methods. Finally, we offer a detailed analysis of 

the time and space complexity, number of element 

moves, and auxiliary storage requirements, providing a 

clear assessment of the algorithm's efficiency and 

potential for future improvements. 

In this paper, the advanced in-place merge sort 

approach represents a significant advancement in 

sorting algorithm design, offering a balance of 

performance and minimal space overhead. Its ability to 

enhance sorting efficiency while adhering to memory 

constraints makes it a valuable contribution to the field 

of computer science and data management. 

 

Literature Review 

1. You Ying, Ping You, and Yan Gan (2011) 

In their 2011 study, You Ying, Ping You, and Yan Gan 

analysed five major sorting algorithms. Their findings 

indicate that Insertion and Selection sorts are effective 

for sorting small ranges of elements. For datasets that 

are already partially ordered, Bubble or Insertion sort 

is recommended. In contrast, for large datasets with 

random elements, Quick and Merge sorts demonstrate 

superior performance over other algorithms. 

2. Jyrki Katajainen, Tomi Pasanen, and Jukka 

Teuhola (1996)  

Katajainen, Pasanen, and Teuhola’s 1996 research 

delved into the efficiency of in-place merge sort 

algorithms. Initially, they described a basic variant that 

required (O(n log^2 n) + O(n)\) comparisons and (3(n 

log^2 n) + O(n)) moves. Subsequently, they proposed 

an advanced version which optimized performance to 

require at most ((n log^2 n) + O(n)) comparisons and 

((nlog^2 n)) moves, applicable for arrays of any fixed 

size (n). 

3. Antonio S. Symbonis (1994)  

Symbonis (1994) investigated stable merging 

techniques for arrays of different sizes. He 

demonstrated that merging two arrays, where one array 

is smaller than the other, can be done with (O (m + n)) 

assignments, (O (m log (n/m + 1))) comparisons, and a 

constant amount of extra space. Additionally, he 

explored the potential for in-place merging without the 

need for an internal buffer. 

4. Wang Xiang (2011) 

Wang Xiang (2011) focused on the time complexity 

analysis of the quick sort algorithm but also explored 

improvements in merge sort. His study emphasized 

optimizing sorting performance by examining various 

sorting techniques, including enhancements to merge 

sort, that aim to achieve faster sorting times for large 

datasets. 

5. Shrinu Kushagra, Alejandro Lopez-Ortiz, and J. 

Ian Munro (2013)  

Kushagra, Lopez-Ortiz, and Munro (2013) introduced 

a novel approach involving multiple pivots in sorting. 

Although their primary focus was on quick sort, the 

principles of multi-pivot techniques can be adapted to 

merge sort, enhancing its efficiency. The experimental 

results indicated a 7-8% improvement in performance, 

which suggests that similar multi-pivot strategies could 

be applied to in-place merge sort to further reduce 

sorting times. 

6. Hossain, Nadir, Alma, Amiruzzaman, and M. 

Quadir (2004)  

This 2004 study proposed a more efficient merge sort 

algorithm by using a divide-and-conquer strategy. 

Unlike the traditional merge sort that divides the data 

until individual elements are reached, their method 

divided the data into groups of two elements, which 

decreased the number of recursive calls and improved 

overall efficiency. 

7. Gui gang Zheng, Shaohua Teng, Wei Zhang, and 

Xiu fen Fu (2009)  

Zheng, Teng, Zhang, and Fu (2009) advanced the field 

with an enhanced indexing method and its 
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corresponding parallel algorithm. Their experiments 

showed that sorting based on indexing and parallel 

computing reduced execution time compared to other 

sorting algorithms. This method enabled sorting of sub-

merging sequences on a single processor, thereby 

enhancing efficiency. 

8. Bing-Chao Huang and Michael A. Langston 

(1987)   

Huang and Langston (1987) proposed a practical 

linear-time approach for merging two sorted arrays 

while using a fixed amount of additional space. This 

approach demonstrated that linear-time merging could 

be achieved with minimal extra space requirements. 

9. Rohit Yadav, Kratika Varshney, and Nitin Verma 

(2013) 

Yadav, Varshney, and Verma (2013) explored the 

runtime complexities of both recursive and non-

recursive merge sort approaches. They presented new 

implementations for two-way and four-way bottom-up 

merge sort, revealing worst-case complexities bounded 

by (5.5n log^2 n + O(n)) and (3.25n log^2 n + O(n)), 

respectively. 

10.Bandyopadhyay and Chatterjee (2002) 

Bandyopadhyay and Chatterjee (2002) investigated 

various in-place merge sort algorithms, proposing a 

refined version that achieves (O (n \log n)) time 

complexity with reduced auxiliary space requirements. 

Their work focused on optimizing memory usage while 

maintaining performance, which is crucial for 

enhancing in-place merge sort methods. 

11. Finkel and Bentley (1974)  

Finkel and Bentley (1974) explored in-place sorting 

techniques, including merge sort variants that utilize 

minimal additional storage. Their contributions laid the 

groundwork for many modern in-place sorting 

algorithms by demonstrating how to merge data 

efficiently without excessive space overhead. 

12. Derrick and Mellor-Crummey (2012) 

Derrick and Mellor-Crummey (2012) studied parallel 

algorithms for merge sort, including in-place 

variations. They examined how parallel processing can 

be applied to in-place merge sort to achieve better 

performance. Their research highlights how combining 

parallelism with in-place techniques can further 

enhance sorting efficiency. 

13. Chien et al. (2010) Chien, Lee, and Chen (2010) 

 proposed an improved in-place merge sort algorithm 

that reduces the number of auxiliary operations and 

space usage. Their approach leverages advanced data 

structures and merging techniques to achieve a more 

efficient in-place sort. 

METHODOLOGY  

In this section, we focus on explaining the underlying 

mechanism of the proposed algorithm. The algorithm 

addresses the sorting problem through a two-step 

process: 

Step 1: : Divide and Conquer 

The Divide and Conquer strategy is a powerful 

algorithmic paradigm used to solve complex problems 

by breaking them down into smaller, more manageable 

sub-problems. This approach is particularly effective 

for sorting algorithms like Merge Sort. 

1. Splitting the Array: 

Divide: The initial step involves splitting the given 

array into smaller sub-arrays. This is done recursively: 

  - Partition the array from the start index to the mid-

point. 

  - Partition the array from the mid-point to the end 

index. 

  - Continue this process until each sub-array contains 

a single element. 

2. Sorting Using Bottom-Up Approach: 

Bottom-Up Approach: Instead of sorting the array top-

down (starting from the whole array and recursively 

breaking it down), the bottom-up approach starts from 

the smallest sub-arrays (individual elements) and 

merges them upwards: 

  - Begin with individual elements, which are inherently 

sorted. 

http://www.ijsrem.com/
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  - Merge these sorted elements into sorted sub-arrays 

of two elements. 

  - Merge these sub-arrays into larger sorted sub-arrays, 

continuing this process until the entire array is merged 

and sorted. 

3. Tracking Minimum and Maximum Values: 

- Throughout the process, the algorithm keeps track of 

the minimum and maximum values of the sub-arrays. 

  - This tracking helps in efficient merging and can 

optimize the sorting process by providing quick 

comparisons and minimizing unnecessary movements. 

4. Similarity to Standard Merge Sort: 

Recursive Partitioning: The technique used for splitting 

the array in this approach is similar to that of a standard 

Merge Sort.  

  - The array is recursively divided from the start index 

to the mid-point, and from the mid-point to the end 

index. 

  - After partitioning, the sort function is called to sort 

each sub-array individually. 

5. Sorting Sub-Arrays: 

- Once the array is divided into sub-arrays, each sub-

array is sorted. 

  - The sorting of sub-arrays follows the merging 

process, where two sorted sub-arrays are combined into 

a larger sorted sub-array. 

   - This merging continues until all sub-arrays are 

merged back into a single, fully sorted array. 

The Divide and Conquer approach in this context 

involve breaking down the array into individual 

elements using recursive partitioning, and then sorting 

these elements using a bottom-up merging process. By 

keeping track of the minimum and maximum values of 

the sub-arrays, the algorithm can efficiently sort the 

entire array. This method retains the essential 

characteristics of standard Merge Sort, while 

optimizing the process through careful tracking and 

efficient merging. 

Step 2: Pivot based Merging  

sorting procedure you're describing appears to be a 

custom sorting algorithm that uses multiple pivots to 

merge and sort two already-sorted subarrays. Let's 

break down the steps and logic of this algorithm based 

on your description: 

 Algorithm Breakdown 

Parameters 

-`ar`: Pointer to the array. 

- ` p`: Starting index of the first subarray. 

- `q`: Ending index of the second subarray. 

 Pivots 

- `r`: Marks the start of the first sorted subarray. 

- `s`: Marks the start of the second sorted subarray. 

- `c`: Marks the position in the final array where sorted 

elements will be placed. 

- `d`: An intermediate pivot that is used to keep track of 

the bounds for `a`. 

 Variables 

- `ctr`: Used to help with merging the second subarray 

into its correct position. 

 Procedure 

1. Initialization: 

   - `r` is set to `p` (starting index of the first subarray). 

   - `s` is calculated as (p+ q) / 2 + 1`, which is the start 

index of the second subarray. 

   - `c` is initialized to `p`, indicating the start of the 

final sorted portion. 

   - `d` is initialized to `s`, serving as an intermediate 

pivot. 

2. Sorting Process: 

   - The algorithm sorts elements between `p` and `s-1` 

(first subarray) and `s` to `q` (second subarray). 
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   - The subarrays are already sorted, so the algorithm 

focuses on merging them into a single sorted array. 

   - Merge Phase: 

     - Compare the elements at `r` and `s` (the current 

minimum values in the two subarrays). 

     - Place the smaller element at position ̀ c` in the final 

array. 

     - Increment `c` and adjust `r` or `s` based on which 

element was smaller. 

     - Continue this process until both subarrays are fully 

merged. 

   3. Handling Remaining Elements: 

   - If the second subarray (from `s` to `q`) is not fully 

sorted yet, keep incrementing `ctr` and swapping until 

all elements in the second subarray are placed correctly. 

   - Set `ctr` back to `b` after each adjustment to 

maintain the merge process. 

 Example: 

Let’s illustrate the procedure with a simple example. 

Suppose we have an array `ar`: 

ar = [2, 5, 7, 10, 1, 3, 4, 6] 

And we want to sort the whole array. The first subarray 

(from `p` to `s-1`) and the second subarray (from `s` to 

`q`) are already sorted: 

- First Subarray: `[2, 5, 7, 10]` (indices 0 to 3) 

- Second Subarray: `[1, 3, 4, 6]` (indices 4 to 7) 

We initialize: 

- `r = 0` 

- `s= 4` 

- `c = 0` 

- `d = 4` 

 Merging Steps 

1. Compare `ar[a]` and `ar[b]`: 

   - `ar[0] = 2` (first subarray) 

   - `ar[4] = 1` (second subarray) 

Since `1 < 2`, place `1` at `ar[c]` and increment `c`. 

2. Update Pointers: 

   - Since `1` was from the second subarray, move `b` to 

the next element in the second subarray. 

3. Repeat: 

   - Continue comparing and placing elements from 

both subarrays until all elements are merged and the 

entire array is sorted. 

The described algorithm is a variant of the merging 

process often used in Merge Sort but with a twist of 

handling two sorted subarrays using multiple pivots. It 

efficiently merges two sorted segments into a final 

sorted array, maintaining the sorted order throughout 

the merge process. This procedure assumes that the 

input subarrays are already sorted, which simplifies the 

merging logic. 

Pseudocode 

To address the need for both splitting and sorting an 

array in place with pseudo code, let's create a 

streamlined approach. This method will involve two 

main functions: one for splitting the array into 

subarrays and another for sorting those subarrays in 

place. We will avoid overly complex conditions and 

focus on clear, practical steps. 

Splitting Algorithm: 

Procedure split (int * ar, int p, int q): 

If q = p + 1 or q = p then  

    if ar[p] > ar[q] then  

        swap (ar[q], ar[p])  

    return  

else  

    mid = (p + q) / 2  

    split (ar, p, mid)  

    split (ar, mid + 1, q)  

    if ar[mid + 1] < ar[mid] then  

http://www.ijsrem.com/
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        sort (ar, p, q)  

    end if  

end if 

 

Merging Algorithm 

Procedure sort (int * ar, int p, int q): 

c ← p, r ← c, s ← (p + q) / 2 + 1, d and ctr ← s 

while c < s do 

    if ctr < q and ar[ctr] > ar[ctr + 1] then 

        swap (ar[ctr], ar[ctr + 1]) 

        ctr ← ctr + 1 

    end if 

    if ctr ≥ q or ar[ctr] <= ar[ctr + 1] then 

        ctr ← s 

    end if 

    if s > q and r > c and s = r + 1 and r > d and ctr = s 

then 

        s ← r, ctr ← s, r ← d 

    else if s > q and r > c and ctr = s then 

        s ← d, ctr ← s, r ← c 

    else if s > q and ctr = s then 

        break 

    end if 

    if r = c and c = d and ctr = s then 

        d ← s 

    else if c = d then 

        d ← r 

    end if 

    if r > d and s > r + 1 and ar[s] < ar[r] and ctr = s then 

        swap (ar[r], ar[s]) 

        swap (ar[r], ar[c]) 

        c ← c + 1, r ← r + 1 

        if ar[ctr] > ar[ctr + 1] then 

            swap (ar[ctr], ar[ctr + 1]) 

            ctr ← ctr + 1 

        end if 

    else if r = c and s = d and ar[s] < ar[r] then 

        swap (ar[c], ar[s]) 

        r ← s, s ← s + 1, c ← c + 1 

        if ctr = s − 1 then 

            ctr ← ctr + 1 

        end if 

    else if r = c and s = d and ar[s] >= ar[r] then 

        c ← c + 1 and r ← r + 1 

    else if s = r + 1 and ar[s] < ar[r] then 

        swap (ar[s], ar[c]) 

        swap (ar[r], ar[s]) 

        s ← s + 1, c ← c + 1, r ← r + 1 

        if ctr = s − 1 then 

            ctr ← ctr + 1 

        end if 

    else if s = r + 1 and ar[s] >= ar[r] then 

        swap (ar[c], ar[r]) 

        r ← d, c ← c + 1 

    else if r = d and c < d and ctr ≠ s + 1 and ar[s] < ar[r] 

then 

        swap (ar[c], ar[s]) 

        s ← s + 1, c ← c + 1 

        if ctr = s − 1 then 

            ctr ← ctr + 1 
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        end if 

    else if s > r + 1 and ar[s] >= ar[r] then 

        swap (ar[c], ar[r]) 

        c ← c + 1, r ← r + 1 

    end while 

 Case Study: 

In this case study, we will examine the process of 

merging two sorted subarrays. For this illustration, we 

use an array consisting of 18 elements. The two sorted 

segments of this array are defined as follows: the first 

subarray spans from index i to b-1, and the second 

subarray to trace the given array through the split and 

sort procedures, we will follow the steps and 

transformations specified by the algorithms. We will 

consider the initial array and walk through the 

processes step by step, capturing the state of the array 

at each critical point. 

-5 -4 -2 -1 3 -6 -3 -1 0 7 

 

Splitting Procedure (`split`) 

1. Base Case: If the segment to be processed has only 

two elements or is already a single element, compare 

and swap if necessary. 

2. Recursive Case: - Divide the segment into two 

halves and recursively apply `split` to each half. 

    After processing both halves, compare the elements 

between the halves, and if needed, call the `sort` 

procedure to merge them. 

Merging Procedure (`sort`) 

This procedure is more intricate. It essentially performs 

merging and some specific checks to ensure that 

elements are ordered correctly.  

To trace the algorithm step by step, we start with the 

given input array: 

Step-by-Step Trace 

[-5, -4, -2, 1, 3, -6, -3, -1, 0, 7] 

1. Initial Call: `split (ar, 0, 9) ` 

- `p = 0`, `q = 9` 

- `mid = (0 + 9) / 2 = 4` 

1.1. Call: `split (ar, 0, 4) ` 

- `p = 0`, `q = 4` 

- `mid = (0 + 4) / 2 = 2` 

1.1.1. Call: `split (ar, 0, 2) ` 

- `p = 0`, `q = 2` 

- `mid = (0 + 2) / 2 = 1` 

1.1.1.1. Call: `split (ar, 0, 1) ` 

- `p = 0`, `q = 1` 

- `mid = (0 + 1) / 2 = 0` 

- Array segment: ` [-5, -4] ` 

- `ar [0] > ar [1] ` → `-5 > -4` is false, no swap. 

- Return to previous call. 

1.1.1.2. Call: `split (ar, 2, 2) ` 

- `p = 2`, `q = 2` 

- Base case: `p == q`, no action needed. 

- Return to previous call. 

Merge: ` [-5, -4, -2] ` 

- `ar [2] > ar [1] ` → `-2 > -4`, no need to call `sort`. 

1.2. Call: `split (ar, 3, 4) ` 

- `p = 3`, `q = 4` 

- `mid = (3 + 4) / 2 = 3` 

1.2.1. Call: `split (ar, 3, 3) ` 

- `p = 3`, `q = 3` 

- Base case: `p == q`, no action needed. 

- Return to previous call. 

1.2.2. Call: `split (ar, 4, 4) ` 

- `p = 4`, `q = 4` 

- Base case: `p == q`, no action needed. 

http://www.ijsrem.com/
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- Return to previous call. 

Merge: ` [1, 3] ` 

- `ar [4] > ar [3] ` → `3 > 1`, no need to call `sort`. 

Merge: ` [-5, -4, -2, 1, 3] ` 

- `ar [3] < ar [2] ` → `1 < -2`, call `sort (ar, 0, 4) `. 

Sorting Array Segment ` [-5, -4, -2, 1, 3] ` 

Procedure `sort` 

- Initial segment: ` [-5, -4, -2, 1, 3] ` 

- Initialize `c = 0`, `r = 0`, `s = 3`, `d = 4`, `ctr = 3`. 

Sorting Process: 

1. Iteration 1: 

   - `c = 0`, `r = 0`, `s = 3`, `d = 4`, `ctr = 3` 

   - Check if `ctr < q` and `ar[ctr] > ar [ctr + 1] `: 

     - `ar [3] > ar [4] ` → `1 > 3` is false. 

   - `ctr ≥ q` or `ar[ctr] <= ar [ctr + 1] `: 

     - `ctr = s` which is true, so `ctr ← 3`. 

 

2. Iteration 2: 

   - Conditions are adjusted, check swaps: 

   - `ar[r] < ar[s]` and `ar[s] < ar[r]` → `ar [0] < ar [3] ` 

is true, no swap needed. 

   - Continue adjusting indices based on conditions. 

3. Continue this process until no more swaps are 

needed. 

- Final sorted segment: ` [-5, -4, -2, 1, 3] ` 

1.3. Call: `split (ar, 5, 9) ` 

- `p = 5`, `q = 9` 

- `mid = (5 + 9) / 2 = 7` 

1.3.1. Call: `split (ar, 5, 7) ` 

- `p = 5`, `q = 7` 

- `mid = (5 + 7) / 2 = 6` 

1.3.1.1. Call: `split (ar, 5, 6) ` 

- `p = 5`, `q = 6` 

- `mid = (5 + 6) / 2 = 5` 

- Array segment: ` [-6, -3] ` 

- `ar [5] > ar [6] ` → `-6 > -3` is false, no swap needed. 

1.3.2. Call: `split (ar, 7, 7) ` 

- `p = 7`, `q = 7` 

- Base case: `p == q`, no action needed. 

- Return to previous call. 

Merge: ` [-6, -3] ` 

- `ar [7] > ar [6] ` → `-1 > -3`, no need to call `sort`. 

1.3.2. Call: `split (ar, 8, 9) ` 

- `p = 8`, `q = 9` 

- `mid = (8 + 9) / 2 = 8` 

1.3.2.1. Call: `split (ar, 8, 8) ` 

- `p = 8`, `q = 8` 

- Base case: `p == q`, no action needed. 

1.3.2.2. Call: `split (ar, 9, 9) ` 

- `p = 9`, `q = 9` 

- Base case: `p == q`, no action needed. 

Merge: ` [0, 7] ` 

 

- `ar [9] > ar [8] ` → `7 > 0`, no need to call `sort`. 

Merge: ` [-6, -3, -1, 0, 7] ` 

- The segment is already sorted. 

Final Merge: ` [-5, -4, -2, 1, 3] ` and ` [-6, -3, -1, 0, 7] ` 

Procedure `sort` 

- Initial segment: ` [-5, -4, -2, 1, 3, -6, -3, -1, 0, 7] ` 

Final Merging Process: 

1. Iteration 1: 

http://www.ijsrem.com/
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   - Initialize `c = 0`, `r = 0`, `s = 5`, `d = 9`, `ctr = 5`. 

   - Continue swapping and adjusting indices as needed 

based on the conditions. 

2. Continue until the entire array is sorted. 

Final Sorted Array: 

-6 -5 -4 -3 -2 -1 0 1 3 7 

The algorithm processes the array by recursively 

splitting and merging the segments while ensuring that 

the final output is a sorted list. The exact operations 

within the `sort` procedure involve complex swapping 

rules, but the end result is a correctly sorted array. 

 Time complexity 

1. Worst case: Description of the Algorithm 

The algorithm starts with a procedure split, which is 

responsible for recursively dividing an array and 

eventually sorting the parts. The split procedure is 

defined as follows: 

1. Procedure split (int * ar, int i, int j): 

   - If j is equal to i + 1 or j is equal to i, it checks if ar[i] 

> ar[j]. If true, it swaps ar[i] and ar[j]. 

   - The procedure returns after this check and possible 

swap. 

   - Otherwise, it calculates mid as (i + j)/2, then 

recursively calls split on the two halves of the array. 

   - After the recursive calls, if the element at mid + 1 is 

less than the element at mid, it calls the sort procedure. 

2. Procedure sort (int * ar, int i, int j): 

   - This procedure contains a while loop for merging 

two sorted arrays into one. The loop involves multiple 

if-else conditions. 

Recurrence Relation: 

To determine the time complexity of the entire 

algorithm, we can use the recurrence relation. Let’s 

define T (n) as the time complexity for an array of size 

n.  

The split procedure involves: 

- A constant time C1 for the base case check and swap. 

- Two recursive calls to split on halves of the array, 

which contributes 2T (n/2). 

- The sort procedure, which takes constant time C3. 

Thus, the recurrence relation for T(n) is: 

[ T(n) = 2T(n/2) + n + C2 + C3 \] 

Here’s how we can simplify the recurrence: 

1. Substitute the recurrence relation into itself: 

\[\begin{align*} 

T(n) &= 2T(n/2) + n + C2 + C3 \\ 

&= 2 \left[ 2T(n/4) + (n/2) + C2 + C3 \right] + n + C2 

+ C3 \\ 

&= 4T(n/4) + 2(n/2) + 2C2 + 2C3 + n + C2 + C3 \\ 

&= 4T(n/4) + n + 3C2 + 3C3 

\end{align*}\] 

2. Apply this step iteratively: 

\[\begin{align*} 

T (n) &= 4 \left [2T (n/8) + (n/4) + C2 + C3 \right] + n 

+ 3C2 + 3C3 \\ 

&= 8T (n/8) + 4(n/4) + 4C2 + 4C3 + n + 3C2 + 3C3 \\ 

&= 8T (n/8) + 3n + 7C2 + 7C3 

\end{align*}\] 

3. Generalize for k iterations: 

\[T(n) = 2^k T(n/2^k) + kn + (2^k - 1)C2 + (2^k - 

1)C3\] 

4. Base Condition: 

The recursion depth k is determined by the condition 

when the size of the problem reduces to 2. This implies: 

\[n / 2^k = 2 \implies k = \log_2 n - 1\] 

5. Substitute k in the equation: 

\[\begin{align*} 
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T (n) &= 2^ {(\log_2 n - 1)} T(2) + (\log_2 n - 1)n + 

(2^{(\log_2 n - 1)} - 1)C2 + (2^{(\log_2 n - 1)} - 1)C3 

\\ 

&= \frac{n}{2} T(2) + (\log_2 n - 1)n + 

\left(\frac{n}{2} - 1\right)C2 + \left(\frac{n}{2} - 

1\right)C3 

\end{align*}\] 

Since \ ( T(2) \) is a constant, it is typically absorbed in 

the \( O(n \log n) \) term. Thus, the dominant terms are: 

\ [T (n) = O (n \log n)\] 

Conclusion: 

The time complexity of the given algorithm is \( O(n 

\log n) \). This result is derived from analyzing the 

recursive nature of the split procedure and the sort 

procedure's impact on the overall complexity. 

Best case: 

 Best Case Analysis:In the best-case scenario, the 

array is already sorted or nearly sorted. This optimal 

condition minimizes the algorithm's work, particularly 

in the merging phase. Here’s how this affects the time 

complexity: 

- Best Case Scenario: The array is sorted; meaning that 

when the split procedure checks the condition ar [mid 

+ 1] ≥ ar[mid], it will find it true. As a result, the sort 

procedure is never invoked.  

- Time Complexity Analysis: Since the sort procedure, 

which handles the merging of two sorted subarrays, 

does not execute, we only need to consider the cost of 

the split procedure.  

1. Recurrence Relation for the Best Case: 

In the best case, the time complexity for the split 

procedure is: 

\[T (n) = 2T (n/2) + C2 \] 

2. Expand the Recurrence: 

Substituting recursively: 

   \[ \begin{align*} 

   T (n) &= 2T (n/2) + C2 \\ 

   &= 2 \left [2T(n/4) + C2 \right] + C2 \\ 

   &= 4T (n/4) + 3C2 \\ 

   &= 4 \left [2T (n/8) + C2 \right] + 3C2 \\ 

   &= 8T (n/8) + 7C2 

   \end{align*} \] 

3. General Form: 

After \ ( k \) iterations, the recurrence relation becomes: 

   \[T (n) = 2^k T(n/2^k) + (2^k - 1)C2 \] 

4. Determine k: 

The recursion depth is determined when \( n/2^k = 2 \), 

which gives: 

   \ [ k = \log_2 n – 1\] 

5. Substitute k: 

Substituting \ (k = \log_2 n - 1 \) into the equation: 

   \[  \begin{align*} 

   T (n) &= 2^ {\log_2 n - 1} T(2) + (2^{\log_2 n - 1} - 

1)C2 \\ 

   &= \frac{n}{2} T (2) + (n/2 - 1) C2 

   \end{align*}   \] 

Here, \ (T (2) \) is a constant that can be absorbed into 

\ (O (n) \). Thus, the time complexity simplifies to: 

   \ [T (n) = O (n) \] 

Space Complexity: 

The algorithm is designed to be an in-place sorting 

algorithm, meaning it sorts the array without requiring 

additional space proportional to the input size.  

- Space Complexity: The algorithm uses a constant 

amount of extra space, making its space complexity \( 

O(1) \). This is significant because it minimizes the 

memory footprint, which is often a critical factor in 

evaluating the efficiency of an algorithm. 
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Stability 

- Stability: The algorithm is not stable, meaning that 

equal elements might not retain their original relative 

order after sorting.  

- Issue: Stability is important when the order of equal 

elements should be preserved, but this algorithm does 

not maintain this property.  

- Solution: To achieve stability, additional 

modifications would be necessary, such as using a 

stable partitioning scheme. However, implementing 

such changes can complicate the algorithm, which is 

beyond the scope of this discussion. In the specific case 

of a fully sorted input, the algorithm does maintain 

stability because no swaps occur. 

In summary: 

- Best Case Time Complexity: ( O (n) )-Space 

Complexity: ( O (1) ) - Stability: Not guaranteed; 

requires additional modifications for stability. 

Experimental analysis: 

We assessed the performance of the algorithm by 

testing it with array sizes of up to 32,000 elements. The 

evaluation involved measuring the time required to sort 

arrays of various sizes. 

Worst case: 

In the worst-case scenario, where every element in the 

input array is unique and unordered, the algorithm 

exhibits slower performance compared to standard 

Merge Sort and Quick Sort, particularly for large input 

sizes. Nevertheless, for arrays with up to 1,000 

elements, this algorithm outperforms both Merge Sort 

and Quick Sort, even in the worst case. 

TIME TAKEN IN SECONDS 

ELEMENTS QUICK 

SORT 

MERGE 

SORT 

HYBRID 

METHOD 

1000 0.063 0.064 0.062 

2000 0.124 0.124 0.124 

4000 0.264 0.268 0.274 

8000 0.423 0.44 0.456 

16000 0.714 0.753 0.813 

32000 1.304 1.382 1.523 

 

 

Average case: 

The average case is considered to be when the array has 

some degree of partial ordering. 

TIME TAKEN IN SECONDS 

 

 

Best case: 

The best-case scenario occurs when the array is fully 

sorted or contains similar elements. In this situation, the 

time complexity of the algorithm is \( O(n) \). To 

evaluate its performance, we compared it with other 

algorithms having similar time complexities, such as 

Bubble Sort and Insertion Sort.  

ELEMENTS QUICK 

SORT 

MERGE 

SORT 

HYBRID 

METHOD 

1000 0.062 0.061 0.055 

2000 0.155 0.126 0.124 

4000 0.306 0.268 0.252 

8000 0.66 0.462 0.414 

16000 1.494 0.714 0.687 

32000 4.475 1.312 1.214 
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While the time differences between these algorithms 

were minimal and not significant, we focused on 

comparing the number of iterations required to sort the 

array. Our observations indicate that this algorithm 

outperforms Bubble Sort but is slightly less efficient 

than Insertion Sort in the best case. 

NUMBER OF ITERETIONS 

ELEMENT

S 

INSERTIO

N 

BUBBL

E  

HYBRID 

METHO

D 

1000 998 1995 1024 

2000 1998 3995 2046 

4000 3998 7995 4094 

8000 7998 15995 8190 

16000 15997 31995 16382 

32000 31999 63995 32766 

 

 

Asymptotic Analysis 

In this section, we conduct an asymptotic analysis of 

the algorithm, drawing from both experimental results 

and theoretical proofs discussed earlier. 

 

The algorithm exhibits: 

- Best Case Time Complexity: ( O (n) ) 

- Average Case Time Complexity: (O (n log n) ) 

- Worst Case Time Complexity: (O (n log n) ) 

- Space Complexity: (O (1)) 

- Stability: No 

Conclusion: 

The algorithm, like many standard approaches, offers 

opportunities for improvement. During the 

implementation phase, it became evident that the 

performance degrades with very large values of n. 

additionally; the algorithm's instability poses a 

significant issue. 

Future enhancements could focus on improving 

performance for larger input sizes. For instance, 

leveraging the known minimum and maximum values 

of the subarray could allow for a more efficient end-

first search, potentially reducing the number of 

iterations. 

Regarding stability, while the algorithm could be 

modified to become stable by increasing the number of 

pivots, such changes would introduce added 

complexity. Any refinements, even minor, could 

significantly enhance the algorithm's effectiveness. 
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