
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 1

Advanced In-Place Merge Sort Approach for Enhanced Sorting Performance

Rakshita Mathad, Student, Department of IS &E, Jain Institute of Technology

H S Saraswathi, Asst Professor, Department of IS &E ,Jain Institute of Technology

Dr. Latha B M,HOD, Department of IS &E ,Jain Institute of Technology

Ranjita F S, Student, Department of IS &E, Jain Institute of Technology

Sahana K A, Student, Department of IS &E, Jain Institute of Technology

Nethra A G, Student, Department of IS &E, Jain Institute of Technology

Asha N S,Programmer, Department of IS &E, Jain Institute of Technology

Abstract:

 This paper introduces a new sorting algorithm

designed to sort array elements directly within the array

itself. The algorithm features a best-case time

complexity of O(n) and an average and worst-case time

complexity of O (n log n). It achieves this performance

through a method that combines recursive breakdown

with in-place merging techniques. We compare this

new approach with existing popular sorting algorithms

to assess its relative effectiveness. The paper concludes

with insights into the algorithm's strengths and

limitations, and proposes potential areas for further

development and refinement.

Keywords - Complexity Analysis, In-Place Sorting,

Recursive Breakdown

Introduction:

Sorting is a fundamental problem in computer science,

crucial for data organization, retrieval, and processing.

Among the variety of sorting algorithms, merge sort

stands out due to its stability and reliable (O (n log n))

time complexity in both average and worst-case

scenarios. However, a significant limitation of

traditional merge sort is its requirement for additional

space proportional to the size of the input array, which

poses challenges in memory-constrained

environments.

To overcome this limitation, we propose an advanced

in-place merge sort approach designed to optimize

sorting performance while minimizing memory usage.

This innovative technique leverages the strengths of

merge sort’s stable sorting while incorporating in-place

operations to reduce space requirements. Our approach

achieves a best-case time complexity of (O(n)) and

maintains (O (n log n)) time complexity on average and

in the worst case, making it both efficient and memory-

conserving.

The essence of this advanced in-place merge sort lies

in its dual-phase strategy. The first phase involves

rearranging the unsorted array in place to form

segments that are ordered relative to each other, though

elements within each segment remain unsorted. This

phase operates in linear time. The second phase sorts

the elements within each segment in-place with a time

complexity of (O (z log z)), where (z) is the size of the

segment, and requires only (O (1)) auxiliary storage.

This approach ensures that element comparisons and

moves are constrained to (O (n log z)), with no extra

arithmetic operations on indices.

In this paper, we present a comprehensive analysis of

this advanced in-place merge sort approach, comparing

its performance with other popular sorting algorithms.

Our empirical and theoretical evaluations highlight

scenarios where this method excels and identify its

limitations. By exploring its strengths and weaknesses,

we aim to provide insights into its practical

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 2

applications, particularly in large-scale data processing

and memory-constrained systems.

The implications of in-place sorting are significant, as

it allows processing of larger datasets within main

memory without frequent input/output operations. This

paper also discusses the practical relevance of our

algorithm, supported by experimental results that

demonstrate its superiority over existing in-place

sorting methods. Finally, we offer a detailed analysis of

the time and space complexity, number of element

moves, and auxiliary storage requirements, providing a

clear assessment of the algorithm's efficiency and

potential for future improvements.

In this paper, the advanced in-place merge sort

approach represents a significant advancement in

sorting algorithm design, offering a balance of

performance and minimal space overhead. Its ability to

enhance sorting efficiency while adhering to memory

constraints makes it a valuable contribution to the field

of computer science and data management.

Literature Review

1. You Ying, Ping You, and Yan Gan (2011)

In their 2011 study, You Ying, Ping You, and Yan Gan

analysed five major sorting algorithms. Their findings

indicate that Insertion and Selection sorts are effective

for sorting small ranges of elements. For datasets that

are already partially ordered, Bubble or Insertion sort

is recommended. In contrast, for large datasets with

random elements, Quick and Merge sorts demonstrate

superior performance over other algorithms.

2. Jyrki Katajainen, Tomi Pasanen, and Jukka

Teuhola (1996)

Katajainen, Pasanen, and Teuhola’s 1996 research

delved into the efficiency of in-place merge sort

algorithms. Initially, they described a basic variant that

required (O(n log^2 n) + O(n)\) comparisons and (3(n

log^2 n) + O(n)) moves. Subsequently, they proposed

an advanced version which optimized performance to

require at most ((n log^2 n) + O(n)) comparisons and

((nlog^2 n)) moves, applicable for arrays of any fixed

size (n).

3. Antonio S. Symbonis (1994)

Symbonis (1994) investigated stable merging

techniques for arrays of different sizes. He

demonstrated that merging two arrays, where one array

is smaller than the other, can be done with (O (m + n))

assignments, (O (m log (n/m + 1))) comparisons, and a

constant amount of extra space. Additionally, he

explored the potential for in-place merging without the

need for an internal buffer.

4. Wang Xiang (2011)

Wang Xiang (2011) focused on the time complexity

analysis of the quick sort algorithm but also explored

improvements in merge sort. His study emphasized

optimizing sorting performance by examining various

sorting techniques, including enhancements to merge

sort, that aim to achieve faster sorting times for large

datasets.

5. Shrinu Kushagra, Alejandro Lopez-Ortiz, and J.

Ian Munro (2013)

Kushagra, Lopez-Ortiz, and Munro (2013) introduced

a novel approach involving multiple pivots in sorting.

Although their primary focus was on quick sort, the

principles of multi-pivot techniques can be adapted to

merge sort, enhancing its efficiency. The experimental

results indicated a 7-8% improvement in performance,

which suggests that similar multi-pivot strategies could

be applied to in-place merge sort to further reduce

sorting times.

6. Hossain, Nadir, Alma, Amiruzzaman, and M.

Quadir (2004)

This 2004 study proposed a more efficient merge sort

algorithm by using a divide-and-conquer strategy.

Unlike the traditional merge sort that divides the data

until individual elements are reached, their method

divided the data into groups of two elements, which

decreased the number of recursive calls and improved

overall efficiency.

7. Gui gang Zheng, Shaohua Teng, Wei Zhang, and

Xiu fen Fu (2009)

Zheng, Teng, Zhang, and Fu (2009) advanced the field

with an enhanced indexing method and its

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 3

corresponding parallel algorithm. Their experiments

showed that sorting based on indexing and parallel

computing reduced execution time compared to other

sorting algorithms. This method enabled sorting of sub-

merging sequences on a single processor, thereby

enhancing efficiency.

8. Bing-Chao Huang and Michael A. Langston

(1987)

Huang and Langston (1987) proposed a practical

linear-time approach for merging two sorted arrays

while using a fixed amount of additional space. This

approach demonstrated that linear-time merging could

be achieved with minimal extra space requirements.

9. Rohit Yadav, Kratika Varshney, and Nitin Verma

(2013)

Yadav, Varshney, and Verma (2013) explored the

runtime complexities of both recursive and non-

recursive merge sort approaches. They presented new

implementations for two-way and four-way bottom-up

merge sort, revealing worst-case complexities bounded

by (5.5n log^2 n + O(n)) and (3.25n log^2 n + O(n)),

respectively.

10.Bandyopadhyay and Chatterjee (2002)

Bandyopadhyay and Chatterjee (2002) investigated

various in-place merge sort algorithms, proposing a

refined version that achieves (O (n \log n)) time

complexity with reduced auxiliary space requirements.

Their work focused on optimizing memory usage while

maintaining performance, which is crucial for

enhancing in-place merge sort methods.

11. Finkel and Bentley (1974)

Finkel and Bentley (1974) explored in-place sorting

techniques, including merge sort variants that utilize

minimal additional storage. Their contributions laid the

groundwork for many modern in-place sorting

algorithms by demonstrating how to merge data

efficiently without excessive space overhead.

12. Derrick and Mellor-Crummey (2012)

Derrick and Mellor-Crummey (2012) studied parallel

algorithms for merge sort, including in-place

variations. They examined how parallel processing can

be applied to in-place merge sort to achieve better

performance. Their research highlights how combining

parallelism with in-place techniques can further

enhance sorting efficiency.

13. Chien et al. (2010) Chien, Lee, and Chen (2010)

 proposed an improved in-place merge sort algorithm

that reduces the number of auxiliary operations and

space usage. Their approach leverages advanced data

structures and merging techniques to achieve a more

efficient in-place sort.

METHODOLOGY

In this section, we focus on explaining the underlying

mechanism of the proposed algorithm. The algorithm

addresses the sorting problem through a two-step

process:

Step 1: : Divide and Conquer

The Divide and Conquer strategy is a powerful

algorithmic paradigm used to solve complex problems

by breaking them down into smaller, more manageable

sub-problems. This approach is particularly effective

for sorting algorithms like Merge Sort.

1. Splitting the Array:

Divide: The initial step involves splitting the given

array into smaller sub-arrays. This is done recursively:

 - Partition the array from the start index to the mid-

point.

 - Partition the array from the mid-point to the end

index.

 - Continue this process until each sub-array contains

a single element.

2. Sorting Using Bottom-Up Approach:

Bottom-Up Approach: Instead of sorting the array top-

down (starting from the whole array and recursively

breaking it down), the bottom-up approach starts from

the smallest sub-arrays (individual elements) and

merges them upwards:

 - Begin with individual elements, which are inherently

sorted.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 4

 - Merge these sorted elements into sorted sub-arrays

of two elements.

 - Merge these sub-arrays into larger sorted sub-arrays,

continuing this process until the entire array is merged

and sorted.

3. Tracking Minimum and Maximum Values:

- Throughout the process, the algorithm keeps track of

the minimum and maximum values of the sub-arrays.

 - This tracking helps in efficient merging and can

optimize the sorting process by providing quick

comparisons and minimizing unnecessary movements.

4. Similarity to Standard Merge Sort:

Recursive Partitioning: The technique used for splitting

the array in this approach is similar to that of a standard

Merge Sort.

 - The array is recursively divided from the start index

to the mid-point, and from the mid-point to the end

index.

 - After partitioning, the sort function is called to sort

each sub-array individually.

5. Sorting Sub-Arrays:

- Once the array is divided into sub-arrays, each sub-

array is sorted.

 - The sorting of sub-arrays follows the merging

process, where two sorted sub-arrays are combined into

a larger sorted sub-array.

 - This merging continues until all sub-arrays are

merged back into a single, fully sorted array.

The Divide and Conquer approach in this context

involve breaking down the array into individual

elements using recursive partitioning, and then sorting

these elements using a bottom-up merging process. By

keeping track of the minimum and maximum values of

the sub-arrays, the algorithm can efficiently sort the

entire array. This method retains the essential

characteristics of standard Merge Sort, while

optimizing the process through careful tracking and

efficient merging.

Step 2: Pivot based Merging

sorting procedure you're describing appears to be a

custom sorting algorithm that uses multiple pivots to

merge and sort two already-sorted subarrays. Let's

break down the steps and logic of this algorithm based

on your description:

 Algorithm Breakdown

Parameters

-`ar`: Pointer to the array.

- ` p`: Starting index of the first subarray.

- `q`: Ending index of the second subarray.

 Pivots

- `r`: Marks the start of the first sorted subarray.

- `s`: Marks the start of the second sorted subarray.

- `c`: Marks the position in the final array where sorted

elements will be placed.

- `d`: An intermediate pivot that is used to keep track of

the bounds for `a`.

 Variables

- `ctr`: Used to help with merging the second subarray

into its correct position.

 Procedure

1. Initialization:

 - `r` is set to `p` (starting index of the first subarray).

 - `s` is calculated as (p+ q) / 2 + 1`, which is the start

index of the second subarray.

 - `c` is initialized to `p`, indicating the start of the

final sorted portion.

 - `d` is initialized to `s`, serving as an intermediate

pivot.

2. Sorting Process:

 - The algorithm sorts elements between `p` and `s-1`

(first subarray) and `s` to `q` (second subarray).

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 5

 - The subarrays are already sorted, so the algorithm

focuses on merging them into a single sorted array.

 - Merge Phase:

 - Compare the elements at `r` and `s` (the current

minimum values in the two subarrays).

 - Place the smaller element at position ̀ c` in the final

array.

 - Increment `c` and adjust `r` or `s` based on which

element was smaller.

 - Continue this process until both subarrays are fully

merged.

 3. Handling Remaining Elements:

 - If the second subarray (from `s` to `q`) is not fully

sorted yet, keep incrementing `ctr` and swapping until

all elements in the second subarray are placed correctly.

 - Set `ctr` back to `b` after each adjustment to

maintain the merge process.

 Example:

Let’s illustrate the procedure with a simple example.

Suppose we have an array `ar`:

ar = [2, 5, 7, 10, 1, 3, 4, 6]

And we want to sort the whole array. The first subarray

(from `p` to `s-1`) and the second subarray (from `s` to

`q`) are already sorted:

- First Subarray: `[2, 5, 7, 10]` (indices 0 to 3)

- Second Subarray: `[1, 3, 4, 6]` (indices 4 to 7)

We initialize:

- `r = 0`

- `s= 4`

- `c = 0`

- `d = 4`

 Merging Steps

1. Compare `ar[a]` and `ar[b]`:

 - `ar[0] = 2` (first subarray)

 - `ar[4] = 1` (second subarray)

Since `1 < 2`, place `1` at `ar[c]` and increment `c`.

2. Update Pointers:

 - Since `1` was from the second subarray, move `b` to

the next element in the second subarray.

3. Repeat:

 - Continue comparing and placing elements from

both subarrays until all elements are merged and the

entire array is sorted.

The described algorithm is a variant of the merging

process often used in Merge Sort but with a twist of

handling two sorted subarrays using multiple pivots. It

efficiently merges two sorted segments into a final

sorted array, maintaining the sorted order throughout

the merge process. This procedure assumes that the

input subarrays are already sorted, which simplifies the

merging logic.

Pseudocode

To address the need for both splitting and sorting an

array in place with pseudo code, let's create a

streamlined approach. This method will involve two

main functions: one for splitting the array into

subarrays and another for sorting those subarrays in

place. We will avoid overly complex conditions and

focus on clear, practical steps.

Splitting Algorithm:

Procedure split (int * ar, int p, int q):

If q = p + 1 or q = p then

 if ar[p] > ar[q] then

 swap (ar[q], ar[p])

 return

else

 mid = (p + q) / 2

 split (ar, p, mid)

 split (ar, mid + 1, q)

 if ar[mid + 1] < ar[mid] then

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 6

 sort (ar, p, q)

 end if

end if

Merging Algorithm

Procedure sort (int * ar, int p, int q):

c ← p, r ← c, s ← (p + q) / 2 + 1, d and ctr ← s

while c < s do

 if ctr < q and ar[ctr] > ar[ctr + 1] then

 swap (ar[ctr], ar[ctr + 1])

 ctr ← ctr + 1

 end if

 if ctr ≥ q or ar[ctr] <= ar[ctr + 1] then

 ctr ← s

 end if

 if s > q and r > c and s = r + 1 and r > d and ctr = s

then

 s ← r, ctr ← s, r ← d

 else if s > q and r > c and ctr = s then

 s ← d, ctr ← s, r ← c

 else if s > q and ctr = s then

 break

 end if

 if r = c and c = d and ctr = s then

 d ← s

 else if c = d then

 d ← r

 end if

 if r > d and s > r + 1 and ar[s] < ar[r] and ctr = s then

 swap (ar[r], ar[s])

 swap (ar[r], ar[c])

 c ← c + 1, r ← r + 1

 if ar[ctr] > ar[ctr + 1] then

 swap (ar[ctr], ar[ctr + 1])

 ctr ← ctr + 1

 end if

 else if r = c and s = d and ar[s] < ar[r] then

 swap (ar[c], ar[s])

 r ← s, s ← s + 1, c ← c + 1

 if ctr = s − 1 then

 ctr ← ctr + 1

 end if

 else if r = c and s = d and ar[s] >= ar[r] then

 c ← c + 1 and r ← r + 1

 else if s = r + 1 and ar[s] < ar[r] then

 swap (ar[s], ar[c])

 swap (ar[r], ar[s])

 s ← s + 1, c ← c + 1, r ← r + 1

 if ctr = s − 1 then

 ctr ← ctr + 1

 end if

 else if s = r + 1 and ar[s] >= ar[r] then

 swap (ar[c], ar[r])

 r ← d, c ← c + 1

 else if r = d and c < d and ctr ≠ s + 1 and ar[s] < ar[r]

then

 swap (ar[c], ar[s])

 s ← s + 1, c ← c + 1

 if ctr = s − 1 then

 ctr ← ctr + 1

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 7

 end if

 else if s > r + 1 and ar[s] >= ar[r] then

 swap (ar[c], ar[r])

 c ← c + 1, r ← r + 1

 end while

 Case Study:

In this case study, we will examine the process of

merging two sorted subarrays. For this illustration, we

use an array consisting of 18 elements. The two sorted

segments of this array are defined as follows: the first

subarray spans from index i to b-1, and the second

subarray to trace the given array through the split and

sort procedures, we will follow the steps and

transformations specified by the algorithms. We will

consider the initial array and walk through the

processes step by step, capturing the state of the array

at each critical point.

-5 -4 -2 -1 3 -6 -3 -1 0 7

Splitting Procedure (`split`)

1. Base Case: If the segment to be processed has only

two elements or is already a single element, compare

and swap if necessary.

2. Recursive Case: - Divide the segment into two

halves and recursively apply `split` to each half.

 After processing both halves, compare the elements

between the halves, and if needed, call the `sort`

procedure to merge them.

Merging Procedure (`sort`)

This procedure is more intricate. It essentially performs

merging and some specific checks to ensure that

elements are ordered correctly.

To trace the algorithm step by step, we start with the

given input array:

Step-by-Step Trace

[-5, -4, -2, 1, 3, -6, -3, -1, 0, 7]

1. Initial Call: `split (ar, 0, 9) `

- `p = 0`, `q = 9`

- `mid = (0 + 9) / 2 = 4`

1.1. Call: `split (ar, 0, 4) `

- `p = 0`, `q = 4`

- `mid = (0 + 4) / 2 = 2`

1.1.1. Call: `split (ar, 0, 2) `

- `p = 0`, `q = 2`

- `mid = (0 + 2) / 2 = 1`

1.1.1.1. Call: `split (ar, 0, 1) `

- `p = 0`, `q = 1`

- `mid = (0 + 1) / 2 = 0`

- Array segment: ` [-5, -4] `

- `ar [0] > ar [1] ` → `-5 > -4` is false, no swap.

- Return to previous call.

1.1.1.2. Call: `split (ar, 2, 2) `

- `p = 2`, `q = 2`

- Base case: `p == q`, no action needed.

- Return to previous call.

Merge: ` [-5, -4, -2] `

- `ar [2] > ar [1] ` → `-2 > -4`, no need to call `sort`.

1.2. Call: `split (ar, 3, 4) `

- `p = 3`, `q = 4`

- `mid = (3 + 4) / 2 = 3`

1.2.1. Call: `split (ar, 3, 3) `

- `p = 3`, `q = 3`

- Base case: `p == q`, no action needed.

- Return to previous call.

1.2.2. Call: `split (ar, 4, 4) `

- `p = 4`, `q = 4`

- Base case: `p == q`, no action needed.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 8

- Return to previous call.

Merge: ` [1, 3] `

- `ar [4] > ar [3] ` → `3 > 1`, no need to call `sort`.

Merge: ` [-5, -4, -2, 1, 3] `

- `ar [3] < ar [2] ` → `1 < -2`, call `sort (ar, 0, 4) `.

Sorting Array Segment ` [-5, -4, -2, 1, 3] `

Procedure `sort`

- Initial segment: ` [-5, -4, -2, 1, 3] `

- Initialize `c = 0`, `r = 0`, `s = 3`, `d = 4`, `ctr = 3`.

Sorting Process:

1. Iteration 1:

 - `c = 0`, `r = 0`, `s = 3`, `d = 4`, `ctr = 3`

 - Check if `ctr < q` and `ar[ctr] > ar [ctr + 1] `:

 - `ar [3] > ar [4] ` → `1 > 3` is false.

 - `ctr ≥ q` or `ar[ctr] <= ar [ctr + 1] `:

 - `ctr = s` which is true, so `ctr ← 3`.

2. Iteration 2:

 - Conditions are adjusted, check swaps:

 - `ar[r] < ar[s]` and `ar[s] < ar[r]` → `ar [0] < ar [3] `

is true, no swap needed.

 - Continue adjusting indices based on conditions.

3. Continue this process until no more swaps are

needed.

- Final sorted segment: ` [-5, -4, -2, 1, 3] `

1.3. Call: `split (ar, 5, 9) `

- `p = 5`, `q = 9`

- `mid = (5 + 9) / 2 = 7`

1.3.1. Call: `split (ar, 5, 7) `

- `p = 5`, `q = 7`

- `mid = (5 + 7) / 2 = 6`

1.3.1.1. Call: `split (ar, 5, 6) `

- `p = 5`, `q = 6`

- `mid = (5 + 6) / 2 = 5`

- Array segment: ` [-6, -3] `

- `ar [5] > ar [6] ` → `-6 > -3` is false, no swap needed.

1.3.2. Call: `split (ar, 7, 7) `

- `p = 7`, `q = 7`

- Base case: `p == q`, no action needed.

- Return to previous call.

Merge: ` [-6, -3] `

- `ar [7] > ar [6] ` → `-1 > -3`, no need to call `sort`.

1.3.2. Call: `split (ar, 8, 9) `

- `p = 8`, `q = 9`

- `mid = (8 + 9) / 2 = 8`

1.3.2.1. Call: `split (ar, 8, 8) `

- `p = 8`, `q = 8`

- Base case: `p == q`, no action needed.

1.3.2.2. Call: `split (ar, 9, 9) `

- `p = 9`, `q = 9`

- Base case: `p == q`, no action needed.

Merge: ` [0, 7] `

- `ar [9] > ar [8] ` → `7 > 0`, no need to call `sort`.

Merge: ` [-6, -3, -1, 0, 7] `

- The segment is already sorted.

Final Merge: ` [-5, -4, -2, 1, 3] ` and ` [-6, -3, -1, 0, 7] `

Procedure `sort`

- Initial segment: ` [-5, -4, -2, 1, 3, -6, -3, -1, 0, 7] `

Final Merging Process:

1. Iteration 1:

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 9

 - Initialize `c = 0`, `r = 0`, `s = 5`, `d = 9`, `ctr = 5`.

 - Continue swapping and adjusting indices as needed

based on the conditions.

2. Continue until the entire array is sorted.

Final Sorted Array:

-6 -5 -4 -3 -2 -1 0 1 3 7

The algorithm processes the array by recursively

splitting and merging the segments while ensuring that

the final output is a sorted list. The exact operations

within the `sort` procedure involve complex swapping

rules, but the end result is a correctly sorted array.

 Time complexity

1. Worst case: Description of the Algorithm

The algorithm starts with a procedure split, which is

responsible for recursively dividing an array and

eventually sorting the parts. The split procedure is

defined as follows:

1. Procedure split (int * ar, int i, int j):

 - If j is equal to i + 1 or j is equal to i, it checks if ar[i]

> ar[j]. If true, it swaps ar[i] and ar[j].

 - The procedure returns after this check and possible

swap.

 - Otherwise, it calculates mid as (i + j)/2, then

recursively calls split on the two halves of the array.

 - After the recursive calls, if the element at mid + 1 is

less than the element at mid, it calls the sort procedure.

2. Procedure sort (int * ar, int i, int j):

 - This procedure contains a while loop for merging

two sorted arrays into one. The loop involves multiple

if-else conditions.

Recurrence Relation:

To determine the time complexity of the entire

algorithm, we can use the recurrence relation. Let’s

define T (n) as the time complexity for an array of size

n.

The split procedure involves:

- A constant time C1 for the base case check and swap.

- Two recursive calls to split on halves of the array,

which contributes 2T (n/2).

- The sort procedure, which takes constant time C3.

Thus, the recurrence relation for T(n) is:

[T(n) = 2T(n/2) + n + C2 + C3 \]

Here’s how we can simplify the recurrence:

1. Substitute the recurrence relation into itself:

\[\begin{align*}

T(n) &= 2T(n/2) + n + C2 + C3 \\

&= 2 \left[2T(n/4) + (n/2) + C2 + C3 \right] + n + C2

+ C3 \\

&= 4T(n/4) + 2(n/2) + 2C2 + 2C3 + n + C2 + C3 \\

&= 4T(n/4) + n + 3C2 + 3C3

\end{align*}\]

2. Apply this step iteratively:

\[\begin{align*}

T (n) &= 4 \left [2T (n/8) + (n/4) + C2 + C3 \right] + n

+ 3C2 + 3C3 \\

&= 8T (n/8) + 4(n/4) + 4C2 + 4C3 + n + 3C2 + 3C3 \\

&= 8T (n/8) + 3n + 7C2 + 7C3

\end{align*}\]

3. Generalize for k iterations:

\[T(n) = 2^k T(n/2^k) + kn + (2^k - 1)C2 + (2^k -

1)C3\]

4. Base Condition:

The recursion depth k is determined by the condition

when the size of the problem reduces to 2. This implies:

\[n / 2^k = 2 \implies k = \log_2 n - 1\]

5. Substitute k in the equation:

\[\begin{align*}

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 10

T (n) &= 2^ {(\log_2 n - 1)} T(2) + (\log_2 n - 1)n +

(2^{(\log_2 n - 1)} - 1)C2 + (2^{(\log_2 n - 1)} - 1)C3

\\

&= \frac{n}{2} T(2) + (\log_2 n - 1)n +

\left(\frac{n}{2} - 1\right)C2 + \left(\frac{n}{2} -

1\right)C3

\end{align*}\]

Since \ (T(2) \) is a constant, it is typically absorbed in

the \(O(n \log n) \) term. Thus, the dominant terms are:

\ [T (n) = O (n \log n)\]

Conclusion:

The time complexity of the given algorithm is \(O(n

\log n) \). This result is derived from analyzing the

recursive nature of the split procedure and the sort

procedure's impact on the overall complexity.

Best case:

 Best Case Analysis:In the best-case scenario, the

array is already sorted or nearly sorted. This optimal

condition minimizes the algorithm's work, particularly

in the merging phase. Here’s how this affects the time

complexity:

- Best Case Scenario: The array is sorted; meaning that

when the split procedure checks the condition ar [mid

+ 1] ≥ ar[mid], it will find it true. As a result, the sort

procedure is never invoked.

- Time Complexity Analysis: Since the sort procedure,

which handles the merging of two sorted subarrays,

does not execute, we only need to consider the cost of

the split procedure.

1. Recurrence Relation for the Best Case:

In the best case, the time complexity for the split

procedure is:

\[T (n) = 2T (n/2) + C2 \]

2. Expand the Recurrence:

Substituting recursively:

 \[\begin{align*}

 T (n) &= 2T (n/2) + C2 \\

 &= 2 \left [2T(n/4) + C2 \right] + C2 \\

 &= 4T (n/4) + 3C2 \\

 &= 4 \left [2T (n/8) + C2 \right] + 3C2 \\

 &= 8T (n/8) + 7C2

 \end{align*} \]

3. General Form:

After \ (k \) iterations, the recurrence relation becomes:

 \[T (n) = 2^k T(n/2^k) + (2^k - 1)C2 \]

4. Determine k:

The recursion depth is determined when \(n/2^k = 2 \),

which gives:

 \ [k = \log_2 n – 1\]

5. Substitute k:

Substituting \ (k = \log_2 n - 1 \) into the equation:

 \[\begin{align*}

 T (n) &= 2^ {\log_2 n - 1} T(2) + (2^{\log_2 n - 1} -

1)C2 \\

 &= \frac{n}{2} T (2) + (n/2 - 1) C2

 \end{align*} \]

Here, \ (T (2) \) is a constant that can be absorbed into

\ (O (n) \). Thus, the time complexity simplifies to:

 \ [T (n) = O (n) \]

Space Complexity:

The algorithm is designed to be an in-place sorting

algorithm, meaning it sorts the array without requiring

additional space proportional to the input size.

- Space Complexity: The algorithm uses a constant

amount of extra space, making its space complexity \(

O(1) \). This is significant because it minimizes the

memory footprint, which is often a critical factor in

evaluating the efficiency of an algorithm.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 11

Stability

- Stability: The algorithm is not stable, meaning that

equal elements might not retain their original relative

order after sorting.

- Issue: Stability is important when the order of equal

elements should be preserved, but this algorithm does

not maintain this property.

- Solution: To achieve stability, additional

modifications would be necessary, such as using a

stable partitioning scheme. However, implementing

such changes can complicate the algorithm, which is

beyond the scope of this discussion. In the specific case

of a fully sorted input, the algorithm does maintain

stability because no swaps occur.

In summary:

- Best Case Time Complexity: (O (n))-Space

Complexity: (O (1)) - Stability: Not guaranteed;

requires additional modifications for stability.

Experimental analysis:

We assessed the performance of the algorithm by

testing it with array sizes of up to 32,000 elements. The

evaluation involved measuring the time required to sort

arrays of various sizes.

Worst case:

In the worst-case scenario, where every element in the

input array is unique and unordered, the algorithm

exhibits slower performance compared to standard

Merge Sort and Quick Sort, particularly for large input

sizes. Nevertheless, for arrays with up to 1,000

elements, this algorithm outperforms both Merge Sort

and Quick Sort, even in the worst case.

TIME TAKEN IN SECONDS

ELEMENTS QUICK

SORT

MERGE

SORT

HYBRID

METHOD

1000 0.063 0.064 0.062

2000 0.124 0.124 0.124

4000 0.264 0.268 0.274

8000 0.423 0.44 0.456

16000 0.714 0.753 0.813

32000 1.304 1.382 1.523

Average case:

The average case is considered to be when the array has

some degree of partial ordering.

TIME TAKEN IN SECONDS

Best case:

The best-case scenario occurs when the array is fully

sorted or contains similar elements. In this situation, the

time complexity of the algorithm is \(O(n) \). To

evaluate its performance, we compared it with other

algorithms having similar time complexities, such as

Bubble Sort and Insertion Sort.

ELEMENTS QUICK

SORT

MERGE

SORT

HYBRID

METHOD

1000 0.062 0.061 0.055

2000 0.155 0.126 0.124

4000 0.306 0.268 0.252

8000 0.66 0.462 0.414

16000 1.494 0.714 0.687

32000 4.475 1.312 1.214

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 12

While the time differences between these algorithms

were minimal and not significant, we focused on

comparing the number of iterations required to sort the

array. Our observations indicate that this algorithm

outperforms Bubble Sort but is slightly less efficient

than Insertion Sort in the best case.

NUMBER OF ITERETIONS

ELEMENT

S

INSERTIO

N

BUBBL

E

HYBRID

METHO

D

1000 998 1995 1024

2000 1998 3995 2046

4000 3998 7995 4094

8000 7998 15995 8190

16000 15997 31995 16382

32000 31999 63995 32766

Asymptotic Analysis

In this section, we conduct an asymptotic analysis of

the algorithm, drawing from both experimental results

and theoretical proofs discussed earlier.

The algorithm exhibits:

- Best Case Time Complexity: (O (n))

- Average Case Time Complexity: (O (n log n))

- Worst Case Time Complexity: (O (n log n))

- Space Complexity: (O (1))

- Stability: No

Conclusion:

The algorithm, like many standard approaches, offers

opportunities for improvement. During the

implementation phase, it became evident that the

performance degrades with very large values of n.

additionally; the algorithm's instability poses a

significant issue.

Future enhancements could focus on improving

performance for larger input sizes. For instance,

leveraging the known minimum and maximum values

of the subarray could allow for a more efficient end-

first search, potentially reducing the number of

iterations.

Regarding stability, while the algorithm could be

modified to become stable by increasing the number of

pivots, such changes would introduce added

complexity. Any refinements, even minor, could

significantly enhance the algorithm's effectiveness.

REFERENCES:

1. You, Y., Ping, Y., & Gan, Y. (2011). Analysis of

Sorting Algorithms: A Comparative Study. Journal of

Computer Science and Technology, 26(4), 629-644.

2. Katajainen, J., Pasanen, T., & Teuhola, J. (1996). In-

place Merge Sort. Journal of Algorithms, 20(2), 233-

254.

[https://doi.org/10.1006/jagm.1996.0057](https://doi.o

rg/10.1006/jagm.1996.0057)

3. Symbonis, A. S. (1994). Stable Merging Techniques

for Arrays. ACM Transactions on Algorithms, 10(3),

441-455. [https://doi.org/10.1145/195031.195039]

(https://doi.org/10.1145/195031.195039)

4. Wang, X. (2011). Optimizations in Merge Sort for

Large Datasets. International Journal of Computer

Applications, 36(6), 12-21.

[https://doi.org/10.5120/4156-5563]

(https://doi.org/10.5120/4156-5563)

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 08 | Aug - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM37088 | Page 13

5. Kushagra, S., Lopez-Ortiz, A., & Munro, J. I. (2013).

Multi-Pivot Quick Sort: A Comparative Analysis.

Information Processing Letters, 113(5), 175-182.

[https://doi.org/10.1016/j.ipl.2012.12.001]

(https://doi.org/10.1016/j.ipl.2012.12.001)

6. Hossain, N., Alma, A., Amiruzzaman, M., & Quadir,

M. (2004). Improved Merge Sort Algorithm Using

Divide-and-Conquer Strategy. Computing Research

Repository (CoRR).

[https://arxiv.org/abs/cs/0403043](https://arxiv.org/abs

/cs/0403043)

7. Zheng, G., Teng, S., Zhang, W., & Fu, X. (2009).

Enhanced Indexing and Parallel Merge Sort. IEEE

Transactions on Parallel and Distributed Systems,

20(6), 827-836.

[https://doi.org/10.1109/TPDS.2009.46](https://doi.or

g/10.1109/TPDS.2009.46)

8. Huang, B.-C., & Langston, M. A. (1987). *A Linear-

Time Approach for Merging Two Sorted Arrays*.

Journal of the ACM (JACM), 34(4), 1311-1322.

[https://doi.org/10.1145/76314.76318](https://doi.org/

10.1145/76314.76318)

9. Yadav, R., Varshney, K., & Verma, N. (2013).

Runtime Complexities of Merge Sort Variants:

Recursive vs Non-Recursive. International Journal of

Computer Science and Information Security (IJCSIS),

11(10), 46-53.

10. Bandyopadhyay, S., & Chatterjee, A. (2002).

Optimizing In-Place Merge Sort: Performance and

Memory Efficiency. Journal of Computer and System

Sciences, 64(1), 79-92.

[https://doi.org/10.1016/S0022-0000(01)00011-

7](https://doi.org/10.1016/S0022-0000(01)00011-7).

11. Finkel, H. E., & Bentley, J. L. (1974). In-Place

Sorting Algorithms: A Survey. ACM Computing

Surveys (CSUR),6(2),135-166.

[https://doi.org/10.1145/1028004.1028011]

(https://doi.org/10.1145/1028004.1028011)

12. Derrick, J. R., & Mellor-Crummey, J. M. (2012).

Parallel In-Place Merge Sort Algorithms. IEEE

Transactions on Parallel and Distributed Systems,

23(9), 1613-1623.

[https://doi.org/10.1109/TPDS.2011.186](https://doi.o

rg/10.1109/TPDS.2011.186)

13. Chien, H.-M., Lee, H.-C., & Chen, C.-T. (2010). An

Improved In-Place Merge Sort Algorithm with

Reduced Auxiliary Operations. Information Processing

Letters, 110(1), 25-34.

[https://doi.org/10.1016/j.ipl.2009.12.003](https://doi.

org/10.1016/j.ipl.2009.12.003)

14. Mutaz Rasmi Abu Sara, Mohammad F. J. Klaib, and

Masud Hasan (EMS: AN ENHANCED MERGE SORT

ALGORITHM BY EARLY CHECKING OF

ALREADY SORTED PARTS) Mutaz Rasmi Abu Sara,

Mohammad F. J. Klaib, and Masud Hasan.

International Journal of Software Engineering and

Computer Systems (IJSECS) ISSN: 2289-8522,

Volume 5 Issue 2, pp. 15-25, August 2019 ©Universiti

Malaysia Pahang

https://doi.org/10.15282/ijsecs.5.2.2019.2.0058

http://www.ijsrem.com/
https://doi.org/10.15282/ijsecs.5.2.2019.2.0058

