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Abstract— The  increasing reliance on state  assessments in 

civil engineering has sparked extensive research into methods for 

damage detection based on structural vibrations. Modal 

parameters, such as natural frequencies and mode shapes, have 

gained  significant  attention  due  to  their  invariance  across 

structures.  These  parameters  provide  a  global  perspective, 

meaning their variations can help identify damage without the 

need for sensor placement directly at the damaged site. This 

feature  is  a  key  advantage  in  structural  health  monitoring 

(SHM)   systems.   Integrating   MEMS   sensors   into   SHM 

frameworks holds great potential for long-term monitoring, 

particularly  for  large-scale  infrastructures.  This  paper 

introduces  an  innovative  anomaly  detection  technique  that 

analyzes raw sequential data through a statistical approach to 

identify damage  associated with tendon prestress loss. The 

technique leverages a distributed monitoring system consisting of  

six  high-performance  MEMS  sensors.  To  validate  the 

system, the first mode frequency is initially analyzed, and the 

method is then tested on acceleration data from a 240 cm 

beam  under  three  distinct  damage  scenarios.  The  results 

demonstrate high accuracy in damage detection and show that 

the system can also localize the damage effectively.   

Keywords— Distributed monitoring system, structural health 

monitoring, MEMS sensors, frequency domain decomposition, 

anomaly detection.   

 

damage.  SHM  encompasses  various  techniques  and 

technologies  widely  adopted  in  both  aerospace  and  civil 

engineering   sectors.   In   infrastructure   asset   management, 

ensuring the safety of structures is paramount, necessitating 

prompt and precise maintenance actions based on an in-depth 

understanding  of  the  structural  behavior,  health  conditions, 

and traffic load data. This is especially critical for bridges, 

where  maintaining  low  vulnerability  levels  is  essential  for 

ensuring both safety and operational efficiency.   

Damage and failure modes in complex systems like bridges 
can   manifest  in   several   ways.   For  prestressed  concrete 
structures   (PSCs),   failure   of   the   prestressing   system   is 
particularly  critical,  as  it  typically  exhibits  brittle  behavior 
with little to no warning, potentially leading to catastrophic 
collapse. Prestressed concrete  has been  widely adopted for 
large-span   structures,   especially   in   bridge   construction. 
However,  this  construction  type  is  highly  susceptible  to 
degradation, and tendon rupture can result in fragile failure. 
Therefore,  ongoing  monitoring  and  maintenance  of  these 
structures are essential, requiring continuous inspection and 
monitoring.  Early  detection  of  damage  is  vital  to  prevent 
sudden failures, ensuring both user safety and reducing the 
financial   burden   of   emergency   repairs.   While   damage 
detection   techniques   for   prestressed   systems   have   been 
explored in the literature, a unified solution has not yet been 
established.  Therefore,  evaluating  and  developing  methods 

I.  
 

INTRODUCTION  
 

that  detect  damage,  particularly  at  early  stages,  remains 

necessary.  

The significance of structural condition assessments in civil 

engineering has driven considerable research into developing 

advanced  methods  for  damage  detection,  especially  those 

utilizing vibration measurements. Modal parameters, including 

natural frequencies, mode shapes, and modal damping, have 

become  critical  indicators  due  to  their  invariance  despite 

changes in the structure. These parameters reliably reflect the 

presence  of  damage  as  they  vary  with  alterations  in  the 

structure’s integrity. Additionally, the global nature of modal 

parameters enables damage detection without requiring sensor 

placement directly on the damaged area. Recent advancements 

in  system  identification  techniques,  such  as  output-only 

stochastic subspace algorithms, have strengthened the focus 

on  modal  parameters  by  offering  numerically  stable  and 

reliable methods to determine these parameters experimentally 

from ambient excitations.   

Structural health monitoring (SHM) plays a crucial role in 

ensuring the safety and longevity of structures by providing 

vital insights into their stress states and identifying potential  

 

The  integration  of  monitoring  systems  can  help  mitigate 

inconveniences to users and, in extreme cases, ensure their 

safety   by   enabling   rapid   interventions   in   the   event   of 

anomalies.   This   can   be   achieved   through   either   direct 

intervention  or  by  adopting  a  Bridge  Management  System 

(BMS)  that  optimizes  maintenance  activities  while 

considering the structure’s health. Additionally, these systems 

can be incorporated into broader frameworks that focus on 

goals such as reducing environmental impact or enhancing 

structural robustness.   

This  research  primarily  aims  to  develop  a   method  for 

interpreting monitoring data that can be implemented in the 

workflows  of  entities  responsible  for  managing  reinforced 

concrete structures.   

SHM systems are essential for providing reliable, real-time 
assessments of the monitored structures' conditions. Typically, 
SHM systems are categorized based on the type of data they 
collect:  static  and  vibration  monitoring.  Static  monitoring, 
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which tracks parameters like displacements, deformations, and 
rotations, is commonly  used to  monitor damage evolution. 
Although  static  methods  have  been  explored  for  detecting 
tendon  damage,  they  often  require  expensive  measurement 
technologies such as fiber Bragg gratings or emerging systems 
still undergoing validation.   

Recently, Micro-Electro-Mechanical System (MEMS) sensors 

have  gained  traction  in  SHM  systems.  MEMS  sensors  are 

compact, low-cost, and low-power devices that can accurately 

measure  various  physical  parameters  such  as  acceleration, 

strain, pressure, and temperature. Their integration into SHM 

systems offers several advantages, including improved data 

acquisition, processing capabilities, enhanced reliability, and 

reduced power consumption. MEMS sensors enable real-time 

monitoring  of  stress  states,  early  damage  detection,  and 

predictions   regarding   the   structural   lifespan.   In   bridge 

applications,   MEMS   sensors   have   proven   effective   in 

continuously monitoring structural changes caused by external 

loads, traffic, or environmental factors. However, challenges 

such as noise and sensitivity to environmental changes require 

careful consideration.  For example, random  noise  and bias 

drift can complicate error compensation and affect the long- 

term applicability of inertial MEMS sensors. These challenges 

necessitate  advancements  in  sensor  classification  based  on 

bias instability and random walk parameters.   

Traditional SHM methods, such as strain gauges and wired 
sensor networks, are known for their reliability and precision. 
However, these methods often face challenges, including high 
installation  costs,  limited  scalability,  and  vulnerability  to 
environmental  interference.  MEMS  technology  presents  a 
promising  alternative,  offering  advantages  such  as 
compactness, high sensitivity, and wireless capabilities. While  

 

 

 

By  analyzing  the  capabilities  and  limitations  of  MEMS 

sensors   in   SHM,   particularly   for   prestressed   concrete 

structures,  this  research  highlights  their  potential  to 

revolutionize  modern  infrastructure   monitoring.  The 

integration of MEMS-based solutions represents a significant 

advancement in SHM methodologies, offering scalable, cost- 

effective tools to ensure the safety and longevity of critical 

infrastructure.   

Despite existing challenges, MEMS sensors have the potential to 

significantly enhance SHM systems. They offer efficient, 

accurate, and cost-effective solutions for structural monitoring 

and maintenance. Further advancements in MEMS technology 

and data analytics are expected to improve SHM capabilities, 

introducing  novel  approaches  to  structural  monitoring  and 

maintenance.   

Vibration monitoring captures a structure's dynamic behavior 

under  operational  and  ambient  conditions  using 

accelerometers  or  velocimeters.  This  data  can  be  analyzed 

directly  or  used  in  Operational  Modal  Analysis  (OMA)  to 

determine the dynamic properties of a structure. Although this 

approach offers a global assessment of the structure, it may be 

less  effective  at  detecting  localized  or  early-stage  damage, 

such as tendon failures, which might not significantly affect 

dynamic properties.   

The primary aim of this research is to develop and validate an 

anomaly  detection  method  using  MEMS-based  sensors  to 

monitor  tendon  integrity  in  prestressed  concrete  structures, 

grounded in vibration-based methods that can detect structural 

changes  even  when  the  sensors  are  not  located  near  the 

damage.  

traditional accelerometers excel in high-frequency vibration 
monitoring, MEMS sensors are particularly effective in low-  

 

II.  
 

THE PROPOSED METHOD 

frequency applications and can easily integrate into wireless 

sensor  networks.  Recent  innovations  in  MEMS  technology 

have  focused on advancements in smart sensors  for SHM, 

embedded sensor improvements, and durability enhancements 

for high-temperature environments.   

MEMS  sensors  combine  mechanical  and  electrical 

components at the microscale to measure physical parameters 

like acceleration and displacement. Their working principles 

are based on changes in capacitance, which translate structural 

responses  into  electrical  signals  for  further  analysis.  Their 

small size, low power requirements, and wireless capabilities 

make them ideal for deployment in challenging environments 

such as prestressed concrete structures. These features enable 

MEMS sensors to detect early signs of structural deterioration, 

such as crack propagation and shifts in modal frequencies. 

However, challenges such as temperature sensitivity and long- 

term   degradation   remain,   which   has   prompted   ongoing 

research  into  improving  sensor  durability  and  developing 

algorithms to mitigate environmental effects.   

 

Early detection of damage in prestressing systems is crucial 

for ensuring the safety and reliability of prestressed concrete 

structures (PSCs). The methodology proposed in this paper 

employs a similarity analysis of acceleration time histories to 

differentiate between healthy and damaged structural states. 

The  method  consists  of  two  phases:  the  calibration  phase, 

where  reference  data  from  the  undamaged  structure  are 

collected,  and  the  operational  phase,  where  new  data  are 

analyzed for damage detection.   

During  the  calibration  phase,  multiple  acceleration  time 

histories are gathered to represent the dynamic behavior of the 

structure in its undamaged state. These data are used to define 

baseline  conditions,  serving  as  the  reference  for  anomaly 

detection.  The  number  of  accelerometers  installed  on  the 

structure is denoted by K, and the number of histories acquired 

from each accelerometer during calibration is denoted by N. 

The acceleration data from the sensors form a reference matrix of 

acceleration time histories:  
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(1)  

The  similarity  between  time  histories  is  measured  using  a 

function  such  as  the  Minimum  Jump  Cost  (MJC),  which 

calculates the cost of transitioning from one-time history to 

another. The similarity index (SI) matrix is constructed by 

comparing each time history with others from the same sensor:  

 

 

 

(2)  

To detect anomalies, a control chart approach is used. The 

mean (μ\mu) and standard deviation (σ\sigma) of the SI matrix 

are computed, and threshold values are defined as:   

 

  

 

Minimum Jump Cost description.  
 

 

 

 

 

 

 

 

 

In  this  work,  the  Minimum  Jump  Cost  (MJC)  measure  is 

adopted  as  the  criterion  for  comparing  two  distinct  time 

histories,  i.e.,  for  evaluating  the  distance  between  them. 

However, alternative approaches can be employed for defining 

the  distance  measure.  In  fact,  Equation  (2)  introduces  a 

generic  notation, Sim,  to  represent  any  arbitrary  similarity 

measure, emphasizing the flexibility of the proposed method.  

III.  

(3)  

 

SYSTEM ARCHITECTURE 

Here,  λ=3  is  used,  based  on  Chebyshev’s  theorem,  which 

states that the probability of observing values outside these 

thresholds  is  at  most  11%.  These  thresholds  define  the 

baseline for detecting anomalies during the operational phase. As 

new acceleration data are collected, the similarity index is 

recalculated for the new measurements:   

 

 

 
(4)  

If any value in the new SI matrix falls outside the defined 

thresholds, the system triggers an anomaly alert. When more  
than 11% of the values are outliers, the system detects an 

anomaly in the structural behavior.   

The MJC function evaluates the cost of transitioning between 

two sequences, x and y, and is calculated as the sum of the 

minimum costs for each jump:   

 

 

 

(5)  

where Ji represents the cost of the jump between data points in 

sequences x and y.   

 

The data acquisition system, as depicted in  Figure 2, is 

based   on   MEMS   sensors   and   consists   of   six   high- 

performance   inertial   sensors   provided   by   Sensonor™ 

(Skoppum, Norway), along with six microcontrollers from 

STMicroelectronics™ (Geneva, Switzerland). In this setup, 

the STM32F446RE microcontrollers collect data from the 

STIM318  sensors  via  the  UART  protocol.  To  enable 

seamless communication, an interface between the RS422 

and UART protocols is established using the SN75C1167 

chip from Texas Instruments (Dallas, TX, USA), allowing 

the  microcontrollers  to  effectively  acquire  data  through 

UART.   

 

 

 

 

 

 

 

 

 

STIM318 sensors are configured to sample data at a frequency 

of 2 kHz, with the triggering frequency set to 250 Hz. This 

configuration ensures that the average delay between the data 

request and actual sampling is limited to 250 μs. Additionally, 

the Master microcontroller generates a start signal, which is 

captured  by  the  other  microcontrollers  to  synchronize  the 

initiation of the data acquisition process. The collected data 

are then transmitted to a PC, where they are used to trigger 

 

System architecture based on six high-grade  

 MEMS sensors.   
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acquisition by the Master and facilitate data collection from all 

microcontrollers via serial communication.   

The architecture of this system was carefully selected based on 

several  important  factors  that  enhance  its  effectiveness  in 

structural  health  monitoring  applications.  Firstly,  the 

integration of high-performance sensors and microcontrollers 

ensures the system can meet the demands of accurate data 

collection. The STIM318 sensor, capable of high-frequency 

data acquisition at 2 kHz, offers a low noise density of 0.015 

𝑚/𝑠/√ℎ𝑟.  Paired   with   the   STM32F446RE   microcontroller, 

which features an Arm Cortex-M4 processor running at 180 

MHz,  the  system  efficiently  processes  and  manages  the 

acquired data. Another key consideration was the need for 

precise   synchronization,   which   is   crucial   for   structural 

monitoring.  The  synchronization  between  the  sensors  and 

microcontrollers is achieved via an external clock and the start  
signal from the Master microcontroller, reducing delays and 

improving data reliability. Communication reliability was also a 

priority, and the use of an RS422-to-UART interface ensures 

efficient and robust data transmission. Finally, the modular 

and scalable nature of the system was essential, allowing it to 

adapt to various structural elements and incorporate additional 

sensors   if   necessary.   The   system   is   also   designed   for 

integration with Internet of Things (IoT) protocols, ensuring 

compatibility with future SHM applications.   

IV.  MEASUREMENT SETUP   

The   proposed   methodology   was   validated   through   an 

experimental case study involving a prestressed concrete joist, a 

common structural element used in floor construction. The 

joist tested in the study had a length of 240 cm and featured a T-

shaped cross-section with a height of 10 cm, a major base 

width  of  12  cm,  and  a  minor  base  width  of  5  cm.  The 

reinforcement  configuration  consisted  of  three  prestressing 

tendons placed in the lower section of the joist and one tendon in 

the upper section, with each tendon having a cross-sectional area 

of 12 mm². The joist was constructed using C45/55 grade 

concrete, which has a cylindrical compressive strength (fck) of 

45.65  N/mm²  and  an  elastic  modulus  (EEE)  of  36,416.11 

N/mm².  The  tendons  were  made  of  harmonic  steel,  with  a 

characteristic  yield  stress  (fp(1)k)  of  1670  N/mm²  and  a 

characteristic ultimate tensile strength (fptk) of 1860 N/mm². A 

detailed representation of the joist’s cross-section is shown in 

Figure 3, and the concrete and tendon properties are provided in 

Table 1.   

 

 

Depiction of the joist section and tendon layout.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experimental setup, shown in Figure 4, consisted of  

positioning the joist specimen on two symmetrical vertical  

supports, each placed 35 cm from the ends of the beam. To 

replicate loading conditions, two 24 kg masses were  

positioned 65 cm from the respective ends of the beam,  

ensuring that the load was evenly distributed across the  

structure.   

 

 

 

 

 

 

Setup for the experiments.  

The proposed monitoring system was preliminarily assessed 

through a comparison with measurements taken from a low- 

noise  MEMS  sensor,  the  EPSON  M-A352  accelerometer, 

which served as the reference system [36]. Data acquisition 

for  the  reference  system  was  managed  by  an  additional 

microcontroller that generated the clock signal and acted as an 

interface  between  the  sensor  and  the  PC.  Synchronization 

between the proposed monitoring system and the reference 

system was achieved through a digital start signal transmitted 

from the Master microcontroller.   

The sensors were arranged in two different configurations: 

 

 

 

 

Table 1. Characteristics of concrete and 
tendons   of harmonic steel.   

 

Feature  
  

Dimension  
  

Valu  e  
 

𝑓𝑐𝑘  
 

MPa  
  

45.65  
 

 

E𝑐  
 

MPa  
  

36,416.11  
 

 

Es  
 

MPa  
   

201,000  
 

 

𝑓ptk  
 

MPa  
 

1860  
 

 

𝑓p(1)k  
 

MPa  
 

1670  
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1.   Parallel  Configuration:  In  this  setup,  the  STIM 

sensors  were  placed  in  two  sections,  with  three 

sensors in each section. The first section was located 

114 cm from the left end of the beam, and the second 

was positioned 160 cm from the left end. In each 

section, one STIM sensor was placed on the front 

side, one on the rear side, and one on the top side. 

The EPSON sensor was placed on the top side of the 

beam, 110 cm from the left end, near STIM sensor 3. 

The arrangement of these sensors is shown in Figure  
5.   

2.   Longitudinal  Configuration:  In  this  configuration, 

four  STIM  sensors  and  the  EPSON  sensor  were 

positioned on the front side of the beam, while two 

STIM sensors were placed on the rear side. A visual 

representation  of  this  arrangement  is  provided  in 

Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimizing  the  layout  of  accelerometers  is  a  key  area  of 

research  in  structural  health  monitoring  (SHM).  Numerous 

studies  have  proposed  various  methods  and  strategies  for 

determining the ideal sensor placement to enhance detection 

capabilities  and  improve  the  identification  of  a  structure's 

dynamic properties [37]. While determining the optimal sensor 

placement is beyond the scope of this paper, the authors tested 

two  different  configurations  to  assess  their  effectiveness  in 

dynamic  identification.  For  the  damage  detection  analysis, 

however, only the parallel configuration was used, as it offered 

better  sensitivity  to  off-center  damage,  such  as  a  clipped 

tendon, which could lead to changes in internal stress and beam 

deflection.   

V.  SYSTEM CHARACTERIZATION  

Measurement   Synchronization:-The   distributed   monitoring  

system was first evaluated using controlled displacements in a 

single direction to assess the synchronization of the acquired 

acceleration  signals  (Figure  7).  During  this  evaluation,  the 

correlation between the signals was examined, and the outcome of 

combining two signals is shown in Figure 8.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Distributed  monitoring  system  of  six  STIM318  

sensors (highlighted in red and green colors for  

front  and  back,  respectively)  in  parallel  
configuration. Figure No.5   

Distributed  monitoring  system  of  six  STIM318  

sensors (highlighted in red and green colors for  

front   and   back,   respectively)   in   longitudinal  
configuration.  Figure No.6   

Figure  No.7  Comparison  of 
 acceleration  measurements  of  all  sensors  under  
controlled  displacements in one 
direction.  
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The  cross-correlation  between  two  acceleration  signals  was 

computed using MATLAB's xcorr function (version: 2024b). 

The  x-axis represents the  lag in terms of sample shifts (N 

samples), while the y-axis shows the correlation values. The 

peak of the correlation occurs at lag = 0, indicating a high 

degree of synchronization between the two signals, with no 

apparent time delay. Furthermore, the symmetrical shape of the 

curve suggests that the signals are temporally aligned without 

significant phase shifts. The side lobes surrounding the main 

peak indicate secondary correlations, which arise from periodic 

or repeating patterns in the signals. This result confirms that the 

synchronization between the  two signals is valid, reflecting 

shared, similar dynamic responses.   

In addition to the synchronization analysis, the time required 

for data retrieval from the sensor, along with the transmission 

and  reception  times  for  the  acquisition  start  signal,  was  

 

 

measured. The average data retrieval time was found to be 0.54 

ms, with a standard deviation of approximately 500 ns, while 

the transmission and reception times were about 40 ns each. 

The internal timers of the microcontroller were also used to 

measure the actual sampling rate, which was determined to be 4 

ms.   

Performance Evaluation: -Frequency Domain Decomposition 

(FDD) is a valuable output-only method used to identify the 

vibration  frequencies and  corresponding  modal  shapes of  a 

structural system based on acceleration data recorded from the 

structure.  This  technique  operates  on  the  principle  that  the 

eigenvectors, which represent the vibration modes, form a basis 

due to their linear independence. As a result, any displacement 

in the system can be represented as a linear combination of 

these   eigenvectors,   allowing   the   decoupling   of   mode 

components.   This   property   is   particularly   useful   when 

analyzing   the   system's   response   at   each   accelerometer  
placement  or  when  examining  the  Power  Spectral  Density 

(PSD)  of  the  accelerometer's  history  using  Singular  Value 

Decomposition (SVD) of the matrix defined for each frequency  
ω [38].   

The FDD method utilizes frequency response functions (FRFs)  

to extract the eigen periods, damping, and modal deformations  

of the structure. Fourier transforms are employed to convert the 

differential equations governing the dynamic behavior of the  

structure into a system of algebraic equations, simplifying their 

resolution.   

Figure 9 presents a flowchart outlining the data processing 

steps using the FDD technique, along with its mathematical 

description. Initially, the PSDs are estimated through Fourier 

transforms of the acceleration signals, 𝑥(𝑡), which represent 

the acceleration measurements. The resulting PSD matrices, 

one for each frequency 𝑓, are then decomposed into singular 

values.  In  this  decomposition,  𝑼𝒇  and  𝑽𝒇  represent  the 

singular vectors, while Σ𝑓 denotes the singular values. These 

singular  values  correspond  to  the  degrees  of  the  structural 

system, and the singular vectors provide insights into the modal 

form. Vibration modes are identified based on the graphical 

representation of the singular value spectrum, specifically at 

the resonance peaks. Natural frequencies are identified using 

the peak-picking method, where each peak corresponds to a 

singular value, which is matched with a singular vector. The 

suitability of attributing a frequency to a specific vibration 

mode is evaluated using the Modal Assurance Criteria (MAC) 

[39,40]. It is critical to assess the frequency in order to identify 

the component of interest. To validate the proposed system, 

the results were compared with those obtained using Artemis 

Modal Pro software (version 8) and the reference system.  

 

 

 

 

Figure   No.8   Correlation   of   two   acceleration  

measurements.   
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Figure No.9 FDD Technique Flow Chart  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In particular, Table 2 shows the frequencies obtained by 
means of the software, which identifies that the first mode 
exhibits frequencies of about 50 Hz and 53 Hz in the absence of   
an   applied   load   for   the   parallel   and   longitudinal 
configurations, respectively, while frequencies of about 40 Hz 
and 41 Hz for the parallel and longitudinal configurations, 
respectively, are observed with an applied load, a result that is 
also evident in the finite element model. For the unloaded 
beam,  the  discrepancies  between  the  FEM  and  Artemis, 
ranging  between  5%  and  10%,  likely  stem  from  minor 
differences in the boundary conditions and material properties 
inherent to the theoretical and experimental Setups.   

 

 

 

 

 

 

On the other hand, in the presence of a load on the analyzed 

beam, the differences are slightly more pronounced, at around 

20%. This variation can be attributed to the influence of the 

applied load, which affects the stiffness and stress distribution. 

These factors are more accurately reflected in the experimental 

conditions than in the FEM’s idealized assumptions. Once the 

first mode had been evaluated through the FEM analysis and 

using Artemis Modal Pro software, the outcomes obtained by 

the  proposed  system  and  the  reference  system  were  then 

examined around the frequency of interest, as shown in Figure 10 

and Figure 11 for the parallel configuration in the absence of 

an applied load and in the presence of an applied load, 

respectively. Both systems correctly identify the frequency of 

the first mode, with values equal to 50.01 Hz for the reference 

system and equal to 50.01 Hz for the proposed system for an 

unloaded beam and values equal to 40.29 Hz for the reference 

system and equal to 40.18 Hz for the proposed system in the 

loaded case. Furthermore, both systems demonstrate a variation  

 

 

in the frequency of the first mode of the beam from about 50 

Hz to 40 Hz when a load is applied, i.e., in dynamic conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

VI.  RESULTS  

The experimental campaign consisted of four tests (T0–T3),  
with each aiming to evaluate both the identification system’s  
performance  under  an  increasing  damage  severity  and  the 

effectiveness  of  the  proposed  methodology  for  identifying 

tendon  failure.  All  of  the  experimental  tests  involved  the 

acquisition   of   146-time   histories   of   600   s   in   ambient 

conditions. The damage was induced by creating narrow, deep 

cuts near the tendons, as shown in Figure 12. In each test, the 

system’s abilities to detect anomalies and correlate the number  
of alerts with the damage extent were assessed. Test T0 served 

to confirm that the system does not trigger alerts in response to 

minor  variations  in  the positions of  the  masses or  sensors, 

while tests T1 to T3 assessed the system performance under the 

conditions  of  progressively  increasing  damage.  This  study 

further sought to explore the potential correlation between the 

number of alerts generated and both the extent and location of  
the  damage. Figure  13 provides  a  detailed  overview  of  the 

damage   patterns   applied   in   each   experiment.   For   this 

campaign, the similarity function introduced previously, in the 

context of time-series analysis, was utilized.   

Figure 12. Example of cuts near the tendons.  

 

 

 

 [Hz]  Parallel 
Config.  
[Hz]   

Longitudinal 
Config. [Hz]   

Unloaded  55.16  50.68  53.83  
Loaded  34.10  40.87  41.62  

Figure 10. First mode of the parallel configuration  

without applied load.   
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The initial test evaluates the methodology's sensitivity to minor  
alterations in the experimental setup. Specifically, the response of  

the  undamaged  joist  is  analyzed  by  disassembling  and 

reassembling the sensors to determine how slight modifications in   

the   sensor–structure   configuration   affect   the   system. 

According   to   Chebyshev's   theorem,   the   control   chart  
probability of exceeding the set thresholds is at most 11%, 

meaning anomalies can be detected as follows:   

 

 

 

(6)  

The results of the outlier analysis are shown in the control 
charts, which depict the performance across three data groups: 
training, testing, and validation. The training data, shown in 
blue, are used to establish the control chart thresholds. The 
validation   data,   represented   in   green,   come   from   the  

 

threshold  required  to  trigger  an  alert,  demonstrating  the 

robustness of the system to minor sensor adjustments.   

 

 

 

 

 

 

 

 

 

The results from test T1, with the D1 damage scenario, 
are  shown  in Figure  15,  where  the  similarity  index 
computed for the time histories under D1 conditions is 
represented  in  red.  The  methodology  detected  64 
outliers,  approximately  43.8%  of  the  dataset,  which 
exceeded   the   11%   threshold,   leading   to   anomaly 
detection and indicating structural changes.    

undamaged  structure's  measurements  collected  during  the 

training phase. The testing data, shown in red, correspond to 

the testing group.   

Figure   14   illustrates   the   T0   damage   detection   analysis, 
presenting the control chart based on the similarity index under 
undamaged   conditions.   The   chart   includes   data   for   the  

 

•  
 

In advanced damage scenarios (T2 and T3), as shown 
in Figure 16 and Figure 17, the control charts visually 
illustrate an increased number of outliers for damage 
scenarios D2 and D3, with the alerts totaling 80 and 
146, respectively, corresponding to 54.8% and 100% of 
the  newly  collected  measurements.  These  findings 
confirm the detection of anomalies in each case.  

calibration-free  validation  measurements  (green)  and  those  
 

•  
 

T2  
 

and  T3,  the  
 

control  
 

c  
 

in Fi  
 

gure 

obtained  after   sensor  disassembly   and   reassembly   (red).  
 

15 and Figure  
 

17 already   
 

visu  
 

ally  
 

a 

According to Figure 14, the number of outliers detected in the 

"Undamaged  2"  dataset  is  8,  resulting  in  an  occurrence 

frequency   of   5.5%   for   146   five-minute   time   histories 

(approximately  12  hours).  This  value  is  below  the  11%  

 

number  of  outliers  that  result  in  the 
detection of an anomaly. In cases D2 and D3, there are 
80 and 146 alerts, respectively, which consist of 54.8% 
and 100% of the sample of new measurements.  

 

 

 

Figure 13. Experimental damage patterns  

 adopted.   

Figure  14.  Control  chart  for  experiment  T0  
for  sensor  arrangement:  8/146  (5.5%)  outliers  
for  the  group  Undamaged  2,  confirmed  using  
the  validation group as a part of the undamaged data.  

Figure 15. Control chart for experiment T1 for 
D1  damage detection: 64/146 (43.8%) outliers 
for  

 

the group D1, confirmed using the 
validation  

 
group as a part of the undamaged 
data.  

 

Regarding   harts   

considerable   
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•   The   system   successfully   detected   damage   in   all 
scenarios  (D1–D3)  and  demonstrated  a   direct 
correlation   between   the   damage   severity   and   the 
percentage of outliers. As the damage intensified, the 
percentage of outliers rose, reaching 100% in the most 
severe  cases.  Therefore,  referring  only  to  the 
investigated  scenarios  and  adopting  the  11%  outlier 
threshold gives an overall accuracy of 100% because 
the  presence  or  absence  of  damage  was  correctly 
detected in all four investigated scenarios.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII.  

 

 

 

CONCLUSION 

 

 

 

 

 

 

A   further   analysis   involved   the   detection   of   damage 

localization using a sensor-based analysis; in particular, this 

was   conducted   on   test   T2   by   evaluating   each   sensor 

individually. Figure 18 shows that sensor 6, located near the 

damage, registered a higher number of outliers compared to 

sensor 5 (Figure 19), positioned on the opposite face of the 

same   section.   This   suggests   that   the   methodology   may 

effectively  localize  damage  within  the  structure.  All of the 

experiments and the results they achieved are reported in Table 

3,  where  the  damage  scenarios,  key  objectives,  number  of 

alerts,   outlier   percentages,   and   observations   have   been 

summarized.   

 

This study presents a distributed monitoring system based on 

MEMS sensors for structural health monitoring (SHM). The 

system's  performance  was  preliminarily  evaluated  by 

comparing it with a low-noise sensor in a case study involving 

both unloaded and loaded prestressed concrete beams. The goal 

was   to   validate   the  proposed   method,   which   was   then 

compared  with  results  from  analytical  and  finite  element 

models. The authors proposed a damage detection framework 

for   prestressed   concrete   (PSC)   beams,   leveraging   direct 

analysis of acceleration time histories obtained from a reliable 

and   cost-effective   SHM   system.   Damage   detection   in 

prestressed bridge systems is a critical challenge in structural 

engineering, as accurate assessments are essential for ensuring 

transportation safety. The methodology for identifying damage in 

PSC elements involves analyzing acceleration time histories 

using a similarity index to detect anomalies. Thresholds for this 

analysis  are  established  using  a  reference  dataset,  and  any 

measurements  exceeding  these  thresholds  are  classified  as 

outliers.  According  to  Chebyshev’s  theorem,  a  structural 

anomaly is identified if the outliers exceed 11% of the total 

measurements; otherwise, the values are considered part of the 

normal distribution variance.  

 

 

Figure 16. Control chart for experiment T2 for D2  

damage  detection:  80/146  (54.8%)  outliers  for  

the  group  D2,  confirmed  using  the  validation  

group as a part of the undamaged data.   

Figure 17. Control chart for experiment T3 for D3  

damage detection: 146/146 (100%) outliers for  

the  group  D3,  confirmed  using  the  validation  

group as a part of the undamaged data.   

Figure 18. Control chart for experiment T2 for 
D2  damage  detection  from  sensor  6  (S6):  
99/146  (67.8%) outliers for the group D2-S6, 
confirmed  using   the   validation   group   as   a   part   of   
the  undamaged data.   

Figure 19. Control chart for experiment T2 for 
D2  damage  detection  from  Sensor  5  (S5):  
25/146  (17.1%) outliers for the group D2-S5, 
confirmed  using   the   validation   group   as   a   part   of   
the  undamaged data.   
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The   methodology   was   experimentally   validated   using   a 

reinforced concrete joist in four tests. The first test evaluated 

the system's resilience to false positives, showing no anomalies 

when  the  sensor  configuration  was  slightly  adjusted.  The 

following  tests  focused  on  damage  detection,  with  outlier 

percentages ranging from 43% to 100%, demonstrating strong 

accuracy in detecting damage and a clear correlation between 

outlier frequency and damage intensity. The final test, which 

analyzed data from individual sensors, indicated the potential 

for damage localization using single-sensor data, as sensors 

located near the damage exhibited a higher number of outliers.   

In  summary,  the  proposed  methodology  exhibited  robust 

performance  in  detecting  various  levels  of  damage  under 

controlled conditions. However, its effectiveness relies on a 

comprehensive baseline dataset and an adequate  number of 

sensors  for  multiscale  damage  detection.  Future  work  will  

 

 

explore  alternative  similarity  metrics  and  machine  learning 

techniques  to  address  environmental  variability  and  further 

improve damage detection capabilities.   
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