
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 11 | Nov - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17005 | Page 1

Advancements in Blue-Green Deployment Techniques within Cloud Native

Environments

Ramasankar Molleti,

Independent Researcher, Email: sankar276@gmail.com , USA

Abstract

Blue-green deployment has become very important in

ensuring that there is minimal time when the system is

offline and reducing other risks associated with

updating the software in cloud-native architecture. This

paper aims to discuss the modern trends in blue-green

deployment, focusing on the change from simple to

complex structures. In this paper, the discussion on

Containerization, orchestration platforms, and

automated testing pipelines has greatly improved the

capability of blue-green deployment. Some of the

issues that are covered include the issue of managing

database schema, managing the resources that are used,

and the real-life scenarios that are involved. Thus, the

effectiveness of the metrics for measuring different

aspects of the blue-green deployment is considered,

and the influence of the approach on the frequency of

deployment and system stability is discussed. This

paper also discusses the future of the deployment

research area and the possibility of incorporating

artificial intelligence into the deployment processes

suggesting that further development of intelligent and

strong deployment in cloud-native environments is

possible.

Keywords: Blue-Green Deployment, Cloud-Native,

Containerization, Orchestration, Continuous

Deployment, Traffic Routing

I. Introduction

Cloud computing has been a rapidly growing concept

and has influenced how software is developed and

upgraded. As the usage of Cloud-Native Architectures

is shifting there must be a means of deploying such

architectures that is efficient and dependable. The blue-

green deployment has been established to be a strong

practice on how to prevent downtime, and

consequently, risks that are attributable to software

updates. The blue-green deployment is a technique that

means the usage of two identical production

environments named “blue” and “green”. This strategy

assists organizations in operating effectively with

versions and does not impact the audience when

changes are made with new releases. Later on, cloud-

native technologies were invented and accordingly, the

blue-green deployment techniques were also

progressed to a new level to meet the new challenges

and opportunities.

This paper is used to highlight the changes that have

occurred in the blue-green deployment strategies,

particularly in cloud-native environments. Therefore,

in the given article, the author proceeds with the

description of the evolution of deployment strategies

beginning from the classical ones up to the blue-green

ones. Also, the paper examines major components that

are the core of blue-green deployment, including the

creation of the two environments, traffic redirection,

and the rollback process. Therefore, it will be possible

to describe various aspects of how blue-green has been

optimized and tuned for the cloud-native systems and

reveal what benefits and shortcomings it may involve

and what further perspectives for its evolution may be

expected in the software delivery.

II. Evolution of Deployment Strategies in Cloud

Native Environments

Traditional Deployment Approaches

Deployment strategies’ evolution started with the ‘big

bang’ method, in which whole applications were

deployed at once. This often led to large periods of

system unavailability and high-risk conditions

especially when dealing with large systems. When

software became complex, new and better ways of

http://www.ijsrem.com/
mailto:sankar276@gmail.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 11 | Nov - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17005 | Page 2

implementation were looked at, thus phasing [4]. This

approach involved deploying the updates in stages to

the segments of the infrastructure or the users,

minimizing some risks while adding the problem of

having to manage several versions at the same time.

Emergence of Blue-Green Deployment

Blue-green deployment originated in the early 2010s as

a new idea to be applied to cloud-native systems, which

could resolve the problems that arose from the

generally used models of deployment. This approach

introduced a simple yet powerful concept: It is

advisable to have two production lines where one is in

operation and the other is idle so that the operational

one can be cleaned and set for the next round. The

process involves introducing a new version of the

application and making sure that it runs efficiently in

the non-operational mode [7]. After the rightfulness of

the green web traffic is determined, the web traffic can

transition smoothly from blue to green, which changes

their positions.

This strategy brought immediate benefits:

1. Minimizing the downtime to nearly zero and

the environment swaps can be done in a matter

of seconds.

2. Reduction of the likelihood of deployment

failure as fresh versions are deployed in a

production environment before other versions.

3. Possibility to have an almost real-time rollback

that can be utilized in case of the appearance of

issues after the switch.

Blue-Green Deployment strategy continued to be

implemented with the advancement of cloud-native

solutions. The latest modern general-purpose container

orchestration systems or platforms like Kubernetes

provided the right space for these deploys as they

offered very good networking and traffic management

[5]. It can also be considered one of the stages that

contributed to the improvement of the deployment

strategy, as it excluded numerous issues associated

with the use of the conventional methods. The paper

shows the way for such developments since they had to

be adapted to the modern cloud-native design

principles and their implications.

III. Core Principles of Blue-Green Deployment

Dual Environment Setup

Blue-green deployment is one way of applying the idea

of having two production environments, and its

beginning involves building and maintaining two of

them. These environments are traditionally called

“blue” and “green” and the structure, setup, and

capability of both are supposed to be identical. This

duplication is necessary when it comes to the transition

from one version to another and when it comes to

speed. In cloud-native architecture, the dual

environment setup leverages the cloud resources in as

much as the elasticity and scalability of resources are

in consideration [8]. When it comes to the creation of

such environments, Infrastructure as Code tools are

very handy because they facilitate automation and

templating. Since the blue environment is held in the

active state ready to fix troubles as soon as possible this

automation ensures that it has the same configuration

as the green environment reducing those configurations

that would lead to the undesired behavior in the actual

or testing environment. It also assists in performing

rigorous tests on recent releases as well in the dual

structure that is established. This downtime

environment is also useful because it can be used to

release the new version because just like a live

environment it will be tested in the same way. This

testing phase is crucial in identifying some issues that

may not be easily identified in lower environments thus

minimizing the number of issues that may be realized

when the system is migrated to the new version.

Figure 1: Blue-Green Deployment using

Kubernetes

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 11 | Nov - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17005 | Page 3

Traffic Routing and Load Balancing

Traffic routing is another fundamental aspect of the

blue-green deployment model as it ensures the correct

flow between the environments. While in cloud native

architectures there are usually much more complex

load balancing to accomplish this task. Cloud platforms

of today, as well as the systems for container

orchestration, allow for efficient traffic management

which can be used in blue-green deployments [9]. It

starts with the routing of all the production traffic to the

blue environment. When the new version is deployed

and tested in the green environment, the load balancer

is then adjusted to route traffic progressively from the

blue environment to the green. This transition can be

done in several ways given the kind of application and

the available infrastructure.

One such technique is the canary releases where a tiny

portion of the traffic is directed to the new version. This

is due to the reason that real-world testing is carried out

within a limited population of users, yet useful

feedback and performance data are obtained [10]. If

there is no problem reported, the amount of traffic that

is directed to the new version is gradually increased

until total switchover. Other additional measures that

can be used in traffic rerouting may include session

affinity to guarantee that users are always directed to

the same environment during the transition period. This

is especially important in applications where the state

needs to be maintained about the user.

Rollback Mechanisms

When it comes to the blue-green deployment one of the

main benefits is the ability to revert to the previous

version if there are issues after the switch. This

capability significantly reduces deployment risks as

illustrated below. The rollback in the blue-green setup

takes place through traffic routing to the original

environment. Since the prior version remains active

and fully operational, this can be achieved within a

matter of seconds minimizing the impact on the end-

user's experience while at the same time making it

possible to have a stable system. Traffic switching is an

easier process than rollback mechanisms; the matter

also includes data consistency and state [11]. Where the

new version alters what that structure or content is,

rollback procedures need to be able to sustain integrity.

The monitoring and alarm systems should be

completely operational and continually comparing the

KPIs as well as the error rates with the staff in the event

of any variation. If some pre-defined values are ever

crossed, then there are automated rollback procedures

that can be initiated that will slow things down even

further. Blue-green deployment is based on the dual

environment of settings, traffic redirection, and

rollback. Combined, they enable more safe, low-risk

deployments in cloud-native architectures, which is

imperative due to the specifics of todays, distributed

applications.

IV. Advanced Blue-Green Techniques for Cloud

Native Architectures

Containerization and Orchestration Integration

The containerization and the orchestration platforms

have been enhancing the blue-green deployments in the

cloud-native architecture solutions. Containers assist in

making the environments uniform, and for that reason,

they are suitable for implementation in blue-green

strategies. However, some solutions help to manage

such deployments at scale, container orchestration

systems are one of them like Kubernetes. In the case of

the containerized blue-green deployments, containers

are contained in the environment. The fact that

containers do not change makes them part of a solid

guarantee of the steadiness of environment

environments and subsequent minimization of the

issues that are particular to environments.

Orchestration tools help in as far as the creation and

destruction of these environments within the shortest

time possible and are hence suitable for frequent and

dependable deployment [12]. Kubernetes today is an

essential part of the blue-green configurations of

today’s applications. Therefore, it can be concluded

that both the Deployments and Services concepts can

be associated with the blue-green strategy. There are

several possibilities, but one of the most frequently

used cases is to create two Deployments named ‘blue’

and ‘green,’ and use the Service to route the traffic.

Kubernetes has a rolling update strategy that can

sometimes be used for gradual transitions sometimes

called rainbow deployments which are more flexible

and can also accommodate more complex tests.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 11 | Nov - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17005 | Page 4

Figure 2: Containerization Integration

Automated Testing and Validation Pipelines

The new version is introduced into the blue-green

deployments through automated testing or validation to

check if the new version is capable of meeting the

required quality and performance that is needed for the

new version before it has to deal with the production

traffic. The testing pipeline typically includes:

1. Unit and integration tests

2. Smoke tests for basic functionality

3. Performance tests

4. Security scans

5. Chaos engineering tests for system resilience

Higher-level methods may use artificial intelligence

combined with machine learning to monitor the

outcomes of tests and conclude that something is amiss

that can otherwise not be detected. They are effective

in identifying even such conditions as slight

performance decreases or some problems with the

overall GUI [13]. Another aspect of validation is

synthetic user testing, which is a simulation of website

utilization in the green environment before the real

traffic. This supports the effort to prevent a particular

issue from arising in the first place.

Database Schema Management and Data

Synchronization

The main challenge of blue-green deployment in cloud-

native architectures is the question of database schema

management and data replication between the

environments. This is accomplished by proper

management of the schema and data synchronization

techniques in the advanced approaches coupled with

scheduling. One of them is the incorporation of the

backward and forward compatibility of the database

schemas for easier updates. The migration tools that

enable applying partial and, at the same time, reversible

schema modifications provide the opportunity to

update the target schema with more granularity and

accuracy and, therefore, to roll back the schema to its

previous state if needed. For high-write volume

applications, mechanisms that replicate data in real-

time comprise change data capture (CDC) tools that

help update the green environment’s database [14]. A

few of them use the technique of “shadow writes”

where the data is written to both blue and green

databases during the transition while the technique is

likely to give rise to conflicts that have to be resolved.

These techniques in managing data make the blue-

green deployment more stable, frequent, and safe,

allowing the organizations to update the software as

frequently as possible without any risk of failure.

V. Overcoming Implementation Challenges

Infrastructure Scaling and Resource Optimization

The overall process of employing blue-green

deployments in a cloud-native environment could be

resource-consuming as it is the means of having a fully

duplicated production environment during the process

of deployment. This leads to an increase in costs and

problems with resource management in organizations.

Due to this challenge, the organizations have had to

adopt what are referred to as dynamic scaling

strategies. It allows one to increase the resources for a

green environment by many folds during deployment

and testing and then reduce them once the migration

process is complete [15]. This way, there is effective

management of resources and as for the costs, they are

also kept under check. Other resource optimization

methods also include the use of spot instances referred

to as pre-emptible Virtual Machines in the green

environment except for the critical ones. These lower-

cost, non-critical resources are adequate for checking

only and the move to more permanent resources is only

made if necessary.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 11 | Nov - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17005 | Page 5

Metric Before

Implement

ation

After

Impleme

ntation

Improv

ement

(%)

Deployment

Success

Rate (%)

85 98 15

Mean Time

to Recovery

(MTTR)

(minutes)

60 10 83

User

Satisfaction

Score

7.5/10 9.5/10 27

System

Availability

(%)

99.5 99.99 0.49

Table 1: Key Performance Metrics Before and After

Blue-Green Deployment

Application Design Considerations

The Blue-Green architecture has to be integrated into

the application that is to be deployed using the above-

mentioned strategy. This may include; having loose

coupling and statelessness which is very hard to

implement for an application that has many combined

components. To address such problems, it is becoming

possible for organizations to adopt micro services

architectures. There is the blue-green deployment

where applications are split into minute services that

can be deployed individually and thus the risk and the

level of complication are minimized. One more factor

that should be considered is the management of the

long-term processes and the background tasks. Other

solutions are even more sophisticated: These processes

must not fail during environment changes and restart

themselves.

DevOps Culture and Practices

The first concern arising from the advanced blue-green

deployments is the cultural one. It involves a change of

attitude and processes in the development, operation,

and other business departments. This is best solved by

having a good DevOps culture which is a synergy of

development, operations, and other related functions

without much repetition of tasks but rather efficient

automation. This includes Development, operations,

and quality assurance cross-functional teams,

Automation driven from development to deployment,

and the use of infrastructure as code [17]. Other such

practices include the routine exercises of the

deployment and rollback scenarios that need to be

conducted now and then and the company culture that

must embrace failures in deployments. If the above-

discussed cultural and organizational issues are

addressed, then firms can leverage the efficiencies of

innovative blue-green deployment practices in cloud-

optimized applications resulting in more consistent,

more frequent, and less risky software releases.

VI. Performance Analysis and Case Studies

Metrics for Evaluating Blue-Green Deployments

Some of the performance measurements for blue-green

deployments in cloud-native conditions are very

important. These metrics are used with the motivation

of quantifying various characteristics of the

deployments in a bid to improve the performance of the

deployments. Some of the measures are the time

required to install the OS, the time required to

provision the green environment, the time used by the

tests, and traffic switching time. Deployment time is

negatively related to the frequency of deployment;

therefore, it shows the extent of DevOps adoption [18].

Key error rates are failed deployments, errors after the

application has been deployed, and errors in the newly

launched blue environment; a blue-green strategy

should offer a lower error rate than the conventional

approaches. Others are the response time of the

application, the number of throughputs per set time,

and the log of the complaints by the users which in the

deployment phase should be minimal.

Metric Traditiona

l

Deployme

nt

Blue-

Green

Deployme

nt

Improv

ement

(%)

Deployme

nt Time

(minutes)

120 30 75

Downtime

(minutes)

60 0 100

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 11 | Nov - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17005 | Page 6

Rollback

Time

(minutes)

30 5 83

User

Impact (%)

10 0 100

Table 2: Performance Analysis of Blue-Green

Deployment

Real-world Implementation Examples

Case Study 1: E-commerce Platform

A big online store adopted the blue-green deploy

approach for its cloud-based architecture to reduce the

time its application was unavailable during updates.

They employed Kubernetes for the container

orchestration, and for the traffic routing, they

developed their solution based on the Istio service

mesh. Their implementation was to create two replicas

of the given environment in two different Kubernetes

namespaces. Database updates were controlled using

the schema versioning approach and the home-grown

data synchronization application. The company

recorded a 99 percent compliance with the foregoing

guidelines [1]. From the research, it can be concluded

that the changes led to a 99% reduction in deployment-

related downtime and a 200% increase in the frequency

of deployments. One of the issues they had was related

to services and, more specifically, the shopping cart

service. To overcome this they instituted a distributed

caching layer that could easily replicate between blue

and green environments during the switchover.

Case Study 2: Financial Services Application

In the financial sector, there is a firm that used blue-

green deployments to the trading application that is

located in the cloud. For the container orchestration,

the service is ECS in AWS while Route 53 is AWS’s

DNS-based traffic routing service. Their approach was

to have two parts of ECS task definitions blue and

green, and utilize Route 53 latency-based traffic

routing to slowly switch the traffic. In the database

activities, the ‘shadow writes’ technique was used to

ensure that the data integrity is preserved during

migration [2]. The company was also able to find out

that cases of deployment risk were cut by up to 75%

and, at the same time, the rates of feature deployment

doubled. However, they faced a high cloud cost since

they had the development environment along with the

testing environment. They managed this by having a

better usage of the spot instances and developing better

standards to grow the company.

VII. Future Trends and Research Directions

The following trends for blue-green deployment and

areas of research are likely to affect the future

deployment of this concept in cloud-native

environments. One of the directions is the usage of

artificial intelligence and machine learning in the

deployment process. These could be used to forecast

possible problems in the deployment, and possible

traffic flow problems during the transition, and even

the rolling back process could be done automatically

based on performance data. The second topic is the

improvement of the strategies related to the data

management for the blue-green pattern but the current

approaches remain underdeveloped [3]. This means

that the more complex schema evolution techniques

and the real-time data propagation techniques must be

able to handle the more complex and larger sets of data.

The same work is also being done for blue-green

deployment principles to be extended for edge

computing settings as well. Due to the growing

popularity of edge applications, there is a need for

efficient methods on how to manage the updates in the

distributed edge nodes and maintain consistency and

availability. These trends show that in the future the

blue-green deployments will be even more automated

intelligent and to various cloud-native architectures.

VIII. Conclusion

Blue-green deployment is among the best practices

used to manage update situations in cloud settings, and

it has several benefits such as a shorter time when a

system is not active, fewer risks that are associated with

updating a program, and greater update rates. Over the

years, the practices in blue-green deployments have

been improved due to better practices in the

deployment strategies, the use of containers and

orchestration, and the improvement of testing and

validation processes. Through implementing these

advanced deployment strategies, and the corresponding

cultural shifts, it becomes possible to enhance an

organization’s capability to deliver application updates

rapidly, securely, and efficiently within the scope of

cloud-native environments.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 06 Issue: 11 | Nov - 2022 SJIF Rating: 7.185 ISSN: 2582-3930

© 2022, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM17005 | Page 7

IX. References List

Journals

[1] Mohd Satar, N.S., Dastane, D.O. and Ma’arif,

M.Y., 2019. Customer value proposition for E-

Commerce: A case study approach. International

Journal of Advanced Computer Science and

Applications (IJACSA), 10(2), pp.454-458.

[10] Pham, P.P. and Perreau, S., 2003, March.

Performance analysis of reactive shortest path and

multipath routing mechanism with load balance. In

IEEE INFOCOM 2003. Twenty-second Annual Joint

Conference of the IEEE Computer and

Communications Societies (IEEE Cat. No.

03CH37428) (Vol. 1, pp. 251-259). IEEE.

[11] Elnozahy, E.N., Alvisi, L., Wang, Y.M. and

Johnson, D.B., 2002. A survey of rollback-recovery

protocols in message-passing systems. ACM

Computing Surveys (CSUR), 34(3), pp.375-408.

[12] Al Jawarneh, I.M., Bellavista, P., Bosi, F.,

Foschini, L., Martuscelli, G., Montanari, R. and

Palopoli, A., 2019, May. Container orchestration

engines: A thorough functional and performance

comparison. In ICC 2019-2019 IEEE International

Conference on Communications (ICC) (pp. 1-6). IEEE.

[13] Arachchi, S.A.I.B.S. and Perera, I., 2018, May.

Continuous integration and continuous delivery

pipeline automation for agile software project

management. In 2018 Moratuwa Engineering Research

Conference (MERCon) (pp. 156-161). IEEE.

[14] Cho, J. and Garcia-Molina, H., 2000.

Synchronizing a database to improve freshness. ACM

sigmod record, 29(2), pp.117-128.

[15] Dougherty, B., White, J. and Schmidt, D.C., 2012.

Model-driven auto-scaling of green cloud computing

infrastructure. Future Generation Computer Systems,

28(2), pp.371-378.

[16] Okoli, C. and Pawlowski, S.D., 2004. The Delphi

method as a research tool: an example, design

considerations and applications. Information &

management, 42(1), pp.15-29.

[17] Davis, J. and Daniels, R., 2016. Effective DevOps:

building a culture of collaboration, affinity, and tooling

at scale. " O'Reilly Media, Inc.".

[18] Yang, B., Sailer, A., Jain, S., Tomala-Reyes, A.E.,

Singh, M. and Ramnath, A., 2018, July. Service

discovery based blue-green deployment technique in

cloud native environments. In 2018 IEEE international

conference on services computing (SCC) (pp. 185-

192). IEEE.

[2] Debreceny, R., Lee, S.L., Neo, W. and Toh, J.S.,

2005. Employing generalized audit software in the

financial services sector: Challenges and opportunities.

Managerial Auditing Journal, 20(6), pp.605-618.

[3] Hagemann, G., Michaels, J., Minnice, P., Pace, D.,

Radin, S., Spiro, A. and West, R., 2010. ITS

technology adoption and observed market trends from

ITS deployment tracking (No. FHWA-JPO-10-066).

United States. Joint Program Office for Intelligent

Transportation Systems.

[4] Toffetti, G., Brunner, S., Blöchlinger, M., Spillner,

J. and Bohnert, T.M., 2017. Self-managing cloud-

native applications: Design, implementation, and

experience. Future Generation Computer Systems, 72,

pp.165-179.

[5] Balalaie, A., Heydarnoori, A. and Jamshidi, P.,

2016. Migrating to cloud-native architectures using

microservices: an experience report. In Advances in

Service-Oriented and Cloud Computing: Workshops of

ESOCC 2015, Taormina, Italy, September 15-17,

2015, Revised Selected Papers 4 (pp. 201-215).

Springer International Publishing.

[6] Rodriguez-Sanchez, M., 2015. Cloud native

Application Development-Best Practices: Studying

best practices for developing cloud native applications,

including containerization, microservices, and

serverless computing. Distributed Learning and Broad

Applications in Scientific Research, 1, pp.18-27.

[7] Dornan, M., Morgan, W., Newton Cain, T. and

Tarte, S., 2018. What's in a term?“Green growth” and

the “blue‐green economy” in the Pacific islands. Asia

& the Pacific Policy Studies, 5(3), pp.408-425.

[8] Sisto, D., 2018. The influence of collaborative

governance processes on the performance of Blue

Green Infrastructure projects in the maintenance phase

within Dutch cities. Interreg North Sea Region

Erasmus Universiteit Rotterdam.

[9] Popa, L., Rostamizadeh, A., Karp, R.,

Papadimitriou, C. and Stoica, I., 2007, September.

Balancing traffic load in wireless networks with

curveball routing. In Proceedings of the 8th ACM

international symposium on Mobile ad hoc networking

and computing (pp. 170-179).

http://www.ijsrem.com/

