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Abstract- An electronic nose (E-nose) system's ability to 

recognize multivariate responses from gas sensors in a 

variety of applications necessitates gas recognition. 

Principal component analysis (PCA) and other traditional 

gas recognition methods have been widely used in E-nose 

systems for decades. ANNs have transformed the field of E-

nose, particularly spiking neural networks (SNNs), 

significantly in recent years. In this paper, we compare and 

contrast recent E-nose gas recognition techniques in terms 

of algorithms and hardware implementations. Each 

classical gas recognition method has a relatively fixed 

framework and few parameters, making it easy to design. It 

works well with few gas samples but poorly with multiple 

gas recognition when noise is present. 
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1. INTRODUCTION 

 

The human nose is a helpful scientific device for deciding 

the nature of food before utilization and distinguishing 

possibly unsafe gases in the climate in regular day-to-day 

existence. Tactile boards, which are gatherings of prepared 

or undeveloped people who finish assessment polls in 

view of the scents of the items, are utilized in numerous 

enterprises to survey the nature of beverages, food, 

aromas, beauty care products, and unstable synthetic 

items. As indicated by Bush did et al., the human nose has 

roughly 400 aroma receptors and can recognize no less 

than one trillion scents. The human nose is able to rate 

smells, but it cannot detect toxic gases, and individual 

judgments may be biased. Additionally, the human nose 

has limits for distinguishing gases. The human nose cannot 

be used for any kind of smell-related classification or 

discrimination because of these limitations. A gas sensor 

array known as an electronic nose (e-nose) responds in a 

fingerprint fashion to particular volatiles. Pattern 

recognition algorithms, such as artificial neural networks 

(ANN), to differentiate between objects, can then use this 

fingerprint response. An electronic nose's detecting, 

deciphering, and segregating process is a reenactment of 

human olfaction. 

 

More often than not, unpredictable atoms respond with 

the gas sensor's detecting materials to change electrical 

properties like conductivity for eternity. Design 

acknowledgment calculations then, at that point, recognize 

and describe these progressions with the end goal of 

segregation or arrangement. Compared to conventional 

gas analytical equipment like GC–MS, HPLC, and FT-IR 

spectrometry, e-nose requires less time and is less 

expensive. E-noses are less one-sided than tangible boards 

and give more reliable estimations between gadgets. As a 

result, e-noses can be used to monitor a variety of smell-

related handling processes, such as the maturation of tea 

and cocoa beans, the cooking of espresso and cocoa beans, 

and the duration of chocolate conching. E-noses can also 

be used to identify smells associated with food, such as the 

freshness of meat, vinegar varieties, and meat spoilage. 
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2. RELATED WORK 

 
K et al. The biological olfaction-based E-nose system, 

which was first proposed in 1982, has been in 

development for nearly 40 years. According to reports in 

[3–5], E-nose has achieved remarkable success in a variety 

of applications, including public health [6–8], food safety 

[9–15], environment monitoring [16–17], agriculture [18], 

industry [19], air quality testing [20–22], the military [23], 

and so on. 

 

Gardner, J.W. et al. is an important historical milestone for 

his 1994 E-Nose. [24], which he believes modularized the 

E-Nose system into two separate models for him: the signal 

conditioning circuit and the sensor. Rated. Tan KT and 

Goodman R. Seven years later, M. presented a fine-grained 

E-nose with a gas identification circuit, readout interface 

circuit, and sensor array [25]. His E-Nose method in [25] 

was more powerful than the work in [24] and was widely 

adopted shortly thereafter.  

 

Despite the fact that the unrivaled E-nose structure has 

been proposed, fulfilling the market's prerequisites for 

convenience and ongoing detection is yet unfit. As 

reviewed in [24], E-Nose has evolved from being large, 

prohibitively costly, and power supply dependent to being 

small, minimally costly, and power dependent. Did. 

Analysts normally focus on the three fundamental parts of 

these E-nose frameworks while planning them: gas 

acknowledgment circuits, readout interface circuits, and 

sensor clusters. The sensor array combines a number of 

distinct gas sensors with a microfabrication process 

(MEMS). Each sensor in the array responds to various 

odors in a different way as a receptor. The sensor signal is 

converted into an electrical signal by the interface readout 

circuit [26].As discussed in [28]–[30], an E-nose chip 

typically contains both a CMOS (complementary metal 

oxide semiconductor) readout interface circuit and a 

MEMS sensor array [27]. The gas detection circuit 

processes the signal received from the interface readout 

circuit and then uses various gas detection methods to 

produce the final detection result. 

In the 2000s, KNN, SVM, DT, NBM, PCA, and LDA were the 

main areas of research. Albeit every traditional gas 

acknowledgment technique has a moderately fixed system 

and few boundaries, simplifying it to plan and broadly 

utilized, it is trying for them to distinguish numerous 

scents within the sight of clamor precisely. In addition, 

they are frequently carried out by large microchips (such 

as MPU [30]-[33]), which require a significant amount of 

power to function appropriately in a compact E-nose 

framework. 

 

It has been exhibited that gas acknowledgment circuits in 

view of counterfeit brain organizations (ANNs) are more 

successful thanks to their versatile designs [34, 36]. 

However, a significant amount of data from gas sensors is 

needed to train an ANN. In addition, the versatile E-nose 

framework cannot carry out an ANNs because of their 

intricacy. When designing ANN-based gas confirmation 

calculations that differ from standard gas confirmation 

calculations, Application Explicit Adjustment Circuits 

(ASICs) or Field Programmable Gate Exhibits (FPGAs) 

([38]-[41]) are often used. 

 

Gardner, J.W. et al. [24] As far as we know, the first 

instrumental version of the E-Nose framework was 

provided in 1994. It consisted of direct sensor readings, 

signal preprocessing circuitry, and gas detection circuitry 

utilizing back propagated brain tissue. Five years later, B.C. 

Muoz et al. [78] proposed a revised e-nose model 

framework. This system, similar to [24], consisted of a PC 

acting as a gas detection circuit, a backup board with a 22-

bit ADC and chip, and a 32-channel touch panel display. 

Unfortunately, pre-2000 chip manufacturing was a bit 

outdated, so the E-Nose was a bulky device. 

 

K.-T. Tang et al. presented an electronic olfaction 

framework on a chip in 2001[25]. With Euclidean 

distances, the framework joined gas acknowledgment and 

point of interaction readout circuits. With recording 

sensor information highlights, distinguishing eight unique 

odors was capable. Poor data connections between circuits 

and the lack of an energy-efficient architecture resulted in 

slow response times and too high power consumption for 

the chips. Several studies have focused on gas 

concentration estimation in addition to gas identification 

circuits. C. Hagleitner et al. developed his three sensors 

and chips for micro chemical sensor systems to measure 

his two unique concentrations of ethanol and toluene. This 

chip was created by combining complex and basic circuits. 
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Unfortunately, these efforts failed to produce a gas sensing 

circuit. Yes. Covington et al. presented a new chip for gas 

sensor systems in his 2003 [80]. In contrast to previous 

work in [79], this study produced an array with his 70 

sensors and integrated circuits for driving, amplification, 

and baseline rejection. It was delicate to ethanol at 

0.00012 percent/ppm and to toluene at 0.00644 

percent/ppm, separately. 

 

Before 2006, there were no reports of fully integrated E-

nose chips with gas recognition, readout interface, and 

sensor arrays. Starting around 2006, specialists have been 

searching for a high-uprightness, energy-proficient 

arrangement with less power misfortune and longer 

battery duration. In 2006 Tang, K.- T et al. [81] created a 

polymer sensor chip with a diameter of 1.5 millimeters 

that could differentiate between eight distinct odors. 

Instead of the advanced partner, a simple memory 

introduced on the chip was picked. Thusly, simple to 

computerized (A/D) and advanced to simple (D/A) 

converters, which consume the most power, were tried not 

to by store information analogy. In reserve and full burden 

modes, the chip utilized 7.6 mW and 1.3 mW of force, 

separately. In 2011, they developed a chip with eight 

sensors and lower power consumption to completely 

classify three smells [31]. With a stockpile voltage of 1.8V, 

the gas acknowledgment circuit created in a 0.18 m cycle 

used 2.81 mW of power. When compared to their previous 

work in [81], this one made significant progress in terms 

of power savings. 

 

The study of Tang, K.-T. et al. Described a fully integrated 

E-nose system-on-chip (SoC). [32], 2014. In contrast to 

[82] shown in Fig. 2, this fully integrated device had eight 

on-chip sensors, a gas identification circuit and a readout 

interface circuit. Two cores were used in the gas detection 

circuit. 1) CRBM focus with stacked probabilistic thinking 

networks to reduce data perspective. (2) RISC's status as 

an ANN classifier to provide confirmation results. At 0.5V, 

the chip utilized 1.27 mW and gave a fast method for 

diagnosing ventilator-related pneumonia with 95.73 

percent precision utilizing a 0.18 mm process. 

 

The device required 0.22 mW more power than its 

predecessor, which consumed 1.05 mW, but the overall 

system is integrated and higher thanks to two processor 

cores and a series of buses for high-speed data transfer. It 

has computing power. In addition, the E-nose chip's on-

chip learning function and standard interface protocol 

make it easy to connect additional devices. In 2016 [33], 

the developer released another of his E-Nose SoCs with 92° 

curacy to continue screening for obstructive pulmonary 

disease. It used a structure similar to [32]. 

 

K.-T. Tan et al. In 2018, we published a follow-up paper 

[30] on an e-nose SoC with on-chip learning. In contrast to 

a previous study that used eight sensors [32], the device 

features his 36 on-chip sensors, including temperature and 

humidity sensors that collect natural data. The device was 

made using 180nm CMOS technology and 2.6mW at 1V. 

Additionally, a partial revision of the modified PCA was 

used as temperature and humidity compensation 

calculations around CRBM+KNN for grouping. They 

collected data from 70 gas sensors, including methanol and 

ethanol, to evaluate the chip's performance. In the end, we 

achieved an order accuracy of 93%. 

 

Our research revealed that the classical gas recognition 

algorithms in E-nose achieve high accuracy for small 

samples with limited gas sensors [62, 67, 69, 71, 72]. This 

is due, in part, to their general nature. The majority of 

traditional approaches are based on SVM and other non-

linear techniques. When the example size is small, it is not 

hard to find the non-straight connection between elements 

and information using SVM. Nevertheless, the customary 

calculations are not generally the most incredible in 

certain circumstances. On the same dataset, studies in [34, 

35] demonstrate that ANNs-based gas recognition 

approaches are more accurate than traditional methods 

like SVM. 

 

Our examination uncovers that two primary algorithmic 

constraints forestalled the vast majority of the proposed 

gas acknowledgment calculations from being carried out 

on chips: equipment agreeableness and the capacity to 

diminish commotion. The implicit elements of numerous 

customary gas acknowledgment calculations require 

lattice duplications and a lot of sensor information, making 

their execution in low-power chips testing. KNN is used in 

many e-noses because it is more reliable than other 

calculations and compatible with devices. Another 

drawback is the lack of noise protection. Sensor data may 
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contain errors due to the general environmental tolerance 

of gas sensors [27]. The E-Nose system and its sensors 

work effectively in a stable laboratory. However, in 

practice, the representation of equivalent E-Nose 

frameworks with equivalent sensors varies significantly. 

Therefore, E-Nose systems require low-noise, hardware-

friendly gas detection algorithms that can detect a wider 

variety of gases. 

 

A back propagation neural network (BPNN), a 

fundamental ANN with a forward structure, transforms a 

set of input vectors into output vectors. An initiation 

capability influences the result of the information vector 

and the underlying load to be shipped off the neurons of 

the ensuing layer until it arrives at the result neurons. 

From that point forward, the genuine worth and the result 

esteem are handled by the misfortune capability, and the 

outcome is utilized by the chain rule backward to refresh 

the heaviness of every neuron in each layer. Iterations are 

used to discover this network's local optimal solution for 

classification or regression [83]. YH et al. [34] in 2009, he 

created his PCA + BPNN classifier that could predict green 

tea quality grades with an accuracy rate of 88%. Other 

applications of BPNN for gas detection have been 

published in recent years, such as 96.4°Curacy for 

identifying Aspergillus species and abundance in 2019 and 

94°Curacy for identifying freshness in chicken [35]. 

Convolutional cerebrum association (CNN) is a prominent 

significant getting the hang of designing pushed by the 

typical visual wisdom instrument of the living creatures 

[94]. As indicated by our insight, Pai Peng et al.'s work was 

the first to use CNN to recognize gases. [84] in 2018. They 

acquainted a CNN with up with 38 layers to test 4 

unmistakable scents with 95.2% precision in an extent of 

core interests. Xiao Fang Holder et al. introduced another 

work [85] in 2019 about a novel hybrid method that used 

convolutional and recurrent neural networks (RNNs) to 

accurately identify four distinct gases. In the year 2020, 

Wang and coworkers. In the convolutional and pooling 

layers of the proposed optimized CNN, a unique striped 1D 

kernel was utilized [86]. With an accuracy of 87.56 

percent, the work classified a variety of Chinese herbal 

medicines. D. Mama et al. A deep conventional neural 

network with 15 layers that could recognize 10 distinct 

volatile organic compounds (VOCs) using a sensor array 

response map was proposed in 2021 [87]. 

 

T.J. Koickal et al., The mixed-signal SNN neuromorphic 

olfaction chip, which includes a gas recognition circuit, an 

interface circuit, and an on-chip sensor array, was first 

proposed in 2006, [123]. A two-layer SNN with 12 neurons 

and 81 synapses was created using analog circuits. The 

global STDP and local lateral inhibition learning rules of 

the output layer were used to train the spike weights of 

synapses. Beyeler et al. [44] proposed another gear 

prototype in 2010. In contrast to [123], the neuromorphic 

VLSI chip had 2048 neurons and 6144 synapses digitally 

constructed. The works in [44] and [123] laid a solid 

foundation for subsequent research as early SNN olfaction 

chips. The accuracy and power consumption of these two 

works were not, however reported, and no additional 

system design was published. 

 

In 2010, H.S. Abdel-Aty-Zohdy and colleagues created an 

olfactory neuromorphic SNN chip for gas detection with 

255 neurons and 32,000 synapses [124]. This allows on-

chip learning to detect gases in noise. However, the sensor 

cluster and SRAM memory are not integrated into the 

device and neither test results nor power consumption are 

considered. 

 

According to Tan, studies by K.T. et al. have shown that 

since 2011, wearable e-nose devices with spike sparsity 

have been suitable for energy-efficient SNN chips. 49]. This 

work produced his SNN chip for gas identification. He 

detects gases by comparing them to reference gases in a 2D 

spatiotemporal feature library and converting the sensor 

array data into a 2D peak sequence. The device was 

divided into four independent groups of SnO2 gas sensors 

and two sections of his SNN circuit to demonstrate odor 

detection. The sample I ordered was tested with three 

gases, the process was 0.35 mm, 6.6 mW, the voltage range 

was 0.15 V to 2.7 V, and the accurate detection rate was 

94.9 percent. 

 

Hsieh proposed better exploration on SNN olfaction 

circuits in 2012. Additionally, Tang K.T. described an 

energy-efficient SNN chip based on the OB model in [125]. 

In comparison to [49], sub-threshold oscillation and onset-

latency representation further optimized chip area and 

power consumption. With no sensors cluster, this chip was 

made with interaction of 0.18 nm and consumed 3.6 watts. 
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Commercial e-nose sensors (Cyranose329) sampled three 

different kinds of gas data, with a correct detection rate of 

87.59 percent. 

 

Hsieh, H.Y., et al. in 2017 [126] proposed a probabilistic 

spike brain organization (PSNN) on-chip learning simple 

circuit with a gas acknowledgment precision of 92.3% for 

three fruity scents. Under the condition that every 

semiconductor was working in the subthreshold locale, 

this chip, which was developed utilizing a 0.18-m CMOS 

process, required under 10W to work at a stockpile voltage 

of 1V. Despite the fact that there were no on-chip sensors 

or SRAM, this low-power approach looks encouraging for 

planning wearable, implantable, and versatile E-nose 

gadgets. 

 

3. CONCLUSION 

 
In this work, we validate gas detection methods in E-nose 

in parallel with classical ANN- and SNN-based 

computations and their device implementations. Our 

findings show that classical gas confirmation calculations 

are easy to implement and perform well for limited gas 

tests with some boundaries and reasonably fixed 

structures, but under turbulence Not sufficient for 

checking multiple gases. They are commonly used to 

detect 5 different gases. On the other hand, ANN-based gas 

confirmation calculations can achieve satisfactory 

accuracy for various gas information. ANNs are often 

designed as ASICs rather than MPUs using standard 

methods. 
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