
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 1

Advancements in Vector Indexing Techniques: KD-Trees, HNSW, and

Product Quantization for Vector Databases

Syed Arham Akheel

Senior Solutions Architect

Bellevue, WA arhamakheel@yahoo.com

Abstract—The growth of high-dimensional data in fields

like computer vision, natural language processing, and

data mining has necessitated the development of efficient

vector indexing techniques. This paper presents a

comparative analysis of three state-of-the-art vector

indexing techniques—KD-Trees, Hierarchical

Navigable Small World (HNSW) graphs, and Product

Quantization (PQ). We provide a detailed exploration of

each method’s algorithmic foundations, mathematical

formulations, advantages, and limitations, followed by a

discussion of recent advancements aimed at optimizing

these methods for large-scale databases. Through my

analysis, I aim to offer a comprehensive understanding

of how these techniques perform and can be adapted for

various real-world applications.

Index Terms—Vector Indexing, KD-Trees, HNSW,

Product

Quantization, High-Dimensional Data, Nearest

Neighbor Search

I. INTRODUCTION

The nearest neighbor search is a fundamental problem in

many applications, including machine learning, image

retrieval, and recommendation systems. The key goal is

to efficiently find the data points that are closest to a

given query in high-dimensional space. With the

growing volume of high-dimensional data, efficient

vector indexing techniques are critical to maintain low

query times and high accuracy.

Nearest neighbor search can be formally defined as

follows: given a set of n points P = {p1,p2,...,pn} in a

ddimensional space Rd and a query point q, the objective

is to find the point pi ∈ P such that the distance d(q,pi) is

minimized. However, this search becomes

computationally expensive as the number of dimensions

(d) increases, leading to the well-known problem called

the curse of dimensionality. As the dimensionality

increases, the efficiency of traditional search methods

diminishes due to the sparsity of data in highdimensional

space [8].

Traditional approaches to the nearest neighbor problem

include methods such as KD-Trees, which use recursive

partitioning to build a tree structure for efficient

searching. KDTrees work well in low-dimensional

spaces, as they divide the data space into hierarchical

hyperplanes that allow efficient point location queries.

However, their performance degrades significantly in

higher dimensions, making them impractical for many

real-world high-dimensional problems [2]. In particular,

the efficiency of KD-Trees is compromised when the

number of dimensions exceeds 20, as most of the data

ends up near the boundaries of the partitions [1].

The limitation of KD-Trees in high dimensions has led

to the development of more sophisticated vector

indexing techniques such as Hierarchical Navigable

Small World (HNSW) graphs and Product Quantization

(PQ). These methods are designed to tackle the

scalability and accuracy issues associated with high-

dimensional data.

HNSW is a graph-based approach that builds on the

concept of navigable small-world networks, which

enable efficient nearest neighbor search by traversing a

graph structure [3]. HNSW uses a multi-layer graph in

which each node has connections to other nodes at

multiple levels. The top layers provide a coarse overview

of the data space, while the lower layers provide finer

resolution for local searches. The search process in

HNSW starts from a high level and proceeds layer-by-

layer to more fine-grained graphs, ultimately reaching

the nearest neighbors. This approach ensures logarithmic

complexity scaling, making HNSW highly efficient for

http://www.ijsrem.com/
mailto:arhamakheel@yahoo.com

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 2

high-dimensional spaces. According to Malkov and

Yashunin, HNSW is particularly advantageous for

datasets where the data points are highly clustered,

providing both high accuracy and low search latency [3].

Product Quantization (PQ), on the other hand, is a

method that aims to reduce the memory and

computational costs of nearest neighbor search by

compressing highdimensional vectors into compact

codes. PQ divides the original high-dimensional space

into a Cartesian product of lowerdimensional subspaces,

and each subspace is quantized separately [11]. This

quantization results in a set of centroids for each

subspace, and each vector is represented by a short code

that indexes the closest centroid for each subspace. By

doing so, the distance between a query vector and a

database vector can be efficiently approximated by

summing the distances between their corresponding

subspace centroids [4]. Optimized Product Quantization

further enhances this technique by minimizing the

quantization distortion through careful space

decomposition and codebook optimization, thereby

improving the search accuracy for high-dimensional data

[4].

The use of vector indexing techniques such as PQ and

HNSW has found significant applications in areas such

as image retrieval, natural language processing, and

recommendation systems. For instance, PQ has been

used extensively for indexing large image datasets,

allowing for efficient approximate nearest neighbor

(ANN) searches while significantly reducing memory

usage [11]. HNSW, due to its dynamic and highly

connected graph structure, has also been employed in

semantic search applications, including vector similarity

search for natural language data [7].

Recent studies have also highlighted the importance of

similarity metrics in vector indexing. For instance,

metrics such as Euclidean distance, cosine similarity, and

Jaccard similarity are used to evaluate the closeness of

vectors depending on the type of data and application [8].

Euclidean distance is widely used for continuous data,

whereas cosine similarity is preferred for text data due to

its focus on vector direction rather than magnitude.

Euclidean distance is given by:

The rest of this paper explores the mathematical and

practical aspects of these vector indexing techniques,

comparing their use cases, performance, and

optimization strategies. Section II provides a detailed

discussion of KD-Trees, including their algorithmic

design, limitations, and recent improvements. Section III

discusses HNSW graphs, explaining their hierarchical

design and advantages for high-dimensional datasets.

Section IV focuses on Product Quantization, covering its

mathematical formulation and recent optimizations.

Finally, we present a comparative analysis of these

methods in Section V, followed by a conclusion

summarizing their relative advantages and trade-offs.

II. VECTOR INDEXING TECHNIQUES

A. KD-Trees

KD-Trees are among the earliest and most well-known

methods for spatial indexing, introduced by Bentley in

1975. They work by recursively partitioning the data

space along different dimensions, creating a hierarchical

data structure that facilitates efficient searches for low-

dimensional data [2]. KDTrees are binary trees where

each node represents a hyperplane in the feature space,

allowing for efficient partitioning.

1) Tree Construction: The construction of a KD-

Tree involves dividing the dataset along one dimension

at a time. The algorithm selects a splitting dimension and

a splitting value, typically choosing the median value

along the current dimension to ensure a balanced tree.

This ensures that roughly half of the points lie on either

side of the split, which helps in maintaining the

efficiency of the search operations [1].

Formally, let P = {p1,p2,...,pn} be a set of points in a d-

dimensional space. To construct the KD-Tree: 1. Select a

splitting dimension k (usually done in a round-robin

fashion or by selecting the dimension with the highest

variance). 2. Find the median value along the chosen

dimension k. 3. Partition the points into two subsets:

those with values less than or equal to the median on the

left, and those greater than the median on the right. 4.

Recursively apply the above steps to construct the left

and right subtrees.

The resulting structure is a balanced tree where each

node represents a splitting hyperplane perpendicular to

the selected dimension, and each leaf node contains a

small subset of points.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 3

2) Nodes and Search Mechanism: Each node in the

KDTree represents a point and a corresponding

hyperplane that divides the data space. A KD-Tree node

can be defined as:

Node = (p,left child,right child,k)

where p is the point stored at the node, left child and right

child are the left and right subtrees, respectively, and k is

the splitting dimension. The recursive nature of the

KDTree construction ensures that each node splits the

data space into progressively smaller hyper-rectangles.

To search for the nearest neighbor, the KD-Tree

algorithm traverses the tree in a depth-first manner. It

first follows the branch corresponding to the side of the

hyperplane that contains the query point, q. Once a leaf

node is reached, it backtracks to explore other branches

if there is a possibility of finding a closer point. The

process of backtracking is governed by the distance from

the query point to the current best candidate and the

distance to the splitting hyperplane.

3) Nearest Neighbor Search: The nearest neighbor

search problem is solved by minimizing the distance

between the query point q and the points stored in the

KD-Tree. The Euclidean distance between a query point

q = (q1,q2,...,qd) and a point p = (p1,p2,...,pd) where d

represents the dimensionality of the space. The KD-Tree

algorithm searches for the point p in the tree that

minimizes this distance. During the search, the algorithm

keeps track of the current best distance and prunes

branches that cannot possibly contain a closer point.

The process involves the following steps:

Traversal to Leaf Node: The query point q is compared

with the hyperplane at each node, and the branch

corresponding to the side containing q is traversed first.

Backtracking: Upon reaching a leaf node, the current

best distance is recorded. The algorithm then backtracks,

checking whether other branches could potentially

contain a closer point.

Bounding Box Pruning: The algorithm prunes branches

by calculating the minimum possible distance from q to

the bounding box of the unexplored branch. If this

distance is greater than the current best distance, that

branch is skipped.

In low-dimensional spaces, this approach is very

efficient, as it limits the number of points that need to be

evaluated explicitly. However, as the number of

dimensions increases, the efficiency degrades due to the

increased number of points lying near the boundaries of

the hyperplanes, requiring more backtracking and

reducing the benefits of the tree structure [2].

4) Limitations and the Curse of Dimensionality: The

primary limitation of KD-Trees is their poor performance

in high-dimensional spaces, a phenomenon known as the

curse of dimensionality. As the dimensionality d

increases, the volume of the space grows exponentially,

and the data points become sparse. Consequently, the

splitting hyperplanes lose their effectiveness in

partitioning the space, resulting in more backtracking

during the nearest neighbor search. This, in turn, leads to

performance that is often no better than a brute-force

search [1], [8].

Empirical studies have shown that KD-Trees work well

for dimensions up to about 20. Beyond this threshold, the

efficiency of the tree structure declines rapidly, and the

cost of traversal approaches that of a linear scan [2]. To

address these challenges, recent research has explored

approximate nearest neighbor techniques that adapt KD-

Trees with random rotations or combine them with other

algorithms to improve efficiency [3].

The nearest neighbor of a query point q is found by

minimizing the Euclidean distance. The challenge in

higher dimensions is that the probability of a point being

close to q decreases significantly due to the sparsity of

points. The hyperrectangles defined by the KD-Tree

splits do not effectively capture the nearest neighbors as

the dimensionality increases, leading to inefficient

pruning and high computational costs [1],

[2].

Recent improvements in KD-Tree-based methods

include the use of random rotations before constructing

the tree. These rotations help in balancing the splits and

reducing the alignment of data points with the axes, thus

improving the accuracy of nearest neighbor searches in

higher dimensions [3]. Additionally, ensembles of KD-

Trees are also used to provide better results by combining

the outputs of multiple independently constructed trees.

In summary, KD-Trees provide an efficient method for

nearest neighbor search in low-dimensional spaces by

partitioning the data space into smaller, manageable

regions. However, their efficiency diminishes rapidly as

the dimensionality increases due to the curse of

dimensionality. As a result, KDTrees are often combined

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 4

with other techniques or used in approximations to

maintain performance in higher dimensions.

B. Hierarchical Navigable Small World Graphs (HNSW)

HNSW graphs are graph-based indexing structures

designed to overcome the inefficiencies of KD-Trees in

highdimensional data. They are based on the concept of

navigable small world networks, enabling efficient

nearest neighbor searches by traversing layers of graphs

[3].

1) Navigable Small World Networks: The concept

of navigable small world networks is central to the

functioning of HNSW. A small world network is

characterized by the presence of short paths between

nodes, even in a large graph, and a clustering of nodes

into locally dense regions. In HNSW, this concept is

extended to create a graph where nodes are connected in

such a way that the nearest neighbor search can be

performed efficiently by leveraging these short paths [3].

The efficiency of a small world network is derived from

its ability to balance global and local connectivity,

allowing a search to proceed from a random starting

point to the desired node through a combination of long-

range and short-range links.

In an HNSW, nodes are organized in a hierarchical

manner, with nodes in higher layers having fewer

connections, representing more global and coarse-

grained relationships, while nodes in lower layers have

more connections, representing fine-grained

relationships. This multi-layered approach provides a

natural way to navigate from a general overview of the

data to a precise local neighborhood, significantly

reducing search times compared to flat graph structures.

2) Algorithm Overview: HNSW builds a

hierarchical multilayer graph structure, where nodes in

higher layers have fewer connections, providing an

overview of the data. The search starts from the top layer

and moves downward, progressively narrowing the

search to more fine-grained layers. Each layer of the

HNSW structure is essentially a proximity graph where

nodes are connected based on their similarity, and edges

represent the closeness of nodes [3]. The search process

starts at the topmost layer, which has the sparsest graph,

and moves down the hierarchy, using each subsequent

layer for more precise search results.

The construction of an HNSW graph begins by placing

each new element into a random layer, determined by an

exponentially decaying distribution, ensuring that higher

layers have fewer nodes. The connections for each

element are established by finding the closest nodes

already present in the graph. This creates a structure

where the number of neighbors for each node follows a

power law, which is critical for ensuring efficient

traversal during search operations.

3) Layered Proximity Graphs: The HNSW

structure uses layered proximity graphs to efficiently

navigate through the data space. Each layer can be seen

as a different level of granularity for exploring the graph,

with higher layers providing broader and less connected

views, and lower layers offering more detailed and

densely connected views. The goal is to strike a balance

between exploration and exploitation during the search.

At each level, the algorithm performs a greedy search by

moving to the neighbor that minimizes the distance to the

query point [3]. The mathematical formulation for the

greedy search in HNSW is where q is the query point, ni

is the current node, and N(i) is the set of neighbors of

node i. The greedy approach continues until no neighbor

is found that is closer to the query point than the current

node.

This process is repeated for each layer, starting from the

top and moving to the bottom layer. The transition

between layers ensures that the search starts from a

global perspective and gradually focuses on a local

neighborhood, which significantly improves the overall

search efficiency. The multi-layer structure allows

HNSW to achieve logarithmic complexity scaling with

respect to the number of data points, which is a

considerable improvement over traditional flat graph-

based methods [3].

The HNSW search algorithm starts from an entry node,

often chosen randomly or as a previously known

approximate neighbor, and proceeds iteratively to move

to the next nearest neighbor by comparing distances. The

distance function used is typically the Euclidean distance

where q is the query point and p is a candidate point. The

algorithm’s objective is to minimize this distance

iteratively until no closer neighbor can be found.

In the hierarchical structure, the search at each level aims

to refine the candidate set of neighbors by exploring the

connections available at that level. The top-level graph

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 5

has fewer nodes and connections, which helps in quickly

narrowing down the search area, while the lower levels,

which are more densely connected, allow for precise

identification of the nearest neighbors. The hierarchical

search strategy ensures that the algorithm can quickly

converge to the optimal solution with high probability

[3].

4) Advantages and Limitations: HNSW has

demonstrated superior performance in both high-

dimensional and clustered datasets due to its graph

traversal capabilities. The hierarchical nature of the

graph ensures that the search starts from a coarse

resolution and progressively refines the search at each

layer, leading to efficient and accurate results [3].

Moreover, the navigable small world property of the

graph allows for efficient connectivity, enabling searches

to quickly locate the target neighborhood even in large-

scale datasets.

However, building the HNSW graph is computationally

expensive and requires substantial memory overhead for

storing the multi-layer connections. The cost of

maintaining the multilevel structure and the additional

memory needed for storing neighbors at each level are

some of the primary challenges of this approach. Despite

these challenges, the benefits of faster and more accurate

search make HNSW a preferred choice for many high-

dimensional search problems, particularly those

involving dense and complex data distributions [3].

C. Product Quantization (PQ)

Product Quantization is a powerful technique for

encoding high-dimensional vectors into compact codes

to enable efficient nearest neighbor search. PQ divides

the original high dimensional space into smaller

subspaces, which are then quantized separately [11]. This

approach drastically reduces both memory consumption

and computational costs while still maintaining a high

level of accuracy for similarity searches.

1) Vector Decomposition: The first step in Product

Quantization involves decomposing the original vector

into multiple sub-vectors. Given a vector x ∈ RD, PQ

divides it into M sub-vectors, each of dimension D/M.

Mathematically, this decomposition can be expressed as:

x = (x1,x2,...,xM)

where xi ∈ RD/M for i = 1,2,...,M. The rationale behind this

decomposition is to reduce the dimensionality of each

sub-vector, making it easier and computationally cheaper

to handle [11]. Each sub-vector is treated independently,

allowing for quantization to be performed on smaller,

more manageable components of the original vector.

2) Quantization of Subspaces: Once the vector is

decomposed, each subspace is quantized independently

using a set of predefined centroids. For each subspace, a

codebook Ci is created that contains K centroids:

 Ci = {ci,1,ci,2,...,ci,K}, ci,j ∈ RD/M

where K is the number of clusters or centroids used for

quantization in each subspace. The quantization function

Qi assigns each sub-vector xi to its closest centroid in the

codebook Ci:

Qi(xi) = arg min ∥xi − c∥2

c∈Ci

This process is repeated for each of the M sub-vectors,

resulting in a quantized representation of the original

vector in terms of centroids from each subspace [11]. The

goal is to minimize the quantization error, which is the

discrepancy between the original sub-vector and its

nearest centroid.

3) Compact Representation: The quantized

representation of each sub-vector allows the entire vector

to be stored as a series of indices pointing to the centroids

in each codebook. Instead of storing the original D-

dimensional vector, PQ stores M indices, each

representing the nearest centroid in the corresponding

subspace. Thus, the compact representation of vector x

can be described as:

Q(x) = (Q1(x1),Q2(x2),...,QM(xM))

This compact representation significantly reduces

memory usage. If K centroids are used per subspace,

each index can be stored using log2(K) bits, leading to

substantial memory savings compared to storing full-

precision floating-point values for each dimension [11].

4) Distance Computation: One of the key features

of Product Quantization is the ability to efficiently

compute approximate distances between a query vector

and database vectors using their quantized

representations. Given a query vector q ∈ RD and a

database vector x, the distance between them is

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 6

approximated by summing the distances between their

corresponding sub-vectors:

M

d(q,x) ≈ X∥qi − ci,Qi(xi)∥2

i=1

where ci,Qi(xi) represents the centroid in the i-th subspace

that xi is assigned to. This approximation leverages the

precomputed distances between the query sub-vector qi

and the centroids in the codebook Ci, thus avoiding the

need to compute the full distance directly for every

dimension. This allows PQ to perform efficient nearest

neighbor searches even in large datasets [4], [11].

5) Encoding: The encoding phase of PQ involves

assigning each sub-vector xi of the original vector x to its

closest centroid in the corresponding codebook Ci. The

resulting indices are stored to represent the compressed

version of the vector. The encoding process can be

formally expressed as: x → (e1,e2,...,eM), ei = Qi(xi)

where ei is the index of the centroid closest to xi in

codebook Ci. This encoded representation enables

efficient storage and retrieval, as the vector is now

represented by a series of indices rather than raw

floating-point numbers.

6) Optimized Product Quantization: Recent

advancements in PQ have focused on optimizing both the

decomposition of the vector space and the quantization

process to minimize quantization error. Optimized

Product Quantization (OPQ) involves rotating the

original data vectors before decomposition, which helps

to better align the subspaces with the inherent data

structure, thereby reducing quantization distortion [4].

Mathematically, this can be described as applying a

rotation matrix R ∈ RD×D to the original vector:

x′ = R · x

where x′ is the rotated version of the original vector x.

This rotation is followed by the usual decomposition and

quantization steps, but with improved alignment that

leads to lower distortion. The iterative optimization of

both the rotation matrix and the codebooks ensures that

the quantized representation is as close as possible to the

original data, enhancing both search accuracy and

retrieval performance.

Optimized PQ has been shown to significantly improve

the trade-off between accuracy and memory usage,

making it particularly suitable for applications like image

and video retrieval where high-dimensional vectors must

be indexed efficiently [4], [11].

In summary, Product Quantization is a highly effective

method for compressing high-dimensional vectors and

enabling efficient nearest neighbor search. By

decomposing the vector into subspaces, quantizing each

subspace independently, and storing compact

representations, PQ achieves a significant reduction in

both memory usage and computational complexity while

maintaining a reasonable level of accuracy. The

advancements in optimized PQ further enhance its

effectiveness, making it a preferred choice for large-scale

similarity search applications.

III. COMPARATIVE ANALYSIS

A. Performance Metrics

The comparison of KD-Trees, HNSW, and Product

Quantization (PQ) can be discussed based on several key

performance metrics, such as accuracy, scalability, and

memory usage. Each method has strengths and

weaknesses that determine its suitability for specific

applications.

In terms of accuracy, PQ often yields the highest

accuracy among the three methods due to its compact

representation and the ability to approximate nearest

neighbors with low quantization error. PQ works by

splitting vectors into subspaces and quantizing them

separately, which reduces the loss of information,

allowing for higher recall rates when compared to KD-

Trees [11]. HNSW also achieves high recall, particularly

for high-dimensional datasets, due to its layered graph

structure, which efficiently narrows down the search

space by combining coarse and fine levels of search [3].

On the other hand, KD-Trees tend to struggle with

maintaining accuracy as dimensionality increases, which

is attributed to the curse of dimensionality [2].

HNSW is considered the most scalable due to its graph

based structure, which allows it to handle large, high

dimensional datasets effectively. The logarithmic

complexity scaling of HNSW makes it an excellent

choice for datasets with millions of elements, enabling

fast search without significantly compromising on recall

[3]. In contrast, KD-Trees become less efficient as the

number of dimensions increases, with performance

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 7

degrading rapidly beyond 20 dimensions. The hyper-

rectangles defined by KD-Tree splits lose their efficacy,

leading to extensive backtracking and diminishing

scalability [1]. PQ also offers scalability benefits in terms

of storage, as it compresses the data into compact

representations. However, the speed of search can be

affected depending on the number of centroids and the

dimensionality of each subspace, which requires careful

tuning to maintain efficiency [4].

Memory usage is an essential consideration when

dealing with large-scale datasets. KD-Trees are relatively

lightweight in terms of memory requirements, especially

for lowdimensional data, as they primarily rely on a

hierarchical structure to partition the data space [2].

However, the inefficiencies in high-dimensional spaces

result in a lack of practical utility for KD-Trees in such

scenarios. HNSW requires significant memory to store

the multi-layered graph and multiple connections per

node, which can be a bottleneck for very large datasets.

The number of edges maintained at each layer grows

proportionally, leading to increased memory

consumption [3]. PQ, in contrast, offers a favorable

tradeoff between memory usage and accuracy. By storing

compact codes instead of raw vectors, PQ allows for

significant memory savings, which is particularly

advantageous for applications like image retrieval, where

high-dimensional vectors must be stored efficiently [11].

B. Practical Considerations

Each of the three methods has practical use cases that

best suit its strengths:

KD-Trees are most effective in low-dimensional spaces,

typically where the dimensionality is less than 20. Their

ability to efficiently partition the data space allows for

fast exact nearest neighbor searches in such settings. For

example, KD-Trees are widely used in geographic

information systems (GIS) for spatial data indexing and

nearest neighbor searches [2]. However, in high-

dimensional settings, their inefficiency makes them less

suitable, as backtracking becomes more prevalent and

performance degrades.

HNSW is ideal for high-dimensional spaces and

applications requiring high recall and fast retrieval times,

such as natural language processing (NLP) tasks and

semantic search. The multi-layer graph approach ensures

that searches can start from a broad perspective and

zoom into specific clusters efficiently, making HNSW

highly effective for recommendation systems, image

search, and even social media data indexing, where the

data is high-dimensional and clustered [3], [7]. The

trade-off comes in the form of memory usage and the

computational cost of constructing the graph, but these

are often justified by the performance benefits in recall

and speed.

Product Quantization is particularly well-suited for

applications like image and video retrieval, where large

datasets need to be queried with limited memory. The

compact codes generated by PQ allow for efficient

storage of massive datasets, reducing memory

requirements significantly. PQ is also advantageous in

scenarios where approximate nearest neighbor search is

acceptable, and some loss of precision is tolerable in

exchange for faster search and reduced memory footprint

[5], [11]. Additionally, the optimization techniques

introduced in Optimized PQ (OPQ) have further

improved PQ’s accuracy, making it a robust choice for

large-scale similarity search applications [4].

C. Summary

KD-Trees are suitable for low-dimensional, exact

searches, while PQ and HNSW are more suited for high-

dimensional, approximate searches, with HNSW

typically providing high recall and PQ providing the best

trade-off between compression and accuracy. HNSW

scales effectively with the size of high-dimensional

datasets due to its hierarchical graph structure. KD-Trees

struggle with scalability in high-dimensional spaces, and

PQ requires tuning but can achieve good scalability due

to compact encoding. KD-Trees have lower memory

requirements for low-dimensional data but become

inefficient in higher dimensions. HNSW requires

substantial memory for multi-layer graph connections,

whereas PQ optimizes memory usage by storing vectors

as compact codes.

The choice of technique depends on the specific

requirements of the application, including

dimensionality, need for accuracy, speed, and memory

constraints. HNSW is preferred when high recall and

speed are required, PQ is ideal for memory efficiency,

and KD-Trees work best for lowdimensional, exact

searches. These distinctions help guide the selection of

the appropriate indexing technique for a given use case,

ensuring an optimal balance between performance and

resource utilization [3], [4], [11].

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 8

IV. CONCLUSION

KD-Trees, HNSW, and PQ represent three distinct

approaches to solving the nearest neighbor search

problem for high-dimensional data. Each method offers

unique advantages and trade-offs in terms of accuracy,

scalability, and memory usage.

KD-Trees are among the earliest indexing structures

developed for nearest neighbor search, and they perform

well in low-dimensional spaces due to their efficient

recursive partitioning. However, as dimensionality

increases, KD-Trees suffer from the curse of

dimensionality, leading to excessive backtracking and

decreased efficiency. As a result, KD-Trees are often

considered suitable only for applications where the

dimensionality is moderate, and exact searches are

required [1], [2]. The simplicity of KD-Trees and their

relatively low memory footprint make them a good

choice for small scale, low-dimensional problems, but

they are limited by their inability to handle the

complexity of high-dimensional data effectively.

Hierarchical Navigable Small World (HNSW) graphs, on

the other hand, address the limitations of KD-Trees by

introducing a hierarchical, graph-based structure that can

efficiently manage high-dimensional data. HNSW

leverages the concept of navigable small world networks

to create a multilayered graph, where each layer

progressively narrows the search space [3]. This

hierarchical nature allows HNSW to provide high recall

rates with logarithmic complexity, making it suitable for

large-scale, high-dimensional datasets such as those used

in natural language processing, image retrieval, and

recommendation systems. The scalability of HNSW,

combined with its high accuracy, makes it a preferred

choice for real time applications requiring dynamic data

updates and efficient retrieval. However, the

computational cost of constructing the graph and the

memory overhead associated with storing multilayer

connections can be significant, particularly for very large

datasets [3], [7].

Product Quantization (PQ) offers a different approach by

focusing on reducing the storage requirements for high

dimensional data. PQ compresses vectors by

decomposing them into subspaces and quantizing each

subspace independently, resulting in a compact

representation that is well suited for approximate nearest

neighbor searches [11]. PQ provides an efficient trade-

off between memory usage and search accuracy, making

it highly effective for applications where large datasets

need to be stored in limited memory environments, such

as image and video retrieval systems. The use of compact

codes allows for efficient similarity searches without

requiring the full precision of the original vectors, which

can be beneficial for both storage and computational

efficiency. Furthermore, optimized versions of PQ, such

as Optimized Product Quantization (OPQ), have

improved its effectiveness by minimizing quantization

error through space rotation and better alignment with

the data structure [4].

In comparing these three methods, it is clear that each

has specific strengths that make it suitable for different

scenarios. KD-Trees excel in low-dimensional

applications but struggle with scalability as

dimensionality increases. HNSW provides an efficient

solution for high-dimensional, large-scale datasets by

using a hierarchical approach that balances accuracy and

search time. Meanwhile, PQ is particularly advantageous

in scenarios where memory efficiency is critical, and

approximate results are acceptable.

The choice of the most appropriate indexing technique

depends on the requirements of the specific application.

For example, KD-Trees may be suitable for geographic

information systems (GIS) or robotics, where the data is

lowdimensional and exact matches are crucial [2].

HNSW is ideal for high-dimensional, real-time

applications like recommendation systems and semantic

search, where high recall and speed are essential [3], [7].

PQ, with its efficient use of memory, is highly applicable

to multimedia retrieval systems and scenarios involving

large-scale vector databases that require approximate

nearest neighbor searches to balance storage and

retrieval accuracy [5], [11].

In conclusion, KD-Trees, HNSW, and PQ provide

diverse solutions for the nearest neighbor search

problem, each tailored to different dimensionalities,

accuracy requirements, and resource constraints.

Understanding these differences is crucial for selecting

the right tool for a given use case, ensuring optimal

performance in terms of both computational and storage

efficiency. The advancements in HNSW and PQ

demonstrate that innovative approaches to vector

indexing can significantly enhance the ability to manage

high-dimensional data, ultimately enabling faster and

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 08 Issue: 03 | March - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM29660 | Page 9

more accurate data retrieval in a wide range of

applications [3], [4].

REFERENCES

[1] R. Panigrahy, ”An Improved Algorithm Finding

Nearest Neighbor Using KD-Trees,” LATIN 2008,

Springer, 2008.

[2] P. Ram, K. Sinha, ”Revisiting KD-Tree for

Nearest Neighbor Search,” ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD ’19),

2019.

[3] Y. A. Malkov, D. A. Yashunin, ”Efficient and

Robust Approximate Nearest Neighbor Search Using

Hierarchical Navigable Small World Graphs,” IEEE

Transactions, 2018.

[4] T. Ge, K. He, Q. Ke, J. Sun, ”Optimized Product

Quantization for Approximate Nearest Neighbor

Search,” IEEE CVPR, 2013.

[5] Y. Chen, T. Guan, C. Wang, ”Approximate

Nearest Neighbor Search by Residual Vector

Quantization,” Sensors, 2010.

[6] J. P. V. Pinheiro, L. R. Borges, B. F. M. da Silva,

L. A. P. Paes Leme, M.

A. Casanova, ”Indexing High-Dimensional Vector

Streams,” ICEIS 2023.

[7] J. Vita, J. Bishop, L. Kyada, N. Raines, S. Mehta,

”Semantic Vector Search for Twitter Data with HNSW

Retrieval,” 2023.

[8] F. Dayton, ”Vector Similarity Search: A Deeper

Dive,” CS168 Final Report, 2023.

[9] Y. Han, C. Liu, P. Wang, ”A Comprehensive

Survey on Vector Database: Storage and Retrieval

Technique, Challenge,” arXiv preprint

arXiv:2310.11703, 2023.

[10] J. J. Pan, J. Wang, G. Li, ”Survey of Vector

Database Management Systems,” arXiv preprint

arXiv:2310.14021, 2023.

[11] H. Jegou, M. Douze, and C. Schmid, ”Product

Quantization for´ Nearest Neighbor Search,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 1, pp. 117-128, Jan. 2011, doi:

10.1109/TPAMI.2010.57.

[12] Zilliz, ”Milvus: A Distributed and High-

Performance Vector Database,” White Paper, 2020.

[Online]. Available: https://milvus.io.

[13] J. Johnson, M. Douze, and H. Jegou, ”Billion-

scale similarity search´ with GPUs,” IEEE Transactions

on Big Data, 2019, doi:

10.1109/TBDATA.2019.2921572.

[14] P. Indyk and R. Motwani, ”Approximate Nearest

Neighbors: Towards Removing the Curse of

Dimensionality,” Proceedings of the 30th Annual ACM

Symposium on Theory of Computing (STOC), 1998, pp.

604-613, doi: 10.1145/276698.276876.

http://www.ijsrem.com/

