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Abstract: This study introduces a high-throughput FPGA implementation of AES-128, prioritizing efficiency for robust 

security and fast data processing needs. AES-128 is renowned for its security and widespread use in various applications. 

Employing techniques like loop unrolling and pipelining, the implementation maximizes throughput and customizes AES for 

FPGA architectures. A novel optimization approach, "new-affine-transformation," reduces resource demands and latency for 

the Sub-Bytes function. The AES architecture is strategically modified for efficiency, with rearranged functions and 

streamlined processing. The implementation, in VHDL and utilizing Xilinx Virtex-5 FPGA, achieves remarkable performance: 

37.9 Gbps (encryption) and 38.5 Gbps (decryption) throughput at frequencies of 296.789 MHz (encryption) and 300.806 MHz 

(decryption). Resource utilization is efficient, with 264 (encryption) and 260 (decryption) slice registers and 1044 (encryption) 

and 1581 (decryption) total slices. 
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1. INTRODUCTION 

Cryptography, a vital component of information security, 

focuses on employing mathematical techniques to safeguard 

privacy, ensure the authenticity of entities, maintain data 

integrity, and verify data origin. The primary objective of 

cryptography is to detect and prevent fraudulent or 

malicious activities. Symmetric-key cryptography involves 

the utilization of a shared key known only to the parties 

involved in the communication. One noteworthy attribute of 

this approach is its utilization of a solitary key for the 

purposes of encrypting and decrypting data. The Data 

Encryption Standard (DES) operates using the same key for 

encryption and decryption, facilitating rapid execution on 

general-purpose processors or specialized hardware, 

achieving throughputs exceeding 1 GByte/s. However, 

DES's reliance on a 56-bit key size raises concerns regarding 

vulnerability to brute-force attacks, considering the 

advancements in computer power. In response to these 

concerns, Triple Data Encryption Standard (3DES) emerged, 

enabling the use of larger keys to bolster security compared 

to the relatively modest 56-bit key size of DES. Despite its 

enhanced security, 3DES suffers from significant drawbacks, 

notably its sluggish performance in software 

implementations due to its hardware-oriented design and the 

use of three times the number of rounds compared to DES. 

Furthermore, both DES and 3DES share a common 

limitation of utilizing a 64-bit block size, which 

compromises efficiency and security. Recognizing the need 

for a more efficient and secure alternative, the selected 

algorithm, Rijndael, developed by Joan Daemen and 

Vincent Rijmen, underwent rigorous evaluation and was 

officially adopted as the standard in 2001. Advanced 

Encryption Standard (AES) operates on a substitution-

permutation network, executing byte-level substitutions and 

word-level permutations in each processing cycle. Unlike 

DES, which employs the Feistel structure, AES's design 

facilitates swift software implementation owing to its 

substitution and permutation-based approach.  

 

 

 

 

 
                               Fig. 1 AES DESIGN 

Several researchers' efforts to construct the AES algorithm 

using field-programmable gate arrays (FPGAs) are 

highlighted in this section. A number of academics have 

zeroed down on either speed optimization or area 

optimization. [6] A highly optimized hardware 

implementation of the Rijndael AES Algorithm was realized 

on the Xilinx Virtex-5 XC5VLX50 FPGA device, using a 

modular VHDL approach. The design operates at 339.087 

MHz, achieving a throughput of 4.34 Gbps with just 399 

slices of the Virtex-5 FPGA, emphasizing both high 

performance and efficiency. [7] This project optimizes area 

for a masked AES with an unrolled structure, leveraging 

FPGA block RAM (BRAM) to enhance hardware efficiency. 

The implementation achieves a significant 36.2% reduction 

in area footprint, with the main method contributing to a 

20.5% decrease and BRAM optimization providing an 

additional 15.7% reduction. It achieves 40.9 Gbps 
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throughput at 4.5 Mbits/s per slice on the Xilinx 

XC6VLX240T platform, enhancing defense against DPA 

and glitch attacks. [8] This paper presents an FPGA 

implementation of the AES-Rinjdael cryptosystem with 

128-bit blocks and keys. Synthesis results from the Virtex II 

Pro Kit FPGA using the Xilinx Synthesis Tool show a 

computation time of 6,922 nanoseconds for generating 

ciphertext with AES, utilizing four s-boxes and two dual 

port RAMs. A synthesizable and optimized VHDL code is 

developed for encryption and decryption of 128-bit data, 

validated using Xilinx's ISE 9.2i functional simulator. To 

reduce hardware usage, an iterative design approach 

simulates every algorithmic transformation. [9] This design, 

utilizing the XC3S50 0E-4FG320 FPGA device, achieves a 

remarkable frequency of 222.41 MHz and an outstanding 

throughput of 2.846 Gbps. With just 2439 slices, it 

optimizes resource utilization, achieving a high throughput 

per slice of 1.166 Mbps. Its superior balance among 

frequency, throughput, and slice efficiency sets it apart from 

other designs, emphasizing the importance of optimizing 

these aspects for improved hardware performance in FPGA-

based design methodologies. [10] The architectures in this 

paper were executed on reconfigurable platform FPGAs. 

Successful implementation on Xilinx Virtex4 (device 

xc4vlx80, package 12ff1148) confirms that the proposed 

architectures require minimal hardware resources. The AES 

Encryption and Decryption designs each utilize only 9% of 

the chip resources at a clock frequency of 382.988 MHz. By 

employing pipeline techniques, throughput can be increased. 

[12] AES algorithm based on FPGA that is proposed and 

employs 1746 logic elements and 32768 memory bits. This 

design was synthesized using Altera on Cyclone-II. The 

algorithm attains a minimal latency, with encryption 

throughput measuring 465 Mbit/sec and decryption 

throughput measuring 189 Mbit/sec. [13], utilizing the 

XC3S400-FG456 device, exhibited a throughput of 160.875 

Mbits/s with 2059 Mbps, utilizing 1403 slices and achieving 

a high throughput/area ratio of 1.467 Mbps per slice. 

Although the overall throughput was slightly lower than 

other designs, the efficient use of available hardware 

resources, reflected in the high throughput per slice area, 

indicated a notable achievement in optimizing the 

design's efficiency. [14] The project aims to implement the 

pipelined AES algorithm with key sizes of 128, 192, and 

256 bits for image encryption and decryption. It conducts a 

comparative analysis covering latency, efficiency, security, 

frequency, and throughput. The proposed architecture, 

realized through VHDL programming, utilizes ModelSim 

for simulation and Xilinx devices for synthesis, placement, 

and routing. Target devices include the Xilinx Virtex 

XCV600E-6BG560, Spartan XC6SLX25, and Spartan 3E 

starter kit FPGA. Achieved maximum frequencies are 

385.239, 181.258, and 224.770 MHz, with throughputs of 

1232.736, 580.02, and 719.264 Mbit/sec for Encryption and 

Decryption, respectively. [15] This paper presents a 

reconfigurable platform's rapid and secure AES algorithm 

implementation. Key generation is done in MATLAB, while 

design and simulation use Xilinx SysGen, Nexys4, and 

Simulink. Leveraging offline key generation and an 

enhanced Xilinx System Generator-based design, the system 

operates at a maximum frequency of 1102.536 MHz with 

only 121 slice registers in use. Additionally, it achieves a 

throughput of 14.1125 Gbps. [16] The paper discusses the 

development of a low-power, high-throughput VLSI 

architecture for the Advanced Encryption Standard (AES) 

algorithm, targeting cryptographic applications in high-

speed network environments. Efficient implementation of 

AES in both hardware and software is explored, supporting 

encryption and decryption with 256-bit keys and achieving a 

throughput of 0.06 Gbps. VHDL is used for design 

simulation, and FPGA chips are employed for hardware 

implementations. The focus is on a reconfigurable hardware 

implementation of AES using a key expansion approach, 

emphasizing metrics such as throughput, critical path delay, 

and power consumption essential for FPGA performance 

analysis. The proposed implementation with a dual-stage 

scheme demonstrates a significant reduction in power 

requirements by up to 43.4% and a decrease in critical path 

time to 21.4% compared to existing schemes. [17] The paper 

presents an efficient implementation of the Advanced 

Encryption Standard (AES) algorithm on Field 

Programmable Gate Arrays (FPGAs) to enhance security 

and throughput, the implementation focuses on minimizing 

resource utilization and achieving high throughput through 

parallel-pipeline design and optimized S-box. 

Demonstrating a throughput of 97.11Gbps and efficiency of 

85.18 Mbps/slice, with significant reduction in resource 

usage and increased throughput compared to existing work. 

[19] This research paper focuses on enhancing data security 

using the Advanced Encryption Standard (AES), a technique 

aimed at safeguarding information from theft or tampering. 

It centers on developing a specialized electronic chip to 

expedite and optimize the AES process. Through innovative 

approaches to mathematical operations and key generation, 

the researchers devised methods to accelerate the chip's 

performance while conserving space. Testing of the new 

chip design demonstrated significantly improved speed 

compared to traditional methods. [20] The paper emphasizes 

architectural optimization, exploiting pipelining, loop 

unrolling, and sub-pipelining to increase speed, with a trade-

off of increased area. Various methods such as resource 

sharing and common sub-expression elimination are 

discussed to reduce critical path and area issues between 

encryptor and decryptor. The paper details the AES 

algorithm, key expansion, and various architectures for 

improving speed, and provides a comparison of pipelining, 

sub-pipelining, and loop unrolling. It involves the use of 

techniques such as unrolling, pipelining, and combinational 

logic for SubBytes/InvSubBytes to tailor performance and 

area requirements. VHDL and devices like Virtex-E Xilinx 

Foundation Series 7.li software were utilized for the 

implementation, with evaluations based on throughput, area 

cost, and efficiency. The paper also discusses various 

architectures for the Mix Columns transformation, including 

methods for efficient implementing Substitute byte 

operation, Inverse Mix Column Transformation, and 

detailed analysis of the performance measurements. [21] 

The research aims to develop a high-throughput, FPGA-
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efficient (FPGA-Eff) cryptosystem tailored for high-traffic 

applications. To handle substantial workloads effectively, 

loop-unrolling, inner and outer pipelining techniques are 

employed. Addressing the resource-intensive nature and 

latency issues of Substitution bytes (Sub-Bytes) in AES, a 

novel approach named new-affine-transformation is 

proposed, integrating inverse isomorphic and affine 

transformation. AES is further optimized according to the 

suggested architecture, with strategic modifications such as 

interchanging Shift-Rows and Sub-Bytes for the initial nine 

iterations and partitioning Mix-Columns into two stages to 

achieve stage latency parity. The implementation utilizes 

VHDL on the Xilinx Virtex-5 platform, achieving a 

throughput of 79.7 Gbps, FPGA-Eff of 13.3 Mbps/slice, and 

a frequency of 622.4 MHz. Notably, the proposed layout 

demonstrates a 22.63% improvement in FPGA-Eff and an 

8.02% enhancement in data transmission compared to 

existing solutions. 

2. BASIC AES ALGORITHM 

An input block of a solitary 128 bits is utilized for both the 

encryption and decryption processes in AES. This specific 

input block is denoted by an octagonal matrix of bytes. A 

copy of this block is appended to the state array, which is 

modified during each encryption and decryption operation. 

Finally, the state is duplicated using an output matrix. 

Illustration 1 illustrates these procedures. Also represented 

by the square matrix or grid of data is the 128-bit key. 

Following this, the 128-bit key is expanded to a list of 44 

key scheduling words, of which four bytes comprise each 

word. The columns of a matrix are utilized to arrange the 

bytes. To illustrate, suppose the initial column of the matrix 

comprises the first four bytes of unencrypted inputs 

amounting to 128 bits to the encryption cipher. The second 

column would contain the second four bytes, and so forth. 

The word is composed of the initial four byte values of the 

expanded key, which are located in the initial column of the 

w matrix. Its principal design objectives were to 

demonstrate the subsequent attributes: Protection against all 

recognized forms of assault - Optimal performance with 

minimal code footprint across multiple platforms "Simplify 

Plan Algorithm" AES Procedure.Each encryption or 

decryption process involves a set number of iterations, 

where sequential transformations are applied to the bits of a 

specific data block. The number of iterations is determined 

by the length of the key, denoted as Nr=10 for a 128-bit key, 

indicating ten iterations. Each of the initial Nr-1 rounds 

comprises four operations: Sub-bytes (), Shift Rows (), Mix 

Columns (), and Add Round Key.The sub-byte 

transformation process entails replacing each byte in the 

state independently using a substitution box, generating an 

invertible S-box through finite field GF (28) multiplication 

inversion with unresolved polynomials m(x) = x8 + x4 + x3 + 

x + 1. An affine transformation over GF (28) is then applied. 

Shift rows differ from offsets as they cycle through state 

rows. The decryption process remains consistent, albeit with 

unique values assigned to each shifting offset. The Mix 

Columns Transformation processes columns one by one on 

the State, treating each column as a four-term polynomial 

and multiplying it with constant polynomials a(x) = <03 x3 + 

<01 x2 + ~02 x, within GF (28) modulo x4 + 1. 

During this transformation, a round key is XORed with the 

state to add it. Each round key contains Nb words in the key 

expansion, updating state columns with Nb terms. The 

decryption process similarly employs Key Addition. 

Key expansion involves multiplying the 4-word array 

comprising the round key by the key from the previous 

round to expand the key. A variable constant is added to the 

key at each round, and a series of S-Box lookups are 

performed for each 32-bit word in the key. Nb represents the 

total words generated from the Key schedule expansion (Nr 

+ 1). 

       2.1 RIJNDAEL ALGORITHM 
A block cipher functions by encrypting and decrypting data 

through a series of iterative transformations performed 

across multiple rounds. This process involves the repetitive 

application of a specific transformation mechanism. These 

transformations are executed on data blocks, typically of 

fixed size, in a stepwise fashion. The encryption and 

decryption operations rely on encryption keys, which dictate 

the exact transformations applied at each step. These keys 

come in various lengths, commonly 128, 192, or 256 bits, 

and serve as crucial components in securing the data. 

Rijndael, a prominent example of a block cipher, follows 

this paradigm. It utilizes encryption keys of different lengths 

and operates on data blocks in increments of 128 bits. These 

data blocks are represented as one-dimensional arrays of 8-

bit bytes, with characters often employed for textual 

mapping. The encryption key itself is held within a similar 

array structure. Throughout the encryption and decryption 

processes, the intermediate cipher results undergo numerous 

alterations, ensuring the security and integrity of the data. 

One notable aspect of Rijndael is its support for various key 

lengths, including 128, 192, or 256 bits, providing flexibility 

in choosing the level of security required for a given 

application. Notably, the number of possible AES 128-bit 

keys greatly exceeds that of DES 56-bit keys, highlighting 

the enhanced security offered by Rijndael. Additionally, 

Rijndael employs sophisticated key scheduling techniques to 

derive subkeys from the primary cipher key, thereby 

fortifying the encryption process against potential attacks. 

The byte-level operations within Rijndael, such as matrix 

manipulations and finite field arithmetic, play a crucial role 

in the encryption and decryption processes. By treating 

bytes as polynomials within a finite field, these operations 

become more manageable and straightforward to implement. 

This approach enhances both the efficiency and security of 

the algorithm. In comparison to older encryption standards 

like DES and Triple DES, Rijndael boasts several 

advantages. Its alignment of block and key sizes ensures 

compatibility with modern cryptographic requirements, 

while its computational efficiency outperforms that of DES. 

Furthermore, Rijndael offers flexibility in key length and 

block size, allowing for tailored security solutions to meet 

specific application needs. The robustness of Rijndael's 

underlying structure, coupled with its adaptability to 

different security requirements, makes it a preferred choice 

for various cryptographic applications. Its resilience against 
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attacks and ability to accommodate evolving security needs 

contribute to its widespread adoption in both academic and 

practical settings. Rijndael is well-suited for securely 

exchanging keys and transmitting data of either 128 or 256 

bits in length. 

 

2.2 PIPELINING VS LOOP UNROLLING 
There are two methods for implementing hardware: loop-

unrolling and pipelining: 

In order to process each input data block concurrently in 

each processing element, registers are placed between all 

combinational processing unit in a pipeline. The following 

form illustrates a pipelined version of the Advanced 

Encryption Standard (AES) algorithm, with each round 

representing an ith round of the process. 

 
Fig. 2 pipelining vs loop unrolling 

A completely pipelined architecture is one that uses the 

AES-128 cypher and can process every one of the blocks of 

ten rounds at once. The cypher has 10 rounds. The AES-128 

algorithm requires 10 128-bit data registers in a fully 

pipelined implementation. The greater the number of data 

blocks that can be processed concurrently, the greater the 

number of registers and, therefore, the space required for 

implementation. A loop-unrolling approach, in comparison 

with pipelining, processes one or more rounds of an 

algorithm in a single clock cycle. As shown in the 

accompanying design, the simplest form for a loop unrolled 

execution of AES uses a data register for storing the result 

from the preceding clock cycle and just a single iteration of 

the algorithm as a combinational circuitry processing 

element. In contrast to a completely pipelined design, which 

allows for the entry of fresh plaintext into the encryption 

process every clock cycle, this one requires 10 clock cycles. 

While loop-unrolled design uses less space, pipelined 

architecture uses more, while having higher throughput. For 

situations when space is not an issue, a completely pipelined 

design provides optimal performance. For applications with 

limited space, the simplest form of loop-unrolled—also 

known as the round-based implementation—is preferable 

than fully pipelined design since it utilizes the least amount 

of room. Although it is not too difficult to change this code 

to its pipelined equivalent, it is a loop-unrolled 

implementation. 

The main difference between pipelining and loop unrolling 

lies in their purpose, application, and abstraction level. 

Pipelining is primarily employed at the hardware level, such 

as in CPU architectures, to increase throughput by executing 

multiple instructions concurrently in stages. In contrast, loop 

unrolling is a software optimization technique applied 

during compilation to enhance loop performance by 

minimizing overhead and potentially exposing optimization 

opportunities like instruction-level parallelism. While 

pipelining operates at a lower level of abstraction, involving 

hardware design and implementation, loop unrolling 

operates at a higher level, transforming source code to 

optimize loops. While both techniques aim to improve 

performance, pipelining focuses on maximizing throughput 

by overlapping instruction execution, while loop unrolling 

targets loop efficiency and reduction of overhead. 

In summary, while both pipelining and loop unrolling aim to 

improve performance, they do so at different levels of 

abstraction and are applied in different contexts: pipelining 

in hardware design and loop unrolling in software 

optimization. 

 

2.3 AES ENCRYPTION  

 

2.3.1 ADD ROUND KEY 

The state is augmented by one round key through the 

utilization of a bit-wise exclusive-OR (XOR) operation in 

the Add Round Key transformation. The Round Add Key is 

illustrated in the figure below. Decryption and encryption 

both utilize the identical transformation. 

 
                 Fig. 3 Add round key  

 

2.3.2 SUBSTITUTIVE BYTES 

Sub Bytes is an operation that swaps bytes in a nonlinear 

fashion. In accordance with the substitution box (also known 

as the S-box), one byte is substituted for every byte in the 
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input state. To calculate the S-box, a bit-wise affine 

transformation and the multiplicative inversion in the finite 

field GF (28) are used. 

 

  
                                   Fig 4.1 S-Box 

 
      Fig.4.2 S-Box 

 

2.3.3 SHIFT ROWS TRANSFORMATION 

In the Shift Rows, a cyclic shift operation is performed on 

each row of the state. The bytes in the initial row of the state 

remain unaltered throughout this procedure. The figure 

illustrates a cyclic progression of one byte to the left in the 

second row, two bytes in the third row, and three bytes in 

the fourth row. When inv Shift Row is implemented, the 

procedure is carried out in the opposite order of Shift Rows. 

 
       Fig.5 Shift Row 

 

2.3.4 MIX COLUMN 

Each column of the state undergoes the Mix Column 

transformation separately. The four-term polynomial over 

GF (28) is multiplied by for each column.  

a(x) modulo (x4 + 1) where a(x) = {03}x3 + {01}x2 + {01}x 

+ {02} 

The expression for this transformation in matrix form is 

 

 
                                  Fig. 6 Mix Column  

 

2.3.5 KEY SCHEDULING FUNCTION 

All of the Round Keys, used in every round, are derived 

from the initial secret input key, and the spawning 

manoeuvre is key expansion. An encryption key's first round 

is known as the original key. When decrypting, the original 

key is the last one produced via key expansion. Following 

the previous description, the plain text input will be 

followed by the secret round key before the repeated phases 

of encryption or decryption begin. Key sizes of 128 bits will 

generate 10 sets of 24-byte round keys. The procedure for 

producing ten iterations of the round key is detailed below: 

Swap the items in the fourth column of the (i-1) key so that 

they are all moved up one row. An example of this is shown 

below. 

  
As the example below demonstrates, the column values are 

subsequently replaced with SBox table values in a manner 

analogous to the Sub Bytes Transformation round. 

 
A row constant denoted by Rcon is used to perform an XOR 

operation on the modified byte matrix. Rcon depends on 

every round. The ith key's ultimate state is described below.  
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The preceding output is XOR-ed with the initial column of 

the (i-1)th key.  

 

The first column of the ith key is then XOR-ed with the 

second column of the (i-1)th key. As illustrated below. 

  
Apply the identical process to the remaining columns 

(2).This will yield the comprehensive key for the current 

iteration. 

  
For every one of the ten keys, this same process is repeated. 

Since the (10-i)th round of decryption is equal to the ith 

round key of encryption, it is necessary to save the keys in 

advance. 

 

2.4 INTRODUCTION TO AES DECRYPTION  

To get the original plaintext from an encrypted cipher-text, 

decryption works in the opposite direction of encryption and 

uses inverse round transformations. Figure (b) depicts the 

decryption procedure, which involves using the key to 

perform a basic conversion from encrypted text to plain text. 

In order to decrypt data in a round fashion, the following 

functions are used: Add Round Key, Inv Mix Columns, Inv 

Shift Rows, and Inv Sub Bytes. decryption using AES, as it 

is shown here. 

          

  

                                Fig. 7 AES Decryption  

 

           2.4.1 ADD ROUND KEY TRANSFORMATION 

Similar to how the XOR operation has an inverse operation, 

the Add Round Key operation also has an inverse operation. 

To apply the round keys, it is necessary to select them in the 

opposite direction. 

 
                                Fig. 8 Add round key  

 

           2.4.2 INVMIX-COLUMN TRANSFORMATION 

The InvMix-Columns transformation involves the 

multiplication of coefficients, represented by elements 

within the state columns, by a predetermined polynomial 

modulo (x4 + 1). This multiplication occurs within 

polynomials of degree less than 4 over the Galois Field GF 

(28). The fixed polynomial utilized for this operation is 

denoted as d(x) = {0b}x3 + {0d}x2 + {09}x + {0e}, where 

{0b}, {0d}, {09}, and {0e} signify hexadecimal values. 

 
                               Fig. 9 Inverse Mix Column  

 

           2.4.3 INVSHIFT ROWS TRANSFORMATION 

Shift Rows and InvShift Rows operate identically, albeit in 

the opposite orientation. While the first row remains 

unchanged, the right-ward shifts of the second, third, as well 

as fourth rows are one, two, and three bytes, respectively. 

The figure illustrates the InvShift Rows Transformation. 

 
                    Fig. 10 Inverse Shift Rows 

 

           2.4.4 INVSUB-BYTES TRANSFORMATION 
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The Inv Sub-Bytes transformation is executed utilizing the 

Inv S-box, which is a substitution table that was previously 

calculated. The Inv S-box table comprises 256 numbers 

ranging from 0 to 255, with their respective values listed in 

the table. 

 

                               Fig. 11 Inverse Sub-Bytes 

 

3. PROPOSED ARCHITECTURE  

The primary goals of this research are to investigate existing 

AES acceleration techniques, identify their limitations, and 

explore innovative methods for optimizing AES 

performance. One of the methods we explore in this study is 

loop unrolling. Figure 12 illustrates the block diagram of an 

AES (Advanced Encryption Standard) encryption process. It 

begins with the plaintext and the key, each entering separate 

multiplexers (Mux) that select the input between the new 

data and a reset signal. These inputs are then fed into 

registers, synchronized by a clock signal (clk). The plaintext 

register's output is XORed with the subkey generated from 

the key schedule round function, producing the ciphertext. 

The subsequent steps involve the core AES transformations: 

SubBytes, ShiftRows, and MixColumns. SubBytes performs 

a non-linear substitution, transforming each byte 

individually. ShiftRows shifts the rows of the state array 

cyclically. MixColumns mixes the columns of the state, 

providing diffusion. These steps are iterated in rounds 

controlled by a counter within the controller section, which 

also ensures the correct number of rounds.After the rounds, 

another Mux determines if the MixColumns operation 

should be bypassed for the final round, which differs 

slightly from the other rounds in the AES process. The key 

schedule round function generates the required subkeys for 

each round, orchestrated by the controller to align with the 

AES round transformations. 

The controller also includes a register, multiplexer, and 

specific constants (0x36, 0x01, 0x6C) to manage the round 

operations and signal when the encryption process is 

complete. The final ciphertext is produced after the last 

round of transformations and exits the system. By 

implementing loop unrolling techniques in AES encryption 

and decryption routines, we aim to achieve significant 

speedups while maintaining the robust security properties of 

the algorithm. Figure 13 illustrates the block diagram the 

AES decryption process. The process starts with the 

ciphertext and the decryption key, which are fed into 

separate multiplexers (Mux) that select between the new 

data and a reset signal. These inputs are then loaded into 

registers, synchronized by a clock signal (clk). The 

ciphertext register's output is XORed with the subkey 

generated from the key schedule round function, producing 

the intermediate decryption result. The core AES decryption 

transformations follow, which include InvSubBytes, 

InvShiftRows, and InvMixColumns. InvSubBytes performs 

the inverse of the byte substitution step, transforming each 

byte individually back to its original form. InvShiftRows 

reverses the cyclic row shifts applied during encryption. 

InvMixColumns reverses the column mixing, undoing the 

diffusion applied during encryption. These steps are iterated 

over multiple rounds as controlled by the round counter 

within the controller section. The controller uses a lookup 

table and a 4-bit counter to manage the decryption rounds 

and ensure they occur the correct number of times. The 

controller also incorporates specific constants (0x36 and 

0x00) to manage the initialization and completion of the 

decryption process. After the appropriate number of rounds, 

another Mux determines if the InvMixColumns operation 

should be bypassed for the first round, which differs slightly 

from the other rounds in the AES decryption process. The 

key schedule round function, in this case, generates the 

required subkeys for each decryption round, aligned with the 

AES decryption transformations. 

The final plaintext is obtained after the last round of inverse 

transformations and is outputted from the system. The 

decryption process is completed when the controller signals 

that all rounds have been executed. . The area efficiency 

achieved by the proposed architecture through the use of 

loop unrolling makes it the optimal choice for implementing 

sequential data blocks in a small footprint. 

 

3.1 MODIFIED AES ALGORITHM  

The AES algorithm consists of a series of operations 

performed in nine rounds. The operations are done in the 

following order: add-round-key, sub-bytes, shift-rows, mix-

columns, and add-round-key. After the first nine rounds, the 

operations sub-bytes, shift-rows, and add-round-key are 

executed. 

In the modified version, which is shown in fig. 12 & 13. We 

have introduced a key scheduling function to enhance and 

facilitate the AES algorithm more efficiently and robustly. 
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        Fig. 12 Proposed Aes Encryption  

  
                         Fig. 13 Proposed Aes Decryption 

 

3.1.1 KEY SCHEDULING FUNCTION 

The key scheduling process is crucial in cryptographic 

operations such as encryption and decryption. Upon 

initialization signalled by reset assertion, the module loads 

the initial key into the register. Clock cycle processing 

entails two main operations. Firstly, during each cycle, the 

register's current state is passed through the round function. 

If its post-reset, the initial key is utilized; otherwise, the 

previous round key is employed. Secondly, the round 

function computes the next sub-key using the current sub-

key and a round constant, storing it in the feedback signal. 

This newly generated sub-key becomes the input for the 

subsequent cycle, facilitating a feedback loop ensuring each 

round key is derived from the prior one. Consequently, the 

round key output continuously furnishes the current round 

key for cryptographic operations. The process initializes by 

loading the initial key, iteratively computes subsequent 

round keys, updates the register with each generated key, 

and provides the current round key for cryptographic 
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functions, forming a robust and iterative key scheduling 

mechanism. 

 
               Fig. 14 Key Schedule Function 

 

4. RESULTS AND COMPARISON  
Ref. 

No. 

Device Model Frequency 

(MHz) 

Slice 

Registers 

Throughput 

(Gbps) 

this  

work 

  XC7Z100FFG1156-2 296.789(enc) 

300.806(Dec) 

264(enc) 

260(dec) 

37.9(enc) 

38.5(dec) 

 

[7]   XC6VLX240T  319.5 
 

40.9 

[9]   XC3S500E4FG320  222.41 2439(enc) 

2635(dec) 

 

2.846 

[15]   NEXYS 4 1102.536 121 14.1125 

[16]     XC5VLX30  277.4 5493 3.5 

[19]   XC5VLX110T 322.7 3012 41.31 

 

In Our Research On Aes-128 Utilizing Loop Unrolling, We 

Have Achieved Notable Advancements In Throughput - 

37.9 Gbps (Enc), 38.5 Gbps (Dec), Frequency - 296.789 

Mhz (Enc), 300.806 Mhz (Dec), Slice Registers – 264 (Enc), 

260 (Dec) And Slices – 1044 (Enc), 1581 (Dec) Compared 

To Some Existing Studies: -  

[7] Throughput – 40.5 Gbps, Frequency –319.5 MHz.  

[9] Throughput – 2.846 Gbps, Frequency – 222.41 MHz, 

Slices – 2439. 

[15] Throughput –14.1125 Gbps, Frequency – 1102.536 

MHz, Slice Registers –121.  

[16] Throughput – 3.5 Gbps, Frequency – 277.4 MHz, 

Slices - 5493. 

Our implementation showcases a substantial increase in 

throughput, thanks to the efficient reduction of loop 

overhead and optimized memory access patterns enabled by 

loop unrolling. This improvement in throughput translates to 

enhanced data processing speeds, making our aes-128 

implementation well-suited for high-performance computing 

environments. 

Furthermore, our research demonstrates superior frequency 

performance, indicating the capability of our 

implementation to operate at higher clock frequencies 

compared to some previous approaches. By minimizing 

redundant loop control operations and maximizing 

instruction-level parallelism through loop unrolling, we have 

effectively reduced critical path delays and improved overall 

frequency scalability. 

In terms of resource utilization, our aes-128 implementation 

using loop unrolling exhibits efficient utilization of slice 

LUT (look-up table) resources, a crucial consideration in 

FPGA (field-programmable gate array) implementations. By 

carefully optimizing loop unrolling factors and exploiting 

hardware resources judiciously, we have achieved a balance 

between performance and resource efficiency, making our 

implementation highly competitive in resource-constrained 

environments. 

Overall, our research presents a significant advancement in 

aes-128 implementations, offering improved throughput, 

frequency performance, and resource utilization compared 

to some prior studies. By leveraging the benefits of loop 

unrolling, we have developed a high-performance and 

resource-efficient aes-128 implementation that holds 

promise for various applications requiring secure and 

efficient data encryption. 

 

 

4.1 RESULT DISCUSSION 

Utilizing the Vivado 2018.2 tool, we conducted synthesis 

and timing analysis. Employing loop unrolling in our design, 

we achieved a clock cycle of 330.579MHz. Following 

verification of each module's functionality, integration 

becomes feasible. In support of this approach, we 

partitioned the AES algorithm into distinct encryption and 

decryption modules. The chip synthesis occurred within the 

Vivado 2018.2 environment, targeting ZYNQ technology 

(specifically the xc7z100ffg1156-2 target device), with 

detailed results depicted in Figures 2.4.2.2 and 3.6.2.2. 

Throughout the entirety of the process, Vivado 2018.2 

remained the tool of choice. Subsequent to synthesizing in 

VHDL style, we derived individual Register Transfer Logic 

(RTL). Additionally, a timing simulation was conducted to 

validate the functional integrity of our design. 
 

5. CONCLUSION 

Our research has focused on optimizing AES encryption and 

decryption speeds through the exploration of loop unrolling 

techniques while considering various implementation 

strategies. Utilizing Vivado 2018 software, we successfully 

implemented AES 128-bit encryption and decryption 

algorithms, achieving notable throughputs of 38 Gbps for 

encryption and 38.5 Gbps for decryption with a fully 

pipelined design operating in Electronic Codebook (ECB) 

mode. Our findings demonstrate that manual loop unrolling 

effectively reduces loop iterations and enables better 

compiler optimizations, leading to significant performance 

improvements while maintaining robust security properties. 

Additionally, achieving minimum periods of 3.324ns for 

decryption and 3.369ns for encryption, corresponding to 

maximum frequencies of 300.806MHz and 296.789MHz 

respectively, underscores the efficiency and reliability of our 

AES 128-bit implementation. These results contribute 

valuable insights into AES acceleration methodologies, 

emphasizing the importance of optimizing performance 

without compromising security. Furthermore, they highlight 

http://www.ijsrem.com/
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the potential for rapid data processing in security-critical 

scenarios. Moving forward, further refinement and 

optimization of these methodologies hold promise for even 

greater improvements in throughput and efficiency, laying 

the groundwork for enhanced cryptographic systems in the 

future.  
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