
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 1

AES 128 Bit Optimization: High-Speed and Area-Efficient through Loop Unrolling

Sandarbh Yadav, Gunin Girdhar,

sandarbh.yadav.ug20@nsut.ac.in , gunin.girdhar.ug20@nsut.ac.in

Department of Electronics and Communication Engineering, Netaji Subhas University of Technology (NSUT) Azad Hind Fauj Marg,

Sector-3,

Dwarka, New Delhi, Delhi 110078, India

Abstract: This study introduces a high-throughput FPGA implementation of AES-128, prioritizing efficiency for robust

security and fast data processing needs. AES-128 is renowned for its security and widespread use in various applications.

Employing techniques like loop unrolling and pipelining, the implementation maximizes throughput and customizes AES for

FPGA architectures. A novel optimization approach, "new-affine-transformation," reduces resource demands and latency for

the Sub-Bytes function. The AES architecture is strategically modified for efficiency, with rearranged functions and

streamlined processing. The implementation, in VHDL and utilizing Xilinx Virtex-5 FPGA, achieves remarkable performance:

37.9 Gbps (encryption) and 38.5 Gbps (decryption) throughput at frequencies of 296.789 MHz (encryption) and 300.806 MHz

(decryption). Resource utilization is efficient, with 264 (encryption) and 260 (decryption) slice registers and 1044 (encryption)

and 1581 (decryption) total slices.

Keywords: AES, FPGA, cryptography, encryption, decryption, throughput, plain text, cipher text

1. INTRODUCTION

Cryptography, a vital component of information security,

focuses on employing mathematical techniques to safeguard

privacy, ensure the authenticity of entities, maintain data

integrity, and verify data origin. The primary objective of

cryptography is to detect and prevent fraudulent or

malicious activities. Symmetric-key cryptography involves

the utilization of a shared key known only to the parties

involved in the communication. One noteworthy attribute of

this approach is its utilization of a solitary key for the

purposes of encrypting and decrypting data. The Data

Encryption Standard (DES) operates using the same key for

encryption and decryption, facilitating rapid execution on

general-purpose processors or specialized hardware,

achieving throughputs exceeding 1 GByte/s. However,

DES's reliance on a 56-bit key size raises concerns regarding

vulnerability to brute-force attacks, considering the

advancements in computer power. In response to these

concerns, Triple Data Encryption Standard (3DES) emerged,

enabling the use of larger keys to bolster security compared

to the relatively modest 56-bit key size of DES. Despite its

enhanced security, 3DES suffers from significant drawbacks,

notably its sluggish performance in software

implementations due to its hardware-oriented design and the

use of three times the number of rounds compared to DES.

Furthermore, both DES and 3DES share a common

limitation of utilizing a 64-bit block size, which

compromises efficiency and security. Recognizing the need

for a more efficient and secure alternative, the selected

algorithm, Rijndael, developed by Joan Daemen and

Vincent Rijmen, underwent rigorous evaluation and was

officially adopted as the standard in 2001. Advanced

Encryption Standard (AES) operates on a substitution-

permutation network, executing byte-level substitutions and

word-level permutations in each processing cycle. Unlike

DES, which employs the Feistel structure, AES's design

facilitates swift software implementation owing to its

substitution and permutation-based approach.

 Fig. 1 AES DESIGN

Several researchers' efforts to construct the AES algorithm

using field-programmable gate arrays (FPGAs) are

highlighted in this section. A number of academics have

zeroed down on either speed optimization or area

optimization. [6] A highly optimized hardware

implementation of the Rijndael AES Algorithm was realized

on the Xilinx Virtex-5 XC5VLX50 FPGA device, using a

modular VHDL approach. The design operates at 339.087

MHz, achieving a throughput of 4.34 Gbps with just 399

slices of the Virtex-5 FPGA, emphasizing both high

performance and efficiency. [7] This project optimizes area

for a masked AES with an unrolled structure, leveraging

FPGA block RAM (BRAM) to enhance hardware efficiency.

The implementation achieves a significant 36.2% reduction

in area footprint, with the main method contributing to a

20.5% decrease and BRAM optimization providing an

additional 15.7% reduction. It achieves 40.9 Gbps

http://www.ijsrem.com/
mailto:sandarbh.yadav.ug20@nsut.ac.in
mailto:gunin.girdhar.ug20@nsut.ac.in

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 2

throughput at 4.5 Mbits/s per slice on the Xilinx

XC6VLX240T platform, enhancing defense against DPA

and glitch attacks. [8] This paper presents an FPGA

implementation of the AES-Rinjdael cryptosystem with

128-bit blocks and keys. Synthesis results from the Virtex II

Pro Kit FPGA using the Xilinx Synthesis Tool show a

computation time of 6,922 nanoseconds for generating

ciphertext with AES, utilizing four s-boxes and two dual

port RAMs. A synthesizable and optimized VHDL code is

developed for encryption and decryption of 128-bit data,

validated using Xilinx's ISE 9.2i functional simulator. To

reduce hardware usage, an iterative design approach

simulates every algorithmic transformation. [9] This design,

utilizing the XC3S50 0E-4FG320 FPGA device, achieves a

remarkable frequency of 222.41 MHz and an outstanding

throughput of 2.846 Gbps. With just 2439 slices, it

optimizes resource utilization, achieving a high throughput

per slice of 1.166 Mbps. Its superior balance among

frequency, throughput, and slice efficiency sets it apart from

other designs, emphasizing the importance of optimizing

these aspects for improved hardware performance in FPGA-

based design methodologies. [10] The architectures in this

paper were executed on reconfigurable platform FPGAs.

Successful implementation on Xilinx Virtex4 (device

xc4vlx80, package 12ff1148) confirms that the proposed

architectures require minimal hardware resources. The AES

Encryption and Decryption designs each utilize only 9% of

the chip resources at a clock frequency of 382.988 MHz. By

employing pipeline techniques, throughput can be increased.

[12] AES algorithm based on FPGA that is proposed and

employs 1746 logic elements and 32768 memory bits. This

design was synthesized using Altera on Cyclone-II. The

algorithm attains a minimal latency, with encryption

throughput measuring 465 Mbit/sec and decryption

throughput measuring 189 Mbit/sec. [13], utilizing the

XC3S400-FG456 device, exhibited a throughput of 160.875

Mbits/s with 2059 Mbps, utilizing 1403 slices and achieving

a high throughput/area ratio of 1.467 Mbps per slice.

Although the overall throughput was slightly lower than

other designs, the efficient use of available hardware

resources, reflected in the high throughput per slice area,

indicated a notable achievement in optimizing the

design's efficiency. [14] The project aims to implement the

pipelined AES algorithm with key sizes of 128, 192, and

256 bits for image encryption and decryption. It conducts a

comparative analysis covering latency, efficiency, security,

frequency, and throughput. The proposed architecture,

realized through VHDL programming, utilizes ModelSim

for simulation and Xilinx devices for synthesis, placement,

and routing. Target devices include the Xilinx Virtex

XCV600E-6BG560, Spartan XC6SLX25, and Spartan 3E

starter kit FPGA. Achieved maximum frequencies are

385.239, 181.258, and 224.770 MHz, with throughputs of

1232.736, 580.02, and 719.264 Mbit/sec for Encryption and

Decryption, respectively. [15] This paper presents a

reconfigurable platform's rapid and secure AES algorithm

implementation. Key generation is done in MATLAB, while

design and simulation use Xilinx SysGen, Nexys4, and

Simulink. Leveraging offline key generation and an

enhanced Xilinx System Generator-based design, the system

operates at a maximum frequency of 1102.536 MHz with

only 121 slice registers in use. Additionally, it achieves a

throughput of 14.1125 Gbps. [16] The paper discusses the

development of a low-power, high-throughput VLSI

architecture for the Advanced Encryption Standard (AES)

algorithm, targeting cryptographic applications in high-

speed network environments. Efficient implementation of

AES in both hardware and software is explored, supporting

encryption and decryption with 256-bit keys and achieving a

throughput of 0.06 Gbps. VHDL is used for design

simulation, and FPGA chips are employed for hardware

implementations. The focus is on a reconfigurable hardware

implementation of AES using a key expansion approach,

emphasizing metrics such as throughput, critical path delay,

and power consumption essential for FPGA performance

analysis. The proposed implementation with a dual-stage

scheme demonstrates a significant reduction in power

requirements by up to 43.4% and a decrease in critical path

time to 21.4% compared to existing schemes. [17] The paper

presents an efficient implementation of the Advanced

Encryption Standard (AES) algorithm on Field

Programmable Gate Arrays (FPGAs) to enhance security

and throughput, the implementation focuses on minimizing

resource utilization and achieving high throughput through

parallel-pipeline design and optimized S-box.

Demonstrating a throughput of 97.11Gbps and efficiency of

85.18 Mbps/slice, with significant reduction in resource

usage and increased throughput compared to existing work.

[19] This research paper focuses on enhancing data security

using the Advanced Encryption Standard (AES), a technique

aimed at safeguarding information from theft or tampering.

It centers on developing a specialized electronic chip to

expedite and optimize the AES process. Through innovative

approaches to mathematical operations and key generation,

the researchers devised methods to accelerate the chip's

performance while conserving space. Testing of the new

chip design demonstrated significantly improved speed

compared to traditional methods. [20] The paper emphasizes

architectural optimization, exploiting pipelining, loop

unrolling, and sub-pipelining to increase speed, with a trade-

off of increased area. Various methods such as resource

sharing and common sub-expression elimination are

discussed to reduce critical path and area issues between

encryptor and decryptor. The paper details the AES

algorithm, key expansion, and various architectures for

improving speed, and provides a comparison of pipelining,

sub-pipelining, and loop unrolling. It involves the use of

techniques such as unrolling, pipelining, and combinational

logic for SubBytes/InvSubBytes to tailor performance and

area requirements. VHDL and devices like Virtex-E Xilinx

Foundation Series 7.li software were utilized for the

implementation, with evaluations based on throughput, area

cost, and efficiency. The paper also discusses various

architectures for the Mix Columns transformation, including

methods for efficient implementing Substitute byte

operation, Inverse Mix Column Transformation, and

detailed analysis of the performance measurements. [21]

The research aims to develop a high-throughput, FPGA-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 3

efficient (FPGA-Eff) cryptosystem tailored for high-traffic

applications. To handle substantial workloads effectively,

loop-unrolling, inner and outer pipelining techniques are

employed. Addressing the resource-intensive nature and

latency issues of Substitution bytes (Sub-Bytes) in AES, a

novel approach named new-affine-transformation is

proposed, integrating inverse isomorphic and affine

transformation. AES is further optimized according to the

suggested architecture, with strategic modifications such as

interchanging Shift-Rows and Sub-Bytes for the initial nine

iterations and partitioning Mix-Columns into two stages to

achieve stage latency parity. The implementation utilizes

VHDL on the Xilinx Virtex-5 platform, achieving a

throughput of 79.7 Gbps, FPGA-Eff of 13.3 Mbps/slice, and

a frequency of 622.4 MHz. Notably, the proposed layout

demonstrates a 22.63% improvement in FPGA-Eff and an

8.02% enhancement in data transmission compared to

existing solutions.

2. BASIC AES ALGORITHM

An input block of a solitary 128 bits is utilized for both the

encryption and decryption processes in AES. This specific

input block is denoted by an octagonal matrix of bytes. A

copy of this block is appended to the state array, which is

modified during each encryption and decryption operation.

Finally, the state is duplicated using an output matrix.

Illustration 1 illustrates these procedures. Also represented

by the square matrix or grid of data is the 128-bit key.

Following this, the 128-bit key is expanded to a list of 44

key scheduling words, of which four bytes comprise each

word. The columns of a matrix are utilized to arrange the

bytes. To illustrate, suppose the initial column of the matrix

comprises the first four bytes of unencrypted inputs

amounting to 128 bits to the encryption cipher. The second

column would contain the second four bytes, and so forth.

The word is composed of the initial four byte values of the

expanded key, which are located in the initial column of the

w matrix. Its principal design objectives were to

demonstrate the subsequent attributes: Protection against all

recognized forms of assault - Optimal performance with

minimal code footprint across multiple platforms "Simplify

Plan Algorithm" AES Procedure.Each encryption or

decryption process involves a set number of iterations,

where sequential transformations are applied to the bits of a

specific data block. The number of iterations is determined

by the length of the key, denoted as Nr=10 for a 128-bit key,

indicating ten iterations. Each of the initial Nr-1 rounds

comprises four operations: Sub-bytes (), Shift Rows (), Mix

Columns (), and Add Round Key.The sub-byte

transformation process entails replacing each byte in the

state independently using a substitution box, generating an

invertible S-box through finite field GF (28) multiplication

inversion with unresolved polynomials m(x) = x8 + x4 + x3 +

x + 1. An affine transformation over GF (28) is then applied.

Shift rows differ from offsets as they cycle through state

rows. The decryption process remains consistent, albeit with

unique values assigned to each shifting offset. The Mix

Columns Transformation processes columns one by one on

the State, treating each column as a four-term polynomial

and multiplying it with constant polynomials a(x) = <03 x3 +

<01 x2 + ~02 x, within GF (28) modulo x4 + 1.

During this transformation, a round key is XORed with the

state to add it. Each round key contains Nb words in the key

expansion, updating state columns with Nb terms. The

decryption process similarly employs Key Addition.

Key expansion involves multiplying the 4-word array

comprising the round key by the key from the previous

round to expand the key. A variable constant is added to the

key at each round, and a series of S-Box lookups are

performed for each 32-bit word in the key. Nb represents the

total words generated from the Key schedule expansion (Nr

+ 1).

 2.1 RIJNDAEL ALGORITHM
A block cipher functions by encrypting and decrypting data

through a series of iterative transformations performed

across multiple rounds. This process involves the repetitive

application of a specific transformation mechanism. These

transformations are executed on data blocks, typically of

fixed size, in a stepwise fashion. The encryption and

decryption operations rely on encryption keys, which dictate

the exact transformations applied at each step. These keys

come in various lengths, commonly 128, 192, or 256 bits,

and serve as crucial components in securing the data.

Rijndael, a prominent example of a block cipher, follows

this paradigm. It utilizes encryption keys of different lengths

and operates on data blocks in increments of 128 bits. These

data blocks are represented as one-dimensional arrays of 8-

bit bytes, with characters often employed for textual

mapping. The encryption key itself is held within a similar

array structure. Throughout the encryption and decryption

processes, the intermediate cipher results undergo numerous

alterations, ensuring the security and integrity of the data.

One notable aspect of Rijndael is its support for various key

lengths, including 128, 192, or 256 bits, providing flexibility

in choosing the level of security required for a given

application. Notably, the number of possible AES 128-bit

keys greatly exceeds that of DES 56-bit keys, highlighting

the enhanced security offered by Rijndael. Additionally,

Rijndael employs sophisticated key scheduling techniques to

derive subkeys from the primary cipher key, thereby

fortifying the encryption process against potential attacks.

The byte-level operations within Rijndael, such as matrix

manipulations and finite field arithmetic, play a crucial role

in the encryption and decryption processes. By treating

bytes as polynomials within a finite field, these operations

become more manageable and straightforward to implement.

This approach enhances both the efficiency and security of

the algorithm. In comparison to older encryption standards

like DES and Triple DES, Rijndael boasts several

advantages. Its alignment of block and key sizes ensures

compatibility with modern cryptographic requirements,

while its computational efficiency outperforms that of DES.

Furthermore, Rijndael offers flexibility in key length and

block size, allowing for tailored security solutions to meet

specific application needs. The robustness of Rijndael's

underlying structure, coupled with its adaptability to

different security requirements, makes it a preferred choice

for various cryptographic applications. Its resilience against

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 4

attacks and ability to accommodate evolving security needs

contribute to its widespread adoption in both academic and

practical settings. Rijndael is well-suited for securely

exchanging keys and transmitting data of either 128 or 256

bits in length.

2.2 PIPELINING VS LOOP UNROLLING
There are two methods for implementing hardware: loop-

unrolling and pipelining:

In order to process each input data block concurrently in

each processing element, registers are placed between all

combinational processing unit in a pipeline. The following

form illustrates a pipelined version of the Advanced

Encryption Standard (AES) algorithm, with each round

representing an ith round of the process.

Fig. 2 pipelining vs loop unrolling

A completely pipelined architecture is one that uses the

AES-128 cypher and can process every one of the blocks of

ten rounds at once. The cypher has 10 rounds. The AES-128

algorithm requires 10 128-bit data registers in a fully

pipelined implementation. The greater the number of data

blocks that can be processed concurrently, the greater the

number of registers and, therefore, the space required for

implementation. A loop-unrolling approach, in comparison

with pipelining, processes one or more rounds of an

algorithm in a single clock cycle. As shown in the

accompanying design, the simplest form for a loop unrolled

execution of AES uses a data register for storing the result

from the preceding clock cycle and just a single iteration of

the algorithm as a combinational circuitry processing

element. In contrast to a completely pipelined design, which

allows for the entry of fresh plaintext into the encryption

process every clock cycle, this one requires 10 clock cycles.

While loop-unrolled design uses less space, pipelined

architecture uses more, while having higher throughput. For

situations when space is not an issue, a completely pipelined

design provides optimal performance. For applications with

limited space, the simplest form of loop-unrolled—also

known as the round-based implementation—is preferable

than fully pipelined design since it utilizes the least amount

of room. Although it is not too difficult to change this code

to its pipelined equivalent, it is a loop-unrolled

implementation.

The main difference between pipelining and loop unrolling

lies in their purpose, application, and abstraction level.

Pipelining is primarily employed at the hardware level, such

as in CPU architectures, to increase throughput by executing

multiple instructions concurrently in stages. In contrast, loop

unrolling is a software optimization technique applied

during compilation to enhance loop performance by

minimizing overhead and potentially exposing optimization

opportunities like instruction-level parallelism. While

pipelining operates at a lower level of abstraction, involving

hardware design and implementation, loop unrolling

operates at a higher level, transforming source code to

optimize loops. While both techniques aim to improve

performance, pipelining focuses on maximizing throughput

by overlapping instruction execution, while loop unrolling

targets loop efficiency and reduction of overhead.

In summary, while both pipelining and loop unrolling aim to

improve performance, they do so at different levels of

abstraction and are applied in different contexts: pipelining

in hardware design and loop unrolling in software

optimization.

2.3 AES ENCRYPTION

2.3.1 ADD ROUND KEY

The state is augmented by one round key through the

utilization of a bit-wise exclusive-OR (XOR) operation in

the Add Round Key transformation. The Round Add Key is

illustrated in the figure below. Decryption and encryption

both utilize the identical transformation.

 Fig. 3 Add round key

2.3.2 SUBSTITUTIVE BYTES

Sub Bytes is an operation that swaps bytes in a nonlinear

fashion. In accordance with the substitution box (also known

as the S-box), one byte is substituted for every byte in the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 5

input state. To calculate the S-box, a bit-wise affine

transformation and the multiplicative inversion in the finite

field GF (28) are used.

 Fig 4.1 S-Box

 Fig.4.2 S-Box

2.3.3 SHIFT ROWS TRANSFORMATION

In the Shift Rows, a cyclic shift operation is performed on

each row of the state. The bytes in the initial row of the state

remain unaltered throughout this procedure. The figure

illustrates a cyclic progression of one byte to the left in the

second row, two bytes in the third row, and three bytes in

the fourth row. When inv Shift Row is implemented, the

procedure is carried out in the opposite order of Shift Rows.

 Fig.5 Shift Row

2.3.4 MIX COLUMN

Each column of the state undergoes the Mix Column

transformation separately. The four-term polynomial over

GF (28) is multiplied by for each column.

a(x) modulo (x4 + 1) where a(x) = {03}x3 + {01}x2 + {01}x

+ {02}

The expression for this transformation in matrix form is

 Fig. 6 Mix Column

2.3.5 KEY SCHEDULING FUNCTION

All of the Round Keys, used in every round, are derived

from the initial secret input key, and the spawning

manoeuvre is key expansion. An encryption key's first round

is known as the original key. When decrypting, the original

key is the last one produced via key expansion. Following

the previous description, the plain text input will be

followed by the secret round key before the repeated phases

of encryption or decryption begin. Key sizes of 128 bits will

generate 10 sets of 24-byte round keys. The procedure for

producing ten iterations of the round key is detailed below:

Swap the items in the fourth column of the (i-1) key so that

they are all moved up one row. An example of this is shown

below.

As the example below demonstrates, the column values are

subsequently replaced with SBox table values in a manner

analogous to the Sub Bytes Transformation round.

A row constant denoted by Rcon is used to perform an XOR

operation on the modified byte matrix. Rcon depends on

every round. The ith key's ultimate state is described below.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 6

The preceding output is XOR-ed with the initial column of

the (i-1)th key.

The first column of the ith key is then XOR-ed with the

second column of the (i-1)th key. As illustrated below.

Apply the identical process to the remaining columns

(2).This will yield the comprehensive key for the current

iteration.

For every one of the ten keys, this same process is repeated.

Since the (10-i)th round of decryption is equal to the ith

round key of encryption, it is necessary to save the keys in

advance.

2.4 INTRODUCTION TO AES DECRYPTION

To get the original plaintext from an encrypted cipher-text,

decryption works in the opposite direction of encryption and

uses inverse round transformations. Figure (b) depicts the

decryption procedure, which involves using the key to

perform a basic conversion from encrypted text to plain text.

In order to decrypt data in a round fashion, the following

functions are used: Add Round Key, Inv Mix Columns, Inv

Shift Rows, and Inv Sub Bytes. decryption using AES, as it

is shown here.

 Fig. 7 AES Decryption

 2.4.1 ADD ROUND KEY TRANSFORMATION

Similar to how the XOR operation has an inverse operation,

the Add Round Key operation also has an inverse operation.

To apply the round keys, it is necessary to select them in the

opposite direction.

 Fig. 8 Add round key

 2.4.2 INVMIX-COLUMN TRANSFORMATION

The InvMix-Columns transformation involves the

multiplication of coefficients, represented by elements

within the state columns, by a predetermined polynomial

modulo (x4 + 1). This multiplication occurs within

polynomials of degree less than 4 over the Galois Field GF

(28). The fixed polynomial utilized for this operation is

denoted as d(x) = {0b}x3 + {0d}x2 + {09}x + {0e}, where

{0b}, {0d}, {09}, and {0e} signify hexadecimal values.

 Fig. 9 Inverse Mix Column

 2.4.3 INVSHIFT ROWS TRANSFORMATION

Shift Rows and InvShift Rows operate identically, albeit in

the opposite orientation. While the first row remains

unchanged, the right-ward shifts of the second, third, as well

as fourth rows are one, two, and three bytes, respectively.

The figure illustrates the InvShift Rows Transformation.

 Fig. 10 Inverse Shift Rows

 2.4.4 INVSUB-BYTES TRANSFORMATION

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 7

The Inv Sub-Bytes transformation is executed utilizing the

Inv S-box, which is a substitution table that was previously

calculated. The Inv S-box table comprises 256 numbers

ranging from 0 to 255, with their respective values listed in

the table.

 Fig. 11 Inverse Sub-Bytes

3. PROPOSED ARCHITECTURE

The primary goals of this research are to investigate existing

AES acceleration techniques, identify their limitations, and

explore innovative methods for optimizing AES

performance. One of the methods we explore in this study is

loop unrolling. Figure 12 illustrates the block diagram of an

AES (Advanced Encryption Standard) encryption process. It

begins with the plaintext and the key, each entering separate

multiplexers (Mux) that select the input between the new

data and a reset signal. These inputs are then fed into

registers, synchronized by a clock signal (clk). The plaintext

register's output is XORed with the subkey generated from

the key schedule round function, producing the ciphertext.

The subsequent steps involve the core AES transformations:

SubBytes, ShiftRows, and MixColumns. SubBytes performs

a non-linear substitution, transforming each byte

individually. ShiftRows shifts the rows of the state array

cyclically. MixColumns mixes the columns of the state,

providing diffusion. These steps are iterated in rounds

controlled by a counter within the controller section, which

also ensures the correct number of rounds.After the rounds,

another Mux determines if the MixColumns operation

should be bypassed for the final round, which differs

slightly from the other rounds in the AES process. The key

schedule round function generates the required subkeys for

each round, orchestrated by the controller to align with the

AES round transformations.

The controller also includes a register, multiplexer, and

specific constants (0x36, 0x01, 0x6C) to manage the round

operations and signal when the encryption process is

complete. The final ciphertext is produced after the last

round of transformations and exits the system. By

implementing loop unrolling techniques in AES encryption

and decryption routines, we aim to achieve significant

speedups while maintaining the robust security properties of

the algorithm. Figure 13 illustrates the block diagram the

AES decryption process. The process starts with the

ciphertext and the decryption key, which are fed into

separate multiplexers (Mux) that select between the new

data and a reset signal. These inputs are then loaded into

registers, synchronized by a clock signal (clk). The

ciphertext register's output is XORed with the subkey

generated from the key schedule round function, producing

the intermediate decryption result. The core AES decryption

transformations follow, which include InvSubBytes,

InvShiftRows, and InvMixColumns. InvSubBytes performs

the inverse of the byte substitution step, transforming each

byte individually back to its original form. InvShiftRows

reverses the cyclic row shifts applied during encryption.

InvMixColumns reverses the column mixing, undoing the

diffusion applied during encryption. These steps are iterated

over multiple rounds as controlled by the round counter

within the controller section. The controller uses a lookup

table and a 4-bit counter to manage the decryption rounds

and ensure they occur the correct number of times. The

controller also incorporates specific constants (0x36 and

0x00) to manage the initialization and completion of the

decryption process. After the appropriate number of rounds,

another Mux determines if the InvMixColumns operation

should be bypassed for the first round, which differs slightly

from the other rounds in the AES decryption process. The

key schedule round function, in this case, generates the

required subkeys for each decryption round, aligned with the

AES decryption transformations.

The final plaintext is obtained after the last round of inverse

transformations and is outputted from the system. The

decryption process is completed when the controller signals

that all rounds have been executed. . The area efficiency

achieved by the proposed architecture through the use of

loop unrolling makes it the optimal choice for implementing

sequential data blocks in a small footprint.

3.1 MODIFIED AES ALGORITHM

The AES algorithm consists of a series of operations

performed in nine rounds. The operations are done in the

following order: add-round-key, sub-bytes, shift-rows, mix-

columns, and add-round-key. After the first nine rounds, the

operations sub-bytes, shift-rows, and add-round-key are

executed.

In the modified version, which is shown in fig. 12 & 13. We

have introduced a key scheduling function to enhance and

facilitate the AES algorithm more efficiently and robustly.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 8

 Fig. 12 Proposed Aes Encryption

 Fig. 13 Proposed Aes Decryption

3.1.1 KEY SCHEDULING FUNCTION

The key scheduling process is crucial in cryptographic

operations such as encryption and decryption. Upon

initialization signalled by reset assertion, the module loads

the initial key into the register. Clock cycle processing

entails two main operations. Firstly, during each cycle, the

register's current state is passed through the round function.

If its post-reset, the initial key is utilized; otherwise, the

previous round key is employed. Secondly, the round

function computes the next sub-key using the current sub-

key and a round constant, storing it in the feedback signal.

This newly generated sub-key becomes the input for the

subsequent cycle, facilitating a feedback loop ensuring each

round key is derived from the prior one. Consequently, the

round key output continuously furnishes the current round

key for cryptographic operations. The process initializes by

loading the initial key, iteratively computes subsequent

round keys, updates the register with each generated key,

and provides the current round key for cryptographic

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 9

functions, forming a robust and iterative key scheduling

mechanism.

 Fig. 14 Key Schedule Function

4. RESULTS AND COMPARISON
Ref.

No.

Device Model Frequency

(MHz)

Slice

Registers

Throughput

(Gbps)

this

work

 XC7Z100FFG1156-2 296.789(enc)

300.806(Dec)

264(enc)

260(dec)

37.9(enc)

38.5(dec)

[7] XC6VLX240T 319.5

40.9

[9] XC3S500E4FG320 222.41 2439(enc)

2635(dec)

2.846

[15] NEXYS 4 1102.536 121 14.1125

[16] XC5VLX30 277.4 5493 3.5

[19] XC5VLX110T 322.7 3012 41.31

In Our Research On Aes-128 Utilizing Loop Unrolling, We

Have Achieved Notable Advancements In Throughput -

37.9 Gbps (Enc), 38.5 Gbps (Dec), Frequency - 296.789

Mhz (Enc), 300.806 Mhz (Dec), Slice Registers – 264 (Enc),

260 (Dec) And Slices – 1044 (Enc), 1581 (Dec) Compared

To Some Existing Studies: -

[7] Throughput – 40.5 Gbps, Frequency –319.5 MHz.

[9] Throughput – 2.846 Gbps, Frequency – 222.41 MHz,

Slices – 2439.

[15] Throughput –14.1125 Gbps, Frequency – 1102.536

MHz, Slice Registers –121.

[16] Throughput – 3.5 Gbps, Frequency – 277.4 MHz,

Slices - 5493.

Our implementation showcases a substantial increase in

throughput, thanks to the efficient reduction of loop

overhead and optimized memory access patterns enabled by

loop unrolling. This improvement in throughput translates to

enhanced data processing speeds, making our aes-128

implementation well-suited for high-performance computing

environments.

Furthermore, our research demonstrates superior frequency

performance, indicating the capability of our

implementation to operate at higher clock frequencies

compared to some previous approaches. By minimizing

redundant loop control operations and maximizing

instruction-level parallelism through loop unrolling, we have

effectively reduced critical path delays and improved overall

frequency scalability.

In terms of resource utilization, our aes-128 implementation

using loop unrolling exhibits efficient utilization of slice

LUT (look-up table) resources, a crucial consideration in

FPGA (field-programmable gate array) implementations. By

carefully optimizing loop unrolling factors and exploiting

hardware resources judiciously, we have achieved a balance

between performance and resource efficiency, making our

implementation highly competitive in resource-constrained

environments.

Overall, our research presents a significant advancement in

aes-128 implementations, offering improved throughput,

frequency performance, and resource utilization compared

to some prior studies. By leveraging the benefits of loop

unrolling, we have developed a high-performance and

resource-efficient aes-128 implementation that holds

promise for various applications requiring secure and

efficient data encryption.

4.1 RESULT DISCUSSION

Utilizing the Vivado 2018.2 tool, we conducted synthesis

and timing analysis. Employing loop unrolling in our design,

we achieved a clock cycle of 330.579MHz. Following

verification of each module's functionality, integration

becomes feasible. In support of this approach, we

partitioned the AES algorithm into distinct encryption and

decryption modules. The chip synthesis occurred within the

Vivado 2018.2 environment, targeting ZYNQ technology

(specifically the xc7z100ffg1156-2 target device), with

detailed results depicted in Figures 2.4.2.2 and 3.6.2.2.

Throughout the entirety of the process, Vivado 2018.2

remained the tool of choice. Subsequent to synthesizing in

VHDL style, we derived individual Register Transfer Logic

(RTL). Additionally, a timing simulation was conducted to

validate the functional integrity of our design.

5. CONCLUSION

Our research has focused on optimizing AES encryption and

decryption speeds through the exploration of loop unrolling

techniques while considering various implementation

strategies. Utilizing Vivado 2018 software, we successfully

implemented AES 128-bit encryption and decryption

algorithms, achieving notable throughputs of 38 Gbps for

encryption and 38.5 Gbps for decryption with a fully

pipelined design operating in Electronic Codebook (ECB)

mode. Our findings demonstrate that manual loop unrolling

effectively reduces loop iterations and enables better

compiler optimizations, leading to significant performance

improvements while maintaining robust security properties.

Additionally, achieving minimum periods of 3.324ns for

decryption and 3.369ns for encryption, corresponding to

maximum frequencies of 300.806MHz and 296.789MHz

respectively, underscores the efficiency and reliability of our

AES 128-bit implementation. These results contribute

valuable insights into AES acceleration methodologies,

emphasizing the importance of optimizing performance

without compromising security. Furthermore, they highlight

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 10

the potential for rapid data processing in security-critical

scenarios. Moving forward, further refinement and

optimization of these methodologies hold promise for even

greater improvements in throughput and efficiency, laying

the groundwork for enhanced cryptographic systems in the

future.

6. REFERENCES

[1] Alex Panato, Marcelo Barcelos, Ricardo Reis, “An IP

of an Advanced Encryption Standard for Altera

Devices”, SBCCI 2002, pp. 197-202, Porto Alegre,

Brazil, 9 and 14 September 2002.

[2] Arshad Aziz and Nassar Ikram, “Memory efficient

implementation of AES S-boxes on FPGA”, Journal

of Circuits, Systems, and Computers, Vol. 16, No. 4,

pp. 603-611, 2007.

[3] Yang Jun, Ding Jun, Li Na, Guo Yixiong “FPGA-

based design and implementation of reduced AES

algorithm,” 978-0-7695-3972-0/2010 IEEE DOI

10.1109/CESCE.2010.123.

[4] A. Amaar, I. Ashour and M. Shiple “Design and

Implementation A Compact AES Architecture for

FPGA Technology”, World Academy of Science,

Engineering and Technology 59 2011.

[5] Ai-Wen Luo, Qing-Ming Yi, Min Shi, “Design and

Implementation of Area-optimized AES Based on

FPGA”, 978-1-61284-109-0/11/2011 IEEE.

[6] Muhammad H. Rais and Syed M. Qasim , “Efficient

Hardware Realization of Advanced Encryption

Standard Algorithm using Virtex-5 FPGA”,

International Journal of Computer Science and

Network Security (IJCSNS) , VOL.9 No.9,

September 2009.

[7] Yi Wang and Yajun Ha, Senior Member, IEEE,

“FPGA-Based 40.9-Gbits/s Masked AES with Area

Optimization for Storage Area Network”, IEEE

Transaction On Circuits And Systems—II: Express

Brief, VOL. 60, No. 1, January 2013.

[8] Amandeep Kaur, Puneet Bhardwaj, Naveen Kumar,

“FPGA Implementation of Efficient Hardware for the

Advanced Encryption Standard”, International

Journal of Innovative Technology and Exploring

Engineering (IJITEE) ISSN: 2278-3075, Volume-2,

Issue-3, February 2013.

[9] Leelavathi.G, Prakasha S, Shaila K, Venugopal K R ,

L M Patnaik[9],“Design and Implementation of

Advanced Encryption Algorithm with FPGA and

ASIC”,IJREAT International Journal of Research in

Engineering & Advanced Technology, Volume 1,

Issue 3, June-July, 2013ISSN: 2320 – 8791.

[10] Adnan Mohsin Abdulazeez, And Ari Shawkat Tahir,

“Design and Implementation of Advanced

Encryption Standard Security Algorithm using

FPGA”, International Journal of Scientific &

Engineering Research, Volume 4, Issue 9,

September-2013 1988ISSN 2229-5518.

[11] Alia Arshad, Kanwal Aslam, Dur-e-Shahwar Kundi

and Arshad Aziz, “FPGA Implementation of

Advance Encryption Standard Using Xilinx System

Generator”, Asian Journal of Applied Sciences

(ISSN: 2321 – 0893) Volume 02 –

Issue 02, April 2014.

[12] Sonali A. Varhade N. N. Kasat, “Implementation of

AES Algorithm Using FPGA &Its Performance

Analysis”, International Journal of Science and

Research (IJSR)ISSN (Online): 2319-7064.

[13] YewaleMinal J, M. A. Sayyad, “Implementation of

AES on FPGA”,IOSR Journal of VLSI and Signal

Processing (IOSR-JVSP)Volume 4, Issue 5, Ver. II

(Sep-Oct. 2014), PP 65-69 e-ISSN: 2319 – 4200, p-

ISSN No. : 2319 – 4197.

[14] Pravin V. Kinge, S.J. Honale, Prof. C.M. Bobade,

“Design of AES Pipelined Architecture for Image

Encryption/Decryption Module”, International

Journal of Reconfigurable and Embedded Systems

(IJRES)Vol. 3, No. 3, November 2014, pp. 114~118

ISSN: 2089-4864.

[15] P. B. Mane, A. O. Mulani, “High Speed Area

Efficient FPGA Implementation of AES Algorithm”,

International Journal of Reconfigurable and

Embedded Systems Vol. 7, No. 3, November 2018,

pp. 151~159 ISSN: 2089-4864, DOI:

10.11591/ijres.v7.i3.pp151-159.

[16] K.Kalaiselvi, H.Mangalam "Power efficient and high

performance VLSI architecture for AES algorithm"

Journal of Electrical Systems and Information

Technology" vol 2, issue 2, 2015

[17] Sarita Sanap, Vijayshree More "An Ultra-High

Throughput and Efficient Implementation of

Advanced Encryption Standard" International Journal

of Electrical and Electronic Engineering &

Telecommunications"

[18] Naveen Kumar Dumpala, Shivu Kumar B.Patil,

Daniel Holcomb, Russell Tessier "Loop Unrolling for

Energy Efficiency in Low-Cost Field-Programmable

Gate Arrays" University of Massachusetts Amherst

[19] Anuroop K.B, Neema M "Fully Pipelined-Loop

unrolled AES with Enhanced Key Expansion" IEEE

International Conference On Recent Trends In

Electronics Information Communication Technology,

May 20-21, 2016

[20] Nalini C, Nagaraj, Dr. Anandmohan P.V, Poornaiah

D.V, V.D.kulkarni "An FPGA Based Performance

Analysis of Pipelining and Unrolling of AES

Algorithm"

[21] Karim Shahbazi, Seok-Bum Ko "High throughput

and area-efficient FPGA implementation of AES for

high-traffic applications" ,The Institution of

Engineering and Technology ,1751-8601 15th May

2020

[22] Anup Gujar, “Image encryption using AES algorithm

based on FPGA”, International Journal of Computer

Science and Information Technologies (IJCSIT),

2014.

[23] M. Hasamnis, P. Jambhulkar and S. Limaye,

“Implementation of AES as a Custom”, Advanced

Computing: An International Journal (ACIJ), vol.3,

No.4, July 2012.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 08 Issue: 06 | June - 2024 SJIF Rating: 8.448 ISSN: 2582-3930

© 2024, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM35342 | Page 11

[24] Wang Wei, Chen Jie, XuFei, “An Implementation of

AES Algorithm Based on FPGA”, 978-1-4673-0024-

7/2012 IEEE.

[25] A. Amaar, I. Ashour and M. Shiple “Design and

Implementation A Compact AES Architecture for

FPGA Technology”, World Academy of Science,

Engineering and Technology 59 2011.

[26] Marko Mali, Franc Novak and Anton Biasizzo

“Hardware Implementation of AES Algorithm” –

Journal of ELECTRICAL ENGINEERING, Vol. 56,

No. 9-10,2005, 265-269.

[27] Hamdan.O. Alanazi, B.B.Zaidan, A.A.Zaidan, Hamid

A.Jalab, M.Shabbir and Y. Al-Nabhani, “New

Comparative Study between DES, 3DES and AES

within Nine Factors”, Journal of Computing, Volume

2, Issue 3, March 2010, ISSN 2151-9617

[28] A.A. Zaidan, B.B. Zaidan, Anas Majeed, "High

Securing Cover-File of Hidden Data Using Statistical

Technique and AES Encryption Algorithm", World

Academy of Science Engineering and Technology

(WASET), Vol.54, ISSN: 2070-3724, P.P 468-479.

[29] National Institute of Standards and Technology,

Advanced Encryption Standard (AES), Federal

Information Processing Standards Publications –

FIPS 197

[30] Gaj, Kris, Pawel Chodowiec, "FPGA and ASIC

implementations of AES", Cryptographic

Engineering, Springer US, 2009, 235-294.

http://www.ijsrem.com/

