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Abstract:The identification of motifs is a crucial stage in the process of exploring the function of genes in many different systems. The 

identification of transcription factor binding sites (TFBSs), is an crucial step in the process of comprehending the regulatory 

mechanisms that regulate gene expression. Motif discovery is an essential step in this process. However, existing motif discovery 

methods face challenges such as computational complexity, sensitivity to parameters, and assumptions about motif characteristics. As a 

consequence, we introduced the Modified Freeze Firefly method for motif discovery based on Gibbs sampling, as well as the Harmony 

Search with Logistic regression for predicting. This research is distinctly focused on harnessing the power of Artificial Intelligence (AI) 

algorithms tailored to refine and optimize precision in motif identification. The methodology begins with the acquisition of data from 

the JASPAR database, followed by meticulous preprocessing. Motif discovery is then executed using the Modified Freeze Firefly with 

Gibbs Sampling (MFF-GS). Subsequently, the identified motifs undergo a precision enhancement and refinement process through the 

innovative Harmony Search with Logistic Regression (HS-LR). Finally, the performance metrics are rigorously evaluated, 

encompassing Running time vs. Maximum Motif length, running time vs. Motif length, running time vs. motif count (d), Prediction 

rate, and Mean Square Error. This comprehensive approach signifies a cutting-edge integration of AI techniques, promising to elevate 

the accuracy and effectiveness of motif refinement in the context of gene regulation studies. 

Index words: Motifs, Transcription Factor Binding Sites (TFBSs), JASPAR database, Modified Freeze Firefly with Gibbs Sampling 

(MFF-GS), Harmony Search with Logistic regression (HS-LR) 

 

I. INTRODUCTION

A main function of motif is to control gene expression at both 

the transcriptional and posttranscriptional stages. Motifs in 

DNA and RNA serve crucial roles in a broad range of 

biological functions, involving but not limited to splicing 

alternatives, transcription, and translation.Determining patterns 

in DNA sequences is one of the most challenging tasks in both 

computer science and molecular biology. Understanding the 

expression of genes requires the identification of regulatory 

motifs. The idea that every gene contains the instructions 

needed to make a protein is fundamental to the study of gene 

expression.The same protein's binding sites are often 

conservative, brief sequences known as motifs. Protein binding 

sites were initially identified using conservative sequencing. 

Numerous molecular mining algorithms arise when researchers 

get a better understanding of molecular research [1,2]. Several 

known protein factors bind to initiate the expression process. 

They attach themselves to promoter and enhancer sequences as 

transcription factors. The first step is transcription, which 

entails making an RNA "copy" of a certain DNA sequence. 

The second step of the process, called translation, involves 

reading and interpreting this RNA sequence to produce a 

protein. The combined effect of these two processes is gene 

expression. Many regulating transcription factors (TFs), also 

known as transcription factor binding sites (TFBS), attach to 

certain DNA regions to control the expression of genes. In the 

last ten years, a notable method for understanding transcription 

regulatory networks has emerged: the study of DNA sequence 

data for computational identification of TFBS. Since sequence 

motifs are short (about 6–12 bp) and intergenic regions are 

quite extensive and very variable, finding sequence motifs may 

be difficult. Sequence motifs have a set size, are regularly 

repeated, and are preserved. Understanding the processes 

controlling gene expression is aided by the identification of 

TF-BSs, which is made possible by these patterns 3. Plant, 

structured, gapped, sequence, network, and motif categories 

are available for motifs [3-5]. The majority of early mobile 

mining techniques fall into two categories: enumeration 

techniques and probabilistic techniques.Transcription factor 

binding sites are intimately associated with DNA sequence 

specificity. By examining DNA sequence specificity, one may 

build a more comprehensive regulatory model of biological 

systems and gain insight into the transcription process of DNA. 

Furthermore, by examining the specificity of DNA sequences 

and the relationships between various illnesses, investigators 

have the ability to identify and explain disease variations. 

Finding diseases or illness patterns in the early phases of a 

disease has significant consequences for the medical industry 

and may also be accomplished via sequence-level research. 

Utilizing computational techniques to investigate the 

specificity of DNA sequences is becoming more and more 

crucial with the advent of technologies such as chip SEQ 

(chromatin immunoprotection sequencing) [6-8]. Utilizing 

biochemical experimental approaches to investigate the 

specificity of DNA sequence requires a significant investment 

of time, money, and Labor. These days, the sample size for 

data about biology. A depiction of motifs is the position weight 

matrix (PWM), whose entries show how often each of the four 

bases occurs at a specific location. The motif level is often 

used to characterize DNA sequence specificity. It is easy to 

comprehend how to characterize motif levels, which makes 

genome-scale binding site scanning faster. This description 

suggests that motif discovery is the primary method used in 

current investigations to identify DNA sequence specificity. 

Numerous motif mining methods have been presented as of 

recently. These techniques can mine the motif efficiently 

because of its length. By using deep learning to tackle a few 
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sequencing problems, this study explores the specificity of 

DNA sequence[9,10].Weak motif finding is a major problem 

in computational biology. It is difficult to fix since the actual 

theme and its altered versions have so many inconsistencies 

that the real ones might be hidden by misleading signals. 

Furthermore, because regulatory parts are usually brief and 

variable, it is difficult to find and identify them using computer 

algorithms. The issue in trying to tackle the theme-finding 

problem is to identify conserved and overrepresented motifs 

from the set of sequences of DNA that are predicted to develop 

into transcription factor binding sites. A protein known as a 

transcription factor regulates the expression of genes by 

controlling the initiation of the transcription process, which 

uses DNA as a template to create mRNA. The common 

sequence is referred to as a motif. A transcription factor's 

binding site "pattern". Identifying themes will aid in 

understanding illness vulnerability and developing therapeutic 

interventions[11].This study focuses on using the capability of 

Artificial Intelligence (AI) algorithms designed to enhance and 

maximize accuracy in motif recognition. 

 

A. Motivations and objectives 

The majority of the existing works are in motif discovery and 

prediction but this results in an increase in complexity, lack of 

attention to motifs, and lower prediction accuracy of the 

fragment. Despite focusing on these issues, current research 

does not yet offer an appropriate solution for precision motif 

refinement and enhancement. We are motivated by several 

issues addressed in the previous studies, specifically the 

following, 

• Inefficient Motif Discovery Algorithms: The 

existing methods face challenges in capturing rich 

motifs, increasing complexity without the explosion 

of parameters.  

• Reduce the precision of prediction:Some existing 

methods face challenges in predicting the accuracy 

of the fragment, and when the data is very large, it 

impacts the prediction and subsequent motif mining. 

It is necessary to enhance the prediction model by 

looking at other sources of sequenced-derived data. 

The main objective of this research using AI algorithms 

aimed to refine and optimize precision in motif identification.  

• Improve the efficiency of motif discovery by 

employing a modified sampling approach followed 

by a motif-finding technique, with a focus on 

reducing complexity.  

• Enhance prediction accuracy through a precision 

enhancement and refinement process, utilizing 

innovative methods. The aim is to achieve more 

accurate predictions in relevant applications.  

 

 

 

 

B. Research Contributions 

The main goal of this research using AI algorithms is to refine 

and optimize precision in motif identification. The following 

are some of the research's contributions: 

• We collect the JASPAR database and the database is 

normalized and scaled appropriately.  

• For reducing complexity, we propose motif 

discovery using Modified Gibbs sampling followed 

by motif finding using the Freeze Firefly algorithms. 

The novelty is called Modified Freeze Firefly with 

Gibbs Sampling (MFF-GS).  

• To increase the prediction accuracy using the 

precision enhancement and refinement process 

through the innovative Harmony Search with 

Logistic Regression (HS-LR).  

 

C. Research organizations 

The remainder of the paper is arranged as follows: Section II is 

a literature assessment that identifies and addresses research 

gaps. Section III provides a comprehensive summary of the 

work to be done, including necessary pseudocode and 

representations. The comparative assessment and research 

summary are included in Section IV. Section V goes into 

extensive detail on the predicted work's conclude. 

II. LITERATURE SURVEY 

 According to the author of [12], the Machine 

Learning Motif Extractor (ML-MotEx) employs Shapley 

augmented explanations SHAP values to discover model 

features that are essential for fit quality following an ML 

algorithm has been trained on several fits. They apply the 

technique to four distinct chemical systems, such as clusters 

and disordered nanomaterials. ML-MotEx allows for a kind 

of modeling in which explainable machine learning is used to 

give a significant value for each feature in a model based on 

fit quality. The author of [13] describes the various encoding 

schemes and machine learning combinations that may be 

used to anticipate distinct structural/functional themes. The 

use of protein computational models to encode proteins 

together with their physicochemical characteristics and 

developmental information is especially exciting. The most 

current predictors established for transmembrane 

classifications, phosphorylation sites, sorting signals, and 

lipidation can be thoroughly investigated in order to evaluate 

contemporary facilities, with an emphasis on how effectively 

protein language models function for various types of 

positions. This shows that to fully use the potent machine 

learning techniques now accessible, additional experimental 

data are required. Particle display (PD) is used by the author 

of [14] to partition a library of aptamers in accordance with 

affinity. ML algorithms are then trained on this data to 

estimate affinities in silico. The approach discovered high-

affinity aptamers of DNA using empirical selections at an 11-

fold faster rate than random perturbation and created new, 

high-affinity aptamers at a faster rate than PD alone. 

Truncated aptamers were made easier to manufacture since 

they are 70% shorter and have a greater binding affinity (1.5 

nM) than the best candidate discovered in 

investigations.Authors in [15] focused on considerably bigger 

RNA with lengths up to 3000 nucleotides to expand these 

findings. They also discover that huge natural and random 

structures are extremely similar when compared to typical 

structures taken from the spaces of all conceivable RNA 

structures, by looking at both abstract forms and structural 
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motif frequencies. Another finding from the motif frequency 

research is that machine learning algorithms may effectively 

categorize natural and random RNA with high accuracy by 

using the frequencies of various motifs, particularly for 

longer RNA.The data-efficient author of [16] estimates 

complex adsorption material binding motifs and related 

adsorbed energy levels at transition metals (TMs), including 

their alloys, based on tailored data. The Gaussian Process 

Regression using the Wasserstein Weisfeiler-Lehman graph 

kernel. The model demonstrates high prediction accuracy not 

only for the strain constituent TMs but also for an alloy that 

is derived from these TMs. Furthermore, an out-of-domain 

TM may be predicted with minimum integration of new 

training data. They offer a tool for estimating ensemble 

uncertainty since they expect the model will be useful in 

active learning tactics. 

 The authors of [17] provided the DeepSEED, an 

AI-assisted system that effectively creates artificial promoters 

by fusing deep learning methods with expert knowledge. 

DeepSEED has been shown effective in enhancing the 

characteristics of constitutive, IPTG-inducible, and 

doxycycline (Dox)-inducible promoters in Escherichia coli 

and mammalian cells. Moreover, the findings demonstrate 

that DeepSEED effectively extracts implicit data from 

flanking sequences, including DNA shape traits and k-mer 

frequencies, which are essential for identifying promoter 

characteristics. 

 The author of [18] highlighted recent 

advancements in DNN model interpretation, with an 

emphasis on its uses in epigenomics and genomics. First, 

they show the most advanced DNN interpretation techniques 

in common machine learning domains. Then, they go over 

the DNN interpretation techniques utilized in modern 

genomics and epigenomics research, with an emphasis on 

data- and computationally-intensive subjects including 

sequence motif identification, gene expression, chromatin 

interactions, genetic variants, non-coding RNAsand genetic 

variants. Also provided are the biological conclusions that 

resulted from various interpretive methods. The author of 

[19] proposed a faster, enhanced version of the program for 

Bayesian Markov models, called BaMMmotif2. They tested 

it on a large number of HTSELEX and ChIP-seq datasets 

using state-of-the-art molecular discovery methods. In testing 

across platforms and cell lines, BaMMmotif2 models 

demonstrated similar improvements over the next best tool 

without exhibiting any signs of overtraining. These results 

demonstrate that most TF binding models are significantly 

improved by dependencies beyond the first level. The author 

of [20] suggested a method that quantifies the allelic 

difference of projected epigenetic signals to further assess the 

functional consequences of noncoding variations on an 

individual basis. They show that the suggested method can: 

determine canonical motifs referred to control the 

transcription of Alzheimer's disease(AD) causal genes; 

improve the partitioning element of hereditary factor 

assessment; and rank possible causative variants in a GWAS 

risk locus. It may also predict quantitative genome-wide 

epigenetic modification communication in key genomic areas 

of Alzheimer's disease (AD)-related genes. They do this by 

following the technique proposed for the cohort of the 

Religious Orders Study/Memory and Aging Project 

(ROSMAP) that is investigating AD.The authors of [21] 

present Explainable Neural Networks (ExplaiNN), a 

transparent, fully interpretable sequence-based deep learning 

model for genomic issues that takes inspiration from NAMs. 

They test ExplaiNN on a variety of tasks and show that it 

outperforms the most current models, offering both local and 

global interpretation that is faster and easier than with more 

complicated approaches. They then demonstrate that the 

patterns produced by ExplaiNN's convolutional filters match 

those discovered by de novo techniques on the same data. 

The authors of [22] recommend using secondary structure 

fingerprints, which may be separated into two categories: 

Free energy fingerprints, which depend on a particular 

repertoire of tiny structural motifs, as well as higher-level 

representations provided by RNA-As-Graphs (RAG), are two 

examples. The fingerprints consider the distinctions between 

local and global structural matching. Additionally, they used 

K-mers to assess the deep learning architecture. The author of 

[23] represents the structural motif components of viral 

genomes as well as various techniques for predicting and 

characterizing RNA structures. We provide an overview of 

several research about the genomes of viruses, with a focus 

on severe acute respiratory syndrome coronavirus (SARS-

CoV-2) and influenza A virus (IAV), based on current 

literature. Here, we highlight how the structure-function link 

and, therefore, the identification of novel antiviral therapies 

might be facilitated by a deeper comprehension of the 

architecture of viral genomes. Authors in [24] determine the 

regions enclosed by transcription factors (TFs), which are 

now essential in molecular and cellular biology because of 

their major function in regulating gene expression.Deep 

learning (DL)-based techniques have been presented more 

often in recent years with outstanding prediction performance 

for identifying TFBSs. Yet, these approaches fall short in 

precisely identifying motifs and TFBSs and instead primarily 

concentrate on predicting the sequence specificity of TF-

DNA binding, which is an analogous challenge to a binary 

classification problem at the sequence level. Authors in [24] 

develops a “Fully Convolutional Network with Global 

Average Pooling (FCNA)” that can detect motifs and locate 

TFBSs in detail, making it a nucleotide-level binary 

classification problem. Since FCNA cannot properly pinpoint 

TFBSs, FNCA must anticipate some false-positive samples. 

The trials utilized a high threshold value to eliminate false-

positive samples, however this also deleted some true-

positive samples. FCNA depends heavily on nucleotide-level 

labels since it predicts motifs using strongly-supervised label 

information. Thus, future studies should suggest more 

thorough solutions to the two challenges. For 5-fold model 

validation, k-fold cross-validation may not be effective if the 

dataset has a temporal structure where sample order matters. 

Folds may leak information due to temporal interdependence. 

Five-fold cross-validation involves training and testing the 

model five times, which may be computationally demanding 

for complicated models or huge datasets.Authors in [25] 

proposed the Convolutional Auto Encoder and Convolutional 

Neural Network (CAE-CNN), a unique architecture that 

combines a convolutional autoencoder with a convolutional 

neural network. Specifically, using the picture reconstruction 
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as input, we use a convolutional autoencoder to uncover 

important characteristics in DNA nucleotides from the 

positive data. Thus, the learned characteristics will be used 

by the convolutional neural network in the training phase. To 

further better capture the properties of DNA nucleotides, we 

further use a highway link layer and a gated unit. Interpreting 

the learnt representations might be difficult, and the overall 

architecture may grow complicated. It could be more difficult 

to comprehend the model's internal operations and the 

importance of taught aspects.  TFBS activity may show 

temporal dynamics and rely on the situation. Cross-validation 

may not be able to capture temporal fluctuations, thus it's 

important to think about techniques like temporal validation 

or how to handle time-series data in a cross-validated dataset.  

This study [26] uses one-dimensional SMILES as the inputs 

of ligand and binding location residue for protein in order to 

computational effectively predict unknown ligand-target 

interactions. Utilizing inputs including motif-rich binding site 

sequences of peptides and one-dimensional SMILES for 

medicines, researchers first create a deep learning CNN 

model. They believe that integrating structural protein 

information into drug-target interaction prediction models 

with big datasets would be a beneficial research technique, 

offering improved interpretability, high throughput, and wide 

application. Protein structures and chemical compounds are 

represented by high-dimensional data. Handling these high-

dimensional inputs requires substantial computational 

resources. As the size of the dataset grows, scalability issues 

may arise, impacting the efficiency of the model. The goal of 

the authors in [27] was to determine if motifs in the 

Ceratocystidaceae family could be found using in silico 

methods, and if they were, whether they correlated with 

transcription factors that were already known. In order to find 

patterns, this research focused from the BUSCO dataset. The 

analytic tools MEME and Tomtom were used to identify 

conserved motifs at the family level. The findings 

demonstrate that the Ceratocystidaceae as well as unrelated 

species might be identified using similar in silico techniques 

by looking for known regulatory motifs. This work supports 

further attempts to find motifs using in silico studies.  The 

proposed methodologies were mainly focused on establishing 

appropriate discovery algorithms and accurate prediction 

models using AI algorithms. 

 

 

III. PROBLEM STATEMENT 

 The author of [28] represents the capacity of a 

DNA sequence to bind certain proteins known as DNA 

sequence specificity. These proteins are essential for the 

control of genes via processes including transcription and 

alternative splicing. To discover pathogenic variations and 

develop the biological system's regulatory model, obtaining 

DNA sequence specificity is crucial. DNA segments that 

bind to certain proteins have sequence patterns known as 

motifs. Currently, a few motif mining methods that work well 

with a specific motif length have been presented. Prediction 

model construction using the CNN. Regarding the motif level 

description, this work develops an AI-based technique to 

forecast the motif's length. 

• The results show that the average prediction 

accuracy of the fragment decreases with the motif's 

complementation ability, or its capacity to fill in 

missing data.  

 The author of [29] proposed a novel attention-

based deep convolutional neural network (CNN) model 

called DeepVISP is created to effectively predict oncogenic 

virus integration sites (VISs) in the human genome. By 

autonomously learning useful characteristics and crucial 

genomic sites just from the DNA sequences, DeepVISP 

delivers excellent accuracy and robust performance for all 

three viruses using the carefully selected benchmark 

integration data.  Furthermore, cis-regulatory factors that may 

be implicated in carcinogenesis and viral integration may be 

decoded by DeepVISP. There are many lines of evidence in 

the literature that support these conclusions. The informative 

motifs clustering study shows that the representative k-mers 

in clusters may aid in the virus's identification of the host 

genes. Using DeepVISP, an approachable web server is 

created to anticipate potential oncogenic VISs in the human 

genome. 

• In identifying and evaluating oncogenic viral 

integration, the study emphasizes the value of deep 

learning, in particular convolutional neural 

networks. Nevertheless, the low number of VISs in 

certain viruses has an impact on the effectiveness of 

categorization and the ensuing motif mining. 

The authors of [30] investigated the DeepPPF framework's 

ability to discover rich motifs for functional categories using 

the fewest sequences of proteins. The findings show that deep 

learning needs a rich motif identification procedure in order 

to improve protein family modeling performance. Finally, in 

order to find the best network architecture for hierarchical 

level modeling and prediction, transfer the data in the lower 

hierarchical functioning domain to two target functional 

levels. The results we have obtained imply that the transfer 

learning technique might be employed to increase 

performance. 

• Using the DeepPPF to increase the model's 

prediction capability by examining new sources of 

sequence-derived information. Quantitative 

biophysical characteristics, for example, can be 

considered. 

• There is also a requirement to capture more rich 

motifs for the model by raising its complexity 

without exploding its parameters.  

Research solutions: 

 The proposed research addresses several challenges 

in existing motif discovery algorithms, highlighting issues in 

capturing rich motifs and the impact of large datasets on 

prediction accuracy. To overcome these challenges, a novel 

Modified Freeze Firefly Algorithm with Gibbs Sampling 

(MFF-GS) is introduced, integrating key elements from the 

Firefly Algorithm, Gibbs sampling, and a freezing 

mechanism. The algorithm aims to improve motif 

identification by combining local and global search 

strategies. Additionally, the research incorporates an AI-

based refinement approach using the Harmony Search 
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algorithm with Logistic Regression, providing an enhanced 

predictive model construction process. These innovations 

collectively contribute to more effective motif discovery and 

improved prediction accuracy in complex biological 

sequence analysis scenarios. 

IV. PROPOSED METHODS 

 The suggested approaches were primarily 

concerned with developing suitable discovery algorithms and 

developing accurate prediction models utilizing AI 

algorithms. Fig.1 represents the overall architecture of this 

research. The several processes involved in the proposed 

work are discussed in this section briefly into three major 

processes namely,  

 

 

❖ Sample data collection and Data preprocessing 

❖ Modified Freeze Firefly algorithm for motif 

identification based on Gibbs sampling (MFF-GB) 

❖ AI-based refinement enhancement for predicting 

model construction. 

 

A. Sample Data Collection and preprocessing 

The PWM of human transcription factor binding sites was 

taken from the Jaspar database in this study, and the matching 

chip SEQ data set was retrieved from the encoded database. 

JASPAR is an open-access library of curated, non-redundant 

TF binding profiles for TFs from different species in six 

taxonomic categories recorded as position frequency matrices 

(PFMs) and TF flexible models (TFFMs). The below-

mentioned link is a database link-

https://jaspar.genereg.net/matrix/MA0003.4/Ensure that the 

PWMs are normalized and scaled appropriately. Inconsistent 

or missing data should be checked. Verify the sequences and 

motifs' integrity. 

 

 

 

JASPAR Database Preprocessed data

Motif Discovery using the Modified Freeze 

Firefly with Gibbs Sampling (MFF-GS)

Performance Evaluation

Harmony Search with Logistic Regression 

(HS-LR)  
 

Fig. 1: Overall architecture of this research

B. Gibbs sampling-based modified Freeze Firefly method for 

motif identification 

To construct a modified Freeze Firefly Algorithm for motif 

discovery based on Gibbs sampling with both local and global 

search, the essential components of the Firefly Algorithm, 

Gibbs sampling, and the freezing mechanism must be 

incorporated. The Gibbs sampling method follows these steps: 

it is a random algorithm that is a specific instance of the 

Markov motif:  

Step i:With a predetermined sequence length, randomly choose 

a subsequence fragment from every sequence; 

Step ii: Use these chosen subsequences to construct PWM; 

Step iii: Choose a random subset of the initial sequences; 

Step iv: Use the sliding-window approach to score all 

conceivable sequence motifs using the PWM; each sliding's 

length unit represents an amino acid or basic; 

Step v: The motif that has the highest probability is determined 

and is thought to be the new motif; 

Step vi: The PWM is updated by substituting the maximum-

likelihood motif for the original sequence's chosen 

subsequence; 

Stepvii: Continue out the iterative computation until the 

position weight matrix probability and likelihood score result 

is constant. 

A scoring formula is established for the grading for every 

sequence string (length l) as the motif assessment criterion in 

order to assess potential motif effectiveness for motif 

identification. The similarity among the pattern string and the 

PWM is described by the scoring function. The candidate 

pattern strings are closer to motifs when they get a higher 

score. The following equation defines the scoring function: 

𝑃 = ∑ 𝑓𝑖, 𝑗𝑤𝑖 , 𝑗𝑙
𝑗=1                                                                 (1) 

In order to guarantee that the algorithm approaches the 

global optimum, the paper proposes a motif identification 

firefly method based on Gibbs sampling that combines ideas 

http://www.ijsrem.com/
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from Gibbs sampling and PWM. The algorithm's core principle 

is as follows: initially, each sequence's starting point is 

randomly chosen in order to construct a l-tuple, where l is the 

motif's length. The algorithm's starting population and position 

weight matrix are made up of these l-tuples. Next, the PWM 

(sliding window with the sliding length unit of one base) is 

used to score each sequence's potential mode strings.  The next 

step is to derive the final motif from the Gibbs sampling. 

TFBSs in the remaining set of sequences (seg2) are then 

discovered using the MFFF algorithm. The Firefly method was 

utilized and altered in order to address the problem of planted 

motif search. There are too many attractions since the whole 

attraction model makes all the fireflies in the FA flock to the 

brightest firefly. Even if many repetitions are required, the 

output will be imperfect, and the convergence rate will be 

sluggish. As a consequence, the freezing approach should be 

used with the FA. The Local freeze retains the best positions, 

whereas the Global freeze, which combines all of the local 

freeze outcomes, modifies the random directions. That would 

suggest the accuracy of the MFF functions. 

• Regardless of gender, each firefly will be drawn by 

the other fireflies. 

• The brighter the firefly, the more appealing it is. A 

less brilliant firefly will gravitate toward a brighter 

one in this case. 

• The goal function is connected with the brightness of 

the firefly. 

The FA is mostly focused on the attraction and movement of 

fireflies. 

a. Attractiveness Function  

The generalized version of the monotonically reducing 

attractiveness function (𝜇) is as follows: 

𝜇 = 𝛼0 ∗ 𝑐𝛾𝑟2
(2) 

𝑟𝑗𝑖 = ||𝜒𝑗 − 𝜒𝑖|| = √∑ (𝜒𝑗,Κ − 𝜒𝑖,Κ)2𝔇
Κ (3) 

 

The Euclidean distance (𝛿) among the two fireflies, j and i, is 

calculated and represented as 𝑟𝑗𝑖 , wherein 𝔇 is the size of an 

optimization issue. There exists a light coefficient of 

absorption and a firefly brightness of 𝛼0. The attraction value 

and the light absorbance coefficient control how quickly a 

firefly converges. 

 

b. Movement of files 

The movement of the less bright firefly j towards the brighter 

firefly i is shown by: 

𝜒𝑗 = 𝜒𝑗𝛼0𝑐𝛾𝑟2
(𝜒𝑖 − 𝜒𝑗) + 𝛽 (𝑟 𝑎𝑛𝑑 − 0.5)                   (4) 

𝛽  is the random parameter that determines the random 

movement of the firefly. R is an operating system that 

produces random numbers that are usually between 0 and 1. 

Every firefly in FA is attracted to another and approaches to 

establish a dependence. The population is made up of one 

motif segment from each PMS sequence. Based on their 

Hamming Distance (HD), one population (firefly) is drawn to 

another and travels closer for reliance.The number of sites 𝜙 

such that 𝑠1[𝜙] ≠ 𝑠2[𝜙]gives the Hamming Distance (HD (𝑠1, 

𝑠2 )) between two identical strings, 𝑠1  and 𝑠2 . The New 

Potential Motif location 𝑁𝜗 𝑗𝑘 is produced as a result of the 

higher HD value moving towards the lower one, as shown by 

Eq. (9). To be more precise, the distance away from the 

hamming determines how each population location moves 

toward the other population. 

𝛿 = √∑ ∑ ∑ (𝜌𝑟𝑛[𝑗][𝑘] − 𝜌𝑟𝑛[𝑖][𝑘]𝑡
𝑘=1

𝜀
𝑖=1

𝜀
𝑗=1 )2                  (5) 

𝜇 = 𝛼0 ∗ 𝑐(−𝛾∗𝛿∗𝛿)2
*(𝜌𝑟𝑛[𝑗][𝑘] − 𝜌𝑟𝑛[𝑖][𝑘])                     (6) 

𝜃 =  𝛽 (𝑟 𝑎𝑛𝑑 − 0.5)                                                          (7) 

∑ ∑ (𝜌𝑟𝑛[𝑗][𝑘] = 𝜌𝑟𝑛[𝑗][𝑘] + 𝜇 + 𝜃𝑡
𝑘=1

𝜀
𝑖=1 )                        (8) 

𝜗
𝑗𝑘={

𝑁𝜗 𝑗𝑘
𝜗 𝑗𝑘,

,                                                                            (9)                                 

 

For the𝛿, use eq. (5).𝑝𝑜 refers to the population. Two factors, 𝜇 

and 𝜃  randomness (eqs. 6 and 7) respectively, fix the new 

direction of 𝑝𝑜2. First, use equation (5) to get the 𝛿 between 

𝜌𝑟𝑛  of 𝑝𝑜1  and 𝑝𝑜2 . Then, use 𝛿  to compute the 𝜇  and 

determine the 𝜃. Now, update the existing 𝜌𝑟𝑛  for these two 

values (𝜇, 𝜃). The New Potential Motif position (𝑁𝜗 𝑗𝑘) is the 

name given to the newly created position (eq. 9). Every 

sequence location in 𝑝𝑜2 results in the creation of this new 

position.Initially, all 𝜌𝑟𝑛 of 𝑝𝑜2 are kept and there is no 

movement if 𝑝𝑜2has a lower HD (lesser bright) than 𝑝𝑜1 . In 

summary, 𝑁𝜗 𝑗𝑘 is created when all of the locations of the 

𝑗𝑡ℎ𝑝𝑜 migrate towards the 𝑗𝑡ℎ𝑝𝑜  due to a greater HD of the 

𝑗𝑡ℎ𝑝𝑜  than the 𝑗𝑡ℎ𝑝𝑜 . Other than that, nothing has changed, 

and every place in the 𝑖𝑡ℎ𝑝𝑜 is in its original position. This is 

seen in Eq. (9). The values and parameters utilized in this 

method are listed in Table 1. 

 

 

 

 

 

 

 

Table 1 

Parameters for MFFA 

Parameters  Optimal values 

𝛾 0.5 

𝛼0 1.0 

𝛽 0.2 

𝜀 30 

𝕝𝜏 1 

𝕌𝜏 1000 

𝐵𝑒𝑠𝑡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  0 

 

❖ Local freeze  

 

The default Firefly Algorithm produced just 15% of matches, 

took longer, and had no discernible outcomes. The present 

work uses the FFF algorithm to overcome these limitations, 

and the suggested approach incorporates two freezing 

techniques, namely “Local Freeze (LF) and Global Freeze 

(GF)". LF was able to get an accuracy of up to 40% in a 

minimal time. Each sequence generates random sites where the 

altered motifs are inserted; these spots are referred to as 
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implanted positions. The issue with Firefly PMS is that, 

although it is less brilliant, it would happily fit in some of the 

implanted spots. There could be less of a hammering distance 

between them, however, therefore, as such a shift takes place, 

certain advantageous spots in fewer fireflies can be lost. We 

are maintaining that advantageous position because of this, and 

we term it FREEZING. 

𝑁𝜗 𝑗𝑘 = {
                      𝜗 𝑗𝑘, 𝑖𝑓 (𝔇𝑗 = 𝔇𝜗 𝑗𝑘)

𝜗 𝑗𝑘 ± 𝜎, 𝜎 > 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(10) 

❖ Global Freeze  

With just 40% success in LF, the focus is shifting to GF to 

improve precision. LF is executed and all phases are 

collected.Until every location is locked or as precise as 

possible, the LF is replicated 'n' times. Because the firefly's 

attraction and unpredictable nature fluctuate, the freezing sites 

at each moment are decided by the random places established 

in the beginning stage. Consequently, if motif searching is 

conducted in a certain way and the site is deemed 

unacceptable, it may provide some poor results. Despite many 

repetitions, the software fails to provide the desired results. By 

freezing in all random directions or achieving the highest level 

of motif detection accuracy, this GF is utilized to enhance 

performance. To ensure that the implanted location is ideal, 

many LF tests are run, and further refinement is done. The best 

solution is obtained by combining "n" times module-wise 

freezing (𝜂)  to create the GF. The operation ends if "freeze 

count (𝜓)" equals the number of sequences; else, the module-

wise freeze count, which is shown in Eq. 11, is increased with 

the freeze count. 

 

𝜓 = {
𝜓 + 𝜂, 𝑖𝑓(𝑛! = 𝜓)

𝜓, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                   (11) 

Until all locations match the implanted positions, this 

procedure is repeated again. The loop ends and our goal is 

accomplished if the 𝜓 equals t. All of the Gibbs sampling is 

done continually using the aforementioned procedure. In the 

end, we determined the optimal Gibbs sample while 

maintaining all levels of precision, and we found the final 

motif (TF) and the places that correlate to it (TFBs). 

 

Input: 𝑆 = {𝑠1, 𝑠2 … . 𝑠𝑡} with length n, length “l”, mutation “d” 

BEGIN 

While (true) 

for𝜙 = 1 to count 

Create a random position for each 𝑆 

𝑓𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝕝𝜏  𝑡𝑜 𝕌𝜏  
For 𝑗 = 0 𝑡𝑜 𝜀 

For 𝑖 = 0 𝑡𝑜 𝜀 

𝛿 = 0 

 For 𝑘 = 0 𝑡𝑜 𝑡 

       If (𝜌ℋ[𝑗] > 𝜌ℋ[𝑖] 
 

End if 

     𝛿 = 𝑚𝑎𝑡ℎ. 𝑠𝑞𝑟𝑡(𝛿) 

End for k 

For k=0 to t 

               𝜇 = 𝛼0 ∗ 𝑐(−𝛾∗𝛿∗𝛿)2
*(𝜌𝑟𝑛[𝑗][𝑘] − 𝜌𝑟𝑛[𝑖][𝑘]) 

               𝜃 =  𝛽 (𝑟 𝑎𝑛𝑑 − 0.5) 

Temp 1= (𝜌𝑟𝑛[𝑗][𝑘] + 𝜇 + 𝜃 

Freeze= Local freeze (j, k, l) 

If (freeze==0) 

𝜌𝑟𝑛[𝑗][𝑘] = (𝑖𝑛𝑡)𝑡𝑒𝑚𝑝 1; 
Else 

Don't alter that position. Freeze it 

end if 

end for k 

Finding a HD for the new locations. 

end for i 

end for j 

end for iteration 

callGF 

ð𝑗 = 0 

   For k=0 to t 

if (ℵ[𝑘]! = −1) 

ð𝑗 ⟵ ð𝑗 + 1 

end if 

end for k 

accuracy=ð𝑗 ∗ 𝑡/100 

if (𝐵𝑒𝑠𝑡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) 

𝐵𝑒𝑠𝑡𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

𝐵𝑒𝑠𝑡𝑚𝑜𝑡𝑖𝑓 = 𝐺𝑖𝑏𝑏𝑠 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 [𝜙] 

    For ℎ =  0 𝑡𝑜 𝑡 

𝐵𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[𝜙][ℎ] = ℵ[ℎ] 

end for h 

end if 

end for 𝜙 

 End while  

END 

 

C. AI-based refinement enhancement for predicting model 

construction 

For AI-based refinement enhancement using the Harmony 

Search with Logistic regression. The motifs identified using 

the MFF-GB are likely to represent crucial patterns in the 

sequences. These motifs can be transformed into numerical 

features, which may include properties such as motif length, 

mutation count, position weight matrix (PWM) scores, and 

other relevant characteristics. 

a. Harmony Search Algorithm (HSA) 

The Harmony Search algorithm is employed to further refine 

the features extracted from the identified motifs. HS optimizes 

these features by iteratively adjusting their values to enhance 

their contribution to the overall model. A relatively novel 

meta-heuristic algorithm, Harmony Search (HS) finds a 

pleasant harmony by emulating the improvisation process of 

musicians. The approach has several benefits in comparison to 

conventional optimization methods: (i) it is a straightforward 

meta-heuristic algorithm that eliminates the need for initial 

setting of decision variables; (ii) it employs stochastic random 

searches, which eliminates the need for derivative information; 

and (iii) it possesses a limited number of parameters that allow 

for fine-tuning. This is readily apparent in the literature as 

discrete and continuous optimization problem applications. HS 

is predicated on the notion that improvisation is similar to the 

optimization method that engineers use to solve problems, with 
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artists experimenting with different combinations of known 

(memorized) frequencies. Thus, to find the global optimum, a 

feasible solution is referred to as a "harmony," and each option 

variable is associated with a note that produces a value. 

The following stages make up the HS algorithm: 

i. Initiate the problem and algorithm 

The definition of the optimization issue is: 

𝑀𝑖𝑛 (𝑜𝑟 𝑚𝑎𝑥) 𝑓(𝔛)                                                          (12) 

𝜗𝛽𝑖 ≤ 𝔛𝑖 ≤∪ 𝛽𝑖                                                                 (13) 

An objective function is denoted by 𝑓(𝔛) ,, where 𝔛  is a 

potential solution composed of the choice variables 𝔛𝑖 .For 

every decision variable, the lower and higher limits are 

represented by 𝜗𝛽𝑖 and ∪ 𝛽𝑖, respectively. 

 

ii. Initialize the Harmony Memory (HM) 

HM represents a memory region solution vector, akin to the 

genetic pool in a Genetic Algorithm (GA). The initial HS is 

formed through a uniform distribution of ranges, populating a 

matrix with an equivalent number of solution vectors generated 

randomly, mirroring the size of HMS.. 

𝔛𝑖
𝑙 = 𝜗𝛽𝑖 + 𝐺 𝑎𝑛𝑑 𝔛 (𝜗𝛽𝑖 −∪ 𝛽𝑖)(14) 

iii. Create a new Harmony 

Improvisation is the process of creating a new harmonic. Three 

principles are used to create this new harmony vector, 𝔛′ =
, 𝔛′

1, 𝔛′
2, … 𝔛′

𝑁 . Random selection, pitch modification, and 

memory consideration.  

iv. Update the HM 

The new harmony is integrated while the current worst 

harmony is eliminated if its objective function value is greater 

than that of the most unfavourable harmony vector previously 

documented in the HM and no harmony vector of the same 

kind is present in the HM. 

v. Check the Stopping criterion  

When the allotted number of improvisations is achieved, the 

algorithm terminates. If not, repeat steps three and four. 

b. Logistic Regression 

With the refined features obtained from the HS algorithm, a 

logistic regression model is constructed. Logistic regression is 

chosen for its suitability in binary classification problems, 

which is common in motif prediction tasks.A tailored 

regression model known as logistic regression describes and 

illustrates the relationship between a linear mixture of 

explanatory variables and a categorical response variable. It 

may include categorical and/or continuous variables. 

Multinomial, ordinal, and binomial logistic regressions are the 

three different types of logistic regressions. When there are just 

two potential values for the dependent variable (usually "0" 

and "1"), binomial logistic regression models are applied. 

Multinomial logistic regression models, on the other hand, are 

applied to explanatory variables with three or more possible 

outcomes (three or more). Ordinal logistic regression is 

specifically designed for situations in which the dependent 

variable consists of ordered outcomes. This study employed 

logistic regression to analyze the dependent variable, which 

was categorized as "1" for greater stability and "0" for less 

stability. 

The binary logistic regression classifier is a commonly used 

technique in regression modeling that is utilized for modeling 

dichotomous dependent variables, such as the degree of 

stability of the index. Groups are typically encoded as (zero) 

"0" and (one) "1" to facilitate the interpretation of the results. 

Thus, items are classified in a binary manner using basic 

logistic regression.The following provides the logistic 

regression specification: 

𝜋(𝔛) = 𝑃(𝕐 = 1) =
1

1+exp {−(𝓅𝑜+∑ 𝓅𝑗𝑋𝑗)}
ℨ
𝑗=1

= [1 +

exp {−{−(𝓅𝑜 + ∑ 𝓅𝑗𝑋𝑗)}ℨ
𝑗=1 ]−1(15) 

𝑃(𝕐 = 0) = 1 − 𝑃(𝕐 = 1)                                               (16) 

𝑃(𝕐 = 0) =
exp {−(𝓅𝑜+∑ 𝓅𝑗𝑋𝑗)}

ℨ
𝑗=1

1+exp {−(𝓅𝑜+∑ 𝓅𝑗𝑋𝑗)}
ℨ
𝑗=1

(17) 

Where  

𝑦𝑖 = {
1 𝑓𝑜𝑟 𝑚𝑜𝑟𝑒 𝑠𝑡𝑎𝑏𝑙𝑒
0 𝑓𝑜𝑟 𝑙𝑒𝑠𝑠 𝑠𝑡𝑎𝑏𝑙𝑒

                                                 (18) 

The coefficients of the ℨ  independent variables, or the 

maximum likelihood estimable parameters of the linear model, 

are represented by the symbol 𝓅1, 𝓅2 … 𝓅ℨ, which stands for 

the coefficient of the constant term. The variables that are 

independent are represented by the notation 𝔛1, 𝔛2 … 𝔛ℨ. 

For logit regression of this probability, the logistic model has a 

linear shape: 

𝐿𝑜𝑔𝑖𝑡[𝜋(𝔛)] = log (
𝜋(𝔛)

1−𝜋(𝔛)
) = 𝜋𝑜 + ∑ 𝓅𝑗𝑋𝑗

ℨ
𝑗=1                (19) 

Where the odds =
𝜋(𝔛)

1−𝜋(𝔛)
, where 1- 𝜋(𝔛)  represents the 

likelihood of failure and 𝜋(𝔛) represents the probability of 

success. 

c. Harmony Search with Logistic Regression 

The Harmony Search algorithm is employed to optimize and 

refine the features extracted from the motifs. HS iteratively 

adjusts the values of these features to enhance their 

contribution to the overall predictive model. HS emulates the 

process of musical improvisation, treating each candidate 

solution (harmony) as a set of decision variables. The 

Harmony Memory stores promising solutions, and the 

algorithm improvises new solutions based on memory 

consideration, pitch adjustment, and random selection.A 

logistic regression model is built using the enhanced 

characteristics that come from HS. Because it works well for 

binary classification tasks, logistic regression may be used to 

anticipate outcomes like stable or less stable 

circumstances.Logistic regression learns a decision boundary 

that separates the two classes (more stable and less stable) in 

the feature space.Post-training, the Harmony Search algorithm 

is again employed to fine-tune the parameters of the logistic 

regression model. HS optimizes these parameters to enhance 

the predictive performance of the logistic regression model. 

Given a set of new input features (potentially representing 

motifs in unseen sequences), the hybrid model utilizes the 

trained and refined logistic regression model for prediction.The 

logistic regression equation is used to calculate the log odds 

(logit) of the positive outcome (more stable condition). This 

logit is then transformed into a probability.These models are 

then used to scan other sequences to predict the presence of 

similar motifs. 
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IV. EXPERIMENTAL ANALYSIS 
 

This section demonstrates the experimental examination of the 

motif discovery and prediction that has been suggested for 

performance assessment. The outcomes demonstrate the great 

efficiency of the proposed. This part is divided into 2 

subsections, including a comparison, and a summary of the 

research.  

A. Comparative analysis 

Finally, the performance metrics are rigorously evaluated, 

encompassing Running time vs. Maximum Motif length, 

running time vs. Motif length, running time vs. motif count (d), 

Prediction rate, and Mean Square Error using the existing 

methods such as Straglr [31],  STREME [32], Counting Motif 

Algorithm [33], G- Protein Coupled Receptors (GPCRs) [34], 

Fully Convolutional Network with Global Average Pooling 

(FCNA), Convolutional Autoencoder And Convolutional 

Neural Network (CAE-CNN) [25], self-attention graph 

network- drug–target affinity (SAG-DTA) [35]. 

a. Running time vs. Maximum Motif length 

The running time increases with the maximum motif length, as 

shown in Fig. 2 and Table 2. In Straglr, at a motif length of 30, 

the running time is highest among the existing algorithms. The 

running time also increases with the motif length, but it seems 

to increase at a slower rate compared to Straglr. The proposed 

algorithm outperforms Streme across all motif lengths. The 

running time for the proposed algorithm is consistently lower 

than both Straglr and Streme. It demonstrates better efficiency, 

especially as the motif length increases.  

TABLE 2 

Numerical Outcomes of Maximum Motif Length  

Maximum Motif length 

 

Running time (seconds/motifs) 

Straglr STREME Proposed 

10 100 0 0 

15 150 100 80 

20 200 110 90 

25 350 150 100 

30 600 190 130 

 

 
Fig. 2: Running time vs. Maximum Motif length 

 

b. Running time vs. Motif length 

 

Counting motif algorithm, at a motif length of 2, the running 

time is 23 seconds. As the motif length increases, the running 

time also increases, reaching 58 seconds at a motif length of 

10. GPCRs, at a motif length of 2, the running time is 21 

seconds. The running time increases with motif length, 

reaching 56 seconds at a motif length of 10. Finally, in the 

proposed, motif length of 2, the running time is 19 seconds. 

The proposed algorithm consistently outperforms both existing 

methods, reaching 38 seconds at a motif length of 10. The 

proposed algorithm consistently outperforms both existing 

algorithms, Counting Motif and GPCRs, in terms of running 

time for motif processing. As the motif length increases, the 

efficiency gains of the proposed algorithm become more 

pronounced. The running time of the proposed algorithm is 

consistently lower than the existing methods, making it a more 

efficient choice, especially for motifs with longer lengths 

represented in Fig. 3 and Table 3. 

 

 

 

TABLE 3 

Numerical Outcomes of Motif length (l) 

Motif length (l) 
 

Running time (s) 

Counting Motif Algorithms GPCRs Proposed 

10 23 21 19 

15 45 41 31 

20 49 40 34 

25 56 50 36 

30 58 56 38 

 

 
 

Fig. 3: Running time vs. Motif length (l) 

 

c. Running time vs mutation count (d) 

The running time increases as the mutation count (d) increases 

as shown in Fig. 4 and Table 4. At a mutation count of 2, the 

running time is 23 seconds. At a mutation count of 4, the 

running time increases to 45 seconds. This upward trend 

continues, reaching 59 seconds at a mutation count of 10. At a 

mutation count of 2, the running time is 21 seconds. At a 

mutation count of 4, the running time increases to 41 seconds. 

The running time further increases, reaching 56 seconds at a 

mutation count of 10. At a mutation count of 2, the running 

time is 19 seconds. At a mutation count of 4, the running time 

is 31 seconds. The running time increases gradually, reaching 

40 seconds at a mutation count of 10. The proposed algorithm 

consistently outperforms both existing algorithms, Counting 

Motif and GPCRs, in terms of running time for motif 

processing. As the mutation count increases, the efficiency 
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gains of the proposed algorithm become more pronounced. 

The running time of the proposed algorithm is consistently 

lower than the existing methods, making it a more efficient 

choice, especially for motifs with a higher number of 

mutations. 

TABLE 4 

Numerical Outcomes of Mutation Count (d)  

Mutation count (d) 
 

Running time (s) 

Counting Motif Algorithms GPCRs Proposed 

10 23 21 19 

15 45 41 31 

20 49 40 34 

25 56 50 38 

30 59 56 40 

 

 

 

 
 

Fig. 4: Running time vs motif count (d) 

 

d. Prediction rate  

In FCNA, at 10 epochs, the prediction rate is 12%. As the 

number of epochs increases, the prediction rate improves, 

reaching 85% at 50 epochs. In CAE-CNN, at 10 epochs, the 

prediction rate is 19%. The prediction rate increases with the 

number of epochs, reaching 89% at 50 epochs. In the 

suggested algorithm at 10 epochs, the prediction rate is 21%. 

The suggested algorithm consistently outperforms both 

existing methods, reaching a prediction rate of 97% at 50 

epochs. The proposed algorithm consistently outperforms both 

existing algorithms, FCNA and CAE-CNN, in terms of 

prediction rate after training for a specific number of epochs. 

As the number of epochs increases, the suggested algorithm 

demonstrates superior learning and achieves a higher 

prediction rate compared to the existing methods. Fig. 5 and 

Table 5 suggest that the suggested algorithm is more effective 

in capturing patterns and making accurate predictions as it 

undergoes more training epochs. 

 

 

 

 

 

 

 

TABLE 5 

Numerical Outcomes of Prediction Rate  

Number of epochs 
 

Prediction rate (%) 

FCNA CAE-CNN Proposed 

10 12 19 21 

20 25 47 49 

30 45 51 59 

40 65 69 79 

50 85 89 97 

 

 
Fig. 5: Prediction rate 

 

 

e. Mean Square Error 

 

In CNN, at 10 epochs, the MSE is 98%. As the number of 

epochs increases, the MSE decreases, reaching 50% at 50 

epochs. SAG- DTA at 10 epochs, the MSE is 95%. The MSE 

decreases with the number of epochs, reaching 42% at 50 

epochs.  At 10 epochs, the MSE is 89%. The suggested 

methods consistently outperform both existing methods, 

achieving a lower MSE of 25% at 50 epochs. The suggested 

methods consistently outperforms both existing algorithms, 

CNN and SAG-DTA, in terms of mean square error after 

training for a specific number of epochs. As the number of 

epochs increases, the proposed algorithm demonstrates 

superior learning and achieves a lower mean square error 

compared to the existing methods. Fig. 6 and Table 6 suggest 

that the suggested algorithm is more effective in minimizing 

errors and improving accuracy as it undergoes more training 

epochs. 

 

TABLE 6 

Numerical Outcomes of Mean Square Error  

Number of epochs 
 

MSE (%) 

CNN SAG-DTA Proposed 

10 12 19 21 

20 25 47 49 

30 45 51 59 

40 65 69 79 

50 85 89 97 

 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 07 Issue: 10 | October - 2023                                  SJIF Rating: 8.176                            ISSN: 2582-3930                                                                                                                                               
 

© 2023, IJSREM      | www.ijsrem.com                           DOI: 10.55041/IJSREM26252                                                |        Page 11 

 
Fig. 6: Mean Square Error 

B. Research summary  

The research combines motif discovery and prediction 

through a hybrid approach. It starts with data collection from 

Jaspar and ENCODE databases, ensuring normalization and 

integrity. Motif identification utilizes a Modified Freeze 

Firefly Algorithm with Gibbs sampling, enhancing accuracy 

through freezing mechanisms. The Harmony Search algorithm 

refines motifs, optimizing parameters, and fine-tuning a 

logistic regression model. The final hybrid model integrates 

motif features, demonstrating effectiveness in predicting stable 

and less stable conditions in biological sequences. 

 

V. CONCLUSION 

Finally, the study's hybrid technique, which combines 

motif identification and prediction, demonstrates a complete 

framework for studying biological sequences. The Modified 

Freeze Firefly Algorithm is used with Gibbs sampling for 

motif discovery, followed by refining using Harmony Search 

and logistic regression, to provide a strong prediction model. 

The effective implementation of these tools demonstrates their 

utility in comprehending complicated biological patterns. The 

study not only enhances motif identification but also 

underlines the need of combining varied techniques to increase 

prediction accuracy in biological stability. Overall, the hybrid 

model provides a viable path for researchers to investigate 

complex interactions in genomic data. 
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