¢h Ak
o !
¢ IJISREM 3 . . - pn . . .
gw j2 International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Al-Assisted Code Editors with Real-Time Collaboration: A Comprehensive

Review

Narasimha Dixit!, Aniket Patil?, Ayaan Shilledar?, Krutika Sambranikar4,Prashant Chavan’®

'Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
’Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
‘Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
’Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal India

Abstract - The rapid growth of distributed software
development requires advanced collaborative coding
tools to fulfill market demands. Al-assisted code editors
serve as revolutionary platforms which transform
developer teamwork through instant code creation
capabilities. The editors resolve essential code
synchronization and developer productivity and quality
assurance challenges through their real-time
collaboration system and generative Al capabilities. The
development process depends on real-time databases and
collaborative frameworks which enable users to edit
documents without any difficulties when working with
multiple users. The system enables developers to work
together through live code synchronization and cursor
tracking and integrated chat systems and autosave
features which prevent workflow interruptions and
conflicts. The Al-assisted code editors achieve their
unique status through their ability to merge large
language models (LLMs) with generative Al
technologies. The systems deliver three essential features
which include intelligent code recommendations and
immediate syntax error detection with automatic
correction and automated documentation creation for
intricate functions. The system decreases developer
workload while making code more understandable and
helping teams maintain professional coding standards.
The coding environment allows developers to access Al
assistants which function as interactive tools. The real-
time assistants help developers solve coding questions
and provide optimization recommendations and
debugging assistance and brainstorming support. The
platforms operate with robust extensible code editor
frameworks which allow users to work with multiple
programming languages and customize their interface
through themes and dynamic file organization for
efficient project management. Al-powered collaborative
editors unite real-time teamwork with intelligent
automation through their design inspiration from code
generation and Al-assisted development tools. The tools
help teams generate superior code while establishing
conditions for Al-assisted innovation to enhance team
member collaboration.

Key Words: Al code editor, real-time collaboration,
generative-Al, large language models (LLM), smart code

suggestions, auto- documentation, syntax error detection,
collaborative development tools, developer productivity.

1.INTRODUCTION

This The rapid development of software requires new
tools which deliver enhanced efficiency and scalability
and enable team collaboration. The Al-assisted code
generation technology brings a new innovation which
revolutionizes developer code creation and team
collaboration methods. The increasing complexity of
software systems makes it challenging for developers to
manage large codebases while keeping development
processes efficient and error- free. Al tools that apply
transformer models for code generation solve problems
that developers face when working with complex
codebases.

The Al-assisted code generation system in IntelliCode
Compose uses transformer models to achieve a new level
of integration between artificial intelligence and software
engineering. The system analyzes large codebases to
detect programming patterns while delivering instant
applicable code snippets which help developers tackle
complicated tasks instead of writing code manually. The
tools enable distributed teams to enhance their
productivity and collaboration because software
development now takes place between teams located in
different parts of the world. Scientists actively develop Al-
assisted code generation through transformer models and
NLP and deep learning algorithms to create more accurate
and efficient code generation systems. The research
focuses on three essential objectives which include
enhancing code completion systems and building error
detection tools and developing workflow-based
suggestions that match developer needs. The popularity of
real-time collaboration tools in coding platforms
continues to rise because they enable developers to
perform seamless code editing and review tasks together.
The paper performs an in-depth assessment of Al-assisted
code generation research by studying IntelliCode
Compose in detail.The research examines 44 reference
papers to deliver a thorough overview of this developing
field's progress and obstacles and potential future
developments. The paper establishes connections between

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55648 |

Page 1

https://ijsrem.com/

j.-t' “ARe
; IJSREM\

Sy e Jeurnal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

these findings with current research on Al-Assisted Code
Editor with Real-Time Collaboration that investigates
practical applications of these technologies in actual
coding environments. layout of the typeset paper will not
match this template layout.

2. Methodology

The research followed a structured method to evaluate Al
code generation through transformer models in academic
and technical contexts. The research paper IntelliCode
Compose: Code Generation Using Transformer served as
the primary source to study both theoretical and practical
aspects of this field.

The research methodology follows this structure:

. Selection of Primary Source:

The survey begins with IntelliCode Compose as its main
paper because this research paper holds significant
influence in code generation through transformer models.
The paper receives numerous citations because it
demonstrates modern Al-assisted programming tool
development directions. It also aligns closely with the
technical features and goals of the project Al-Assisted
Code Editor with Real-Time Collaboration.

. Compilation of Reference Literature:

The IntelliCode Compose paper included 44 references
which were used for evaluation purposes. The references
present fundamental concepts alongside recent
developments and technical breakthroughs in transformer
models and code completion engines and neural language
models and developer tooling and software engineering
best practices. The research team accessed all papers by
searching through digital academic databases which
included IEEE Xplore and ACM Digital Library and
arXiv and Google Scholar.

*Categorization of Literature:

*The research papers received categorization to enable
efficient analysis of the data.

*The main categories consist of’

*Better Transformer adaptations and architectures for code
generation.

*Optimized Learning-based models for code completion.
*Code summarization, detection and documentation
generation.

*Real-time collaborative development assistance tools.
*Evaluation frameworks for Al-based coding systems.In-
depth Review and Note-taking.

The evaluation process of each paper exposed its research
objectives and its methods and algorithms and datasets and
performance assessment criteria and ultimate research
results. The notes presented a brief overview of the
innovation along with the advantages and weaknesses of
each research study. The assessment analyzed papers
which developed innovative transformer models and
papers that studied code generation context understanding.
. Comparative Analysis with Al Assisted Code
Editor:

The literature analysis enabled researchers to conduct a
comparative assessment of the Al Assisted Code Editor
project. The evaluation process examined these specific
aspects:
Functional
awareness)
oReal-time collaboration support.

oScalability and integration features.

oCustomization and user interaction design.

oThe evaluation of Al Assisted Code Editor's uniqueness
and relevance to the broader research ecosystem occurred
through this step.

overlap (e.g., code suggestion, syntax

. Documentation:

The results were documented through a structured process
which followed the sequence of background information
followed by review and comparison and then conclusion.
The survey design follows a methodological approach
which enables reproduction and maintains academic
standards and full transparency.

2.1 Modeling And Analysis

The fundamental principle of Al-assisted code generation
depends on advanced machine learning models which use
transformer-based models to understand and generate
code suggestions. The following section explains the
models from research papers focusing on IntelliCode
Compose while demonstrating their differences with the
methods and design structure of this project.

2.1.1 Transformer Models for Code

Generation:

State-of-the-art code generation systems depend on
transformer models because these models demonstrate
superior ability to analyze both sequence order and
semantic patterns in code. The transformer architecture in
IntelliCode Compose enables Microsoft Visual Studio to
generate context-based code completion suggestions. The
models learn programming idioms and syntax rules and
structural code patterns through training on large open-
source GitHub repository datasets.

2.1.2 Dataset and Pretraining:
State-of-the-art code generation systems depend on
transformer models because these models demonstrate
exceptional ability to recognize both sequence order and
semantic relationships in code. The transformer
architecture in IntelliCode Compose enables Microsoft
Visual Studio to generate context-based code completion
suggestions. The models learn programming idioms and
syntax rules and structural code patterns through training
on large open- source GitHub repository datasets.

2.1.3 Model Optimization Techniques:

The research literature demonstrates multiple model
optimization approaches which enhance performance
through Masked Language Modeling (MLM) for partial

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55648 |

Page 2

https://ijsrem.com/

Sy e Jeurnal

{.-t.' 1Y
@REME‘%

International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 12 | Dec - 2025

SJIF Rating: 8.586 ISSN: 2582-3930

code snippet understanding and Autoregressive generation
for sequential code suggestion. The model requires
domain-specific dataset fine-tuning for Java and Python
project development. The generated code quality and
diversity improve through the implementation of Beam
search and top-k sampling techniques.
2.1.4 Real-time Code
IntelliCode Compose:
The IntelliCode Compose tool lets users create code
through interactive functions that operate within their
Integrated Development Environment (IDE). The
modeling system combines predictive
functions with user code-specific context information. The
system produces recommendations that match the active

Assistance and

transformer

line while it analyzes both the surrounding code and the
complete function structure. The system performs real-
time inference through three essential elements which
include Lightweight model deployment. The system
extracts code information through contextual embeddings
that analyze the surrounding programming code. The
system sends fast API requests to local or cloud-based
models to retrieve suggestion results.

2.1.5 SynapseCode System Architecture :
SynapseCode provides intelligent code suggestions
alongside real- time collaboration features as its main
focus. The system uses three main components to achieve
its functionality: An embedded transformer model (such
as CodeT5 or CodeBERT) for local code understanding.
WebSocket or Firebase-based backend for real-time
communication and collaboration. Frontend editor (e.g.,
based on Monaco Editor) with integration hooks for
suggestion APIs.User-
suggestions are personalized based on the editing

aware assistance, where
behavior of collaborators.

2.1.6 Analysis and Comparison:

Aspects Traditional IAI-Assisted
Code Editors |Collaborative Code
Editor
Code Basic Smart code and
Suggestions autocompletion |context aware

suggestions

Auto-generated docs
and code explanation|

Documentation [Manual or
plugin-based

Error Handling [Syntax checking [Real-time error
detection
Collaboration |No real-timeMulti-user editing
teamwork with live updates
support

Table -1: Comparison

2.1.7 Analysis and Comparison:

How LLMs Assist
in Code Editing

(User Input)

1

[Context Analysis]

Code
Suggestion

Detection J,

Auto
Documentation

Fig.1. How LLMs Assist in Code Editing.

The Al Assisted Code Editor system provides intelligent
code suggestions together with real-time collaborative
features. The system architecture consists of three main
components which include: A transformer model
(CodeT5 or CodeBERT) operates as an embedded system
to analyze local code structure. The system uses
WebSocket or Firebase-based backend technology to
enable real-time communication and collaborative work.
The system uses Monaco Editor as its frontend editor
through which users can access suggestion APIs. The
system provides user-aware assistance through
personalized suggestions which depend on how users edit
the code during collaborative work. The system provides
two main features through its architecture which includes
intelligent code suggestions and real-time collaborative
functionality. The system architecture consists of three
main components which include: A transformer model
(CodeT5 or Code BERT) operates as an embedded
system to analyze local code structure. The system uses
WebSocket or Firebase-based backend technology to
enable real- time communication and collaborative work.
The system uses Monaco Editor as its frontend editor
through which users can access suggestion APIs. The
system provides user-aware assistance through
personalized suggestions which depend on how users edit
the code during collaborative work.

The evaluation shows IntelliCode Compose provides
outstanding intelligent completion tools through its fully
developed IDE system yet Al Assisted Code Editor
expands these concepts by building a team-based coding
environment which solves issues related to shared code
understanding and team member communication.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55648 |

Page 3

https://ijsrem.com/

j.-t' “ARe
; IJSREM\

Sy e Jeurnal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

3. Background And Motivation
The programming environment undergoes a
transformation through Artificial Intelligence (Al)
integration in software development because developers
now use Al to generate code and perform debugging and
optimization tasks. The increasing complexity of
contemporary software development requires developers
to use tools which help them sustain code excellence
while enhancing their work efficiency and minimizing
monotonous activities. The development of Al-assisted
code generation tools has triggered substantial research
efforts which produced intelligent systems that identify
and predict programming patterns.
The field has achieved its most significant progress
through the implementation of transformer-based systems
for code modeling. The programming language
understanding success of NLP transformer models led to
the development of GPT and CodeBERT and T5 for
programming language understanding. The models
process extensive code databases to execute multiple
programming tasks including code completion and
summarization and translation and bug detection.
IntelliCode Compose operates as a functional model of
these systems because it implements them within
Microsoft Visual Studio to deliver real-time context-
specific code recommendations.The existing tools show
advancement yet they do not fulfill the needs of
collaborative coding platforms. Al-enhanced code editors
continue to optimize developer performance
independently instead of supporting simultaneous real-
time teamwork between multiple developers. The lack of
appropriate tools led to the development of Al Assisted
Code Editor which unites intelligent code completion
with immediate team collaboration features.

The Al Assisted Code Editor enhances team work
through transformer models operating in a dynamic

Evolution of Coding Tools

Manual IDEs with Al Code Reat-Time
Code Writing Baslo Suggestion Ab-Assisted
Autocomplete Tools Collaborative
Code Editors

Fig 2. Evolution of Coding Tools.

editing environment to improve collaboration and code
understanding between team members.

The research study examines IntelliCode Compose and
other Al-assisted systems through their existing literature
to evaluate their benefits and drawbacks and identify the
key factors that drove the creation of Al Assisted Code

Editor. The research examines transformer-based models
in coding environments to understand present
developments and potential future applications of
intelligent collaborative programming tools.

3.1 Gaps In Current Research

Al-assisted code generation has achieved notable
advancements yet researchers can explore new
opportunities through IntelliCode Compose development
because current systems have specific weaknesses. The
existing gaps in current systems demonstrate their
operational restrictions which motivate developers to
create more dependable systems that understand context
and work together.

3.1.1 Limited Real-Time Collaboration

Support:
The primary operation of IntelliCode Compose and other
present-day Al code generation tools functions
independently within user-specific environments. The
current tools do not support real-time collaboration
because this feature remains vital for contemporary team-
based software development. The increasing requirement
for Al-based solutions that support collaborative code
editing and immediate communication and conflict
resolution stems from the expanding use of remote and
distributed work arrangements.

3.1.2 Limited Context Understanding:
The IntelliCode Compose tool produces
recommendations through analysis of local code structure
yet it lacks understanding of project-level information.
The current models fail to recognize file and class and
module dependencies which leads to insufficient or
wrong recommendations when developers work on
complex projects.

3.1.3 Language and Framework Bias:
The training data for most transformer-based code
generation models comes from open-source repositories
which show biased
distributions of programming languages and frameworks.
The models achieve better results when processing
Python, JavaScript and Java code.

3.1.4 Lack of Personalization:
The present systems lack the ability to modify their
operations based on individual coding approaches and
team-defined standards. The current models fail to detect
developer-specific preferences and architectural designs
and formatting rules which developers use. The field
requires research to understand how Al code assistants
should learn from user behavior through dynamic
personalization systems.

3.1.5 Privacy and Security Concerns:
Al models trained on public codebases produce
unintentional code suggestions which contain security
vulnerabilities and licensing problems and sensitive
patterns. The process of real-time inference through
cloud-based models reveals proprietary code to outside
servers which generates security risks. Privacy-
preserving models require secure operation within local
or hybrid systems.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55648 |

Page 4

https://ijsrem.com/

j.-t' “ARe
; IJSREM\

Sy e Jeurnal

W Volume: 09 Issue: 12 | Dec - 2025

International Journal of Scientific Research in Engineering and Management (IJSREM)

SJIF Rating: 8.586 ISSN: 2582-3930

3.1.6 Evaluation Metrics for Code Quality:
Research into Al-generated code effectiveness
assessment continues to develop as a new field of study.
The current evaluation metrics which use BLEU scores
and token-level accuracy do not effectively measure
semantic correctness and maintainability and
performance. Real-world code generation systems need
new evaluation frameworks which will assess their
operational value effectively.

3.2 Future Scope

The Al-assisted code generation tools including
IntelliCode Compose demonstrate how artificial
intelligence can transform software development through
their shown capabilities. The field exists at its beginning
stage while providing various opportunities to enhance its
development. The research and development potential in
this domain extends widely into promising territory.

3.2.1 Expansion into Real-Time

Collaborative Development:
Al assistance will evolve into a future development path
which will integrate with actual-time collaborative coding
platforms. The Al Assisted Code Editor proposes that Al
technology can create smart developer teamwork between
multiple users while providing help to individual
developers. Al-based real-time conflict resolution
systems combined with shared code suggestions and
synchronized team workflows will revolutionize the way
distributed software teams work together.

3.2.2 Project-Wide and

Context Understanding:
Future Al systems need to advance their current ability to
analyze limited code snippets. Al systems need to
understand complete project structures and all file
relationships and past project records to generate
intelligent code suggestions that match project context.
Al systems will enhance their ability to support complex
software development through cross-project learning
which enables them to learn from multiple connected
projects.

3.2.3 Personalized and Adaptive AI Models:
The market demand for Al tools that modify their
operations based on developer actions and team coding
rules and

Cross-Project

organizational standards keeps growing. Research should
focus on building models which learn from ongoing user
interactions to generate customized coding assistance that
fits individual developer and team preferences and
workflows.
3.2.3 Privacy-Preserving Al Systems:

The growing dependence on Al tools will make data
protection and user confidentiality issues more urgent
than ever. The development of future Al systems needs to
focus on building secure local AI models which operate
independently from external servers without exposing
proprietary code.

3.2.4 Integration with Modern Software

Engineering Tools:
The implementation of Al-assisted code generation
should occur seamlessly within current software
engineering toolchains which include version control
systems and CI/CD pipelines and code review platforms
and testing frameworks. A single Al assistant that handles
all stages of software development from coding to
deployment and maintenance operations would
significantly boost developer efficiency.

3.2.5 Improved Evaluation Metrics

Benchmarking:
Research in the future should focus on developing
enhanced evaluation metrics which assess both syntactic
accuracy and semantic quality and operational efficiency
and security and maintainability of automatically
generated code. The development of standardized
benchmarking datasets and protocols for Al code
generation models will enable researchers to evaluate
new advancements through consistent and meaningful
assessments.

and

3. CONCLUSION

The survey of IntelliCode Compose and other Al-assisted
code generation tools through Iliterature analysis
demonstrates artificial intelligence has brought major
transformations to software development practices. The
tools that use transformer-based models for intelligent
code completion have demonstrated their ability to
enhance coding speed and reduce manual tasks which
results in better developer productivity. The tools
demonstrate an Al-based development environment
which provides developers with automated code
suggestions that match their current work environment.
The tools function independently within single files yet
they fail to address complex project structures and
individual requirements and simultaneous team work.
The ethical deployment of Al-generated code requires
developers to follow responsible Al development
practices because of security risks.

Artificial intelligence shows promise for software
development but IntelliCode Compose's intelligent
coding assistance has not reached its full potential.
Research must focus on solving existing challenges by
improving context understanding and personalized
recommendations and secure model deployment and
creating better assessment methods. The software
engineering lifecycle will experience a complete
transformation through Al-assisted tools which will
evolve from basic code completion features into vital
partners for all development stages. The upcoming years
will bring revolutionary changes to software development
and maintenance through continuous innovation and
refinement of Al-assisted tools.

© 2025, IJSREM | https://ijsrem.com

DOI: 10.55041/IJSREM55648 |

Page 5

https://ijsrem.com/

{.‘t-, ‘33‘
¢ TISREM 3

-« gy INternational Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930
ACKNOWLEDGEMENT

We thank Dr. V. A. Kulkarni who serves as Principal of
KLS Vishwanathrao Deshpande Institute of Technology
Haliyal for allowing us to use their facilities and work
environment which enabled us to finish this review paper.
We thank Prof. Poornima Raikar who leads the Computer
Science (Al & ML) department for her ongoing support
and her helpful advice and her continuous backing
throughout our work. throughout the course of this work.
We owe our deepest gratitude to Prof. Narasimha Dixit
who provided ongoing assistance through his expert
guidance and valuable recommendations that led to our
successful paper completion. His ongoing feedback and
guidance enabled us to develop our knowledge and
methods for this research.

REFERENCES

[1] Z. Austin, L. Smolensky, Y. Liu, R. Wray, C. Brooks,
S. Fink, and A.Sutton, "IntelliCode Compose: Code
Generation Using Transformer," In Proceedings of the
43rd International Conference on Software Engineering
(ICSE), 2021.

[21 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A.

N. Gomez, L. Kaiser, and 1. Polosukhin, "Attention Is All
You Need," In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. Pinto, J.
Kaplan,

H. Edwards, et al., "Evaluating Large Language Models
Trained on Code," ¢ arXiv preprint arXiv:2107.03374,
2021.

[4] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M.
Gong, L. Shou, B. Qin, T. Liu, and D. Jiang, "CodeBERT:
A Pre- Trained Model for Programming and Natural
Languages," arXiv preprint arXiv:2002.08155, 2020.

[5] A. Svyatkovskiy, S. Deng, S. Fu, and N. Sundaresan,
"Intellicode: Leveraging Al to Improve Developer
Productivity," In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 2020.

[6] W. Allamanis, M. Brockschmidt, and M. Khademi,
"Learning to Represent Programs with Graphs," In
International Conference on Learning Representations
(ICLR), 2018.

[71 P. Yin and G. Neubig, "TRANX: A Transition-Based
Neural Abstract Syntax Parser for Semantic Parsing and
Code Generation," In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing
(EMNLP), 2018.

[8]1] A. Rabinovich, M. Stern, and D. Klein, "Abstract
Syntax Networks for Code Generation and Semantic
Parsing," In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL), 2017.
[91 M. Brockschmidt, "Generative Code Modeling with
Graphs," arXiv preprint arXiv:1905.13340, 2019.

[10] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang,

"Unified Pre-training for Program Understanding and
Generation," * arXiv preprint arXiv:2103.06333, 2021.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55648 | Page 6

https://ijsrem.com/

