
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55648 | Page 1

AI-Assisted Code Editors with Real-Time Collaboration: A Comprehensive

Review

Narasimha Dixit1, Aniket Patil2, Ayaan Shilledar3 , Krutika Sambranikar4,Prashant Chavan5

1Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
2Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
3Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
4Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India
5Department of Computer Science(AIML),KLS Vishwanathrao Deshpande Institute Of Technology Haliyal,India

---***---

Abstract - The rapid growth of distributed software

development requires advanced collaborative coding

tools to fulfill market demands. AI-assisted code editors

serve as revolutionary platforms which transform

developer teamwork through instant code creation

capabilities. The editors resolve essential code

synchronization and developer productivity and quality

assurance challenges through their real-time

collaboration system and generative AI capabilities. The

development process depends on real-time databases and

collaborative frameworks which enable users to edit

documents without any difficulties when working with

multiple users. The system enables developers to work

together through live code synchronization and cursor

tracking and integrated chat systems and autosave

features which prevent workflow interruptions and

conflicts. The AI-assisted code editors achieve their

unique status through their ability to merge large

language models (LLMs) with generative AI

technologies. The systems deliver three essential features

which include intelligent code recommendations and

immediate syntax error detection with automatic

correction and automated documentation creation for

intricate functions. The system decreases developer

workload while making code more understandable and

helping teams maintain professional coding standards.

The coding environment allows developers to access AI

assistants which function as interactive tools. The real-

time assistants help developers solve coding questions

and provide optimization recommendations and

debugging assistance and brainstorming support. The

platforms operate with robust extensible code editor

frameworks which allow users to work with multiple

programming languages and customize their interface

through themes and dynamic file organization for

efficient project management. AI-powered collaborative

editors unite real-time teamwork with intelligent

automation through their design inspiration from code

generation and AI-assisted development tools. The tools

help teams generate superior code while establishing

conditions for AI-assisted innovation to enhance team

member collaboration.

Key Words: AI code editor, real-time collaboration,

generative-AI, large language models (LLM), smart code

suggestions, auto- documentation, syntax error detection,

collaborative development tools, developer productivity.

1.INTRODUCTION

This The rapid development of software requires new

tools which deliver enhanced efficiency and scalability

and enable team collaboration. The AI-assisted code

generation technology brings a new innovation which

revolutionizes developer code creation and team

collaboration methods. The increasing complexity of

software systems makes it challenging for developers to

manage large codebases while keeping development

processes efficient and error- free. AI tools that apply

transformer models for code generation solve problems

that developers face when working with complex

codebases.

The AI-assisted code generation system in IntelliCode

Compose uses transformer models to achieve a new level

of integration between artificial intelligence and software

engineering. The system analyzes large codebases to

detect programming patterns while delivering instant

applicable code snippets which help developers tackle

complicated tasks instead of writing code manually. The

tools enable distributed teams to enhance their

productivity and collaboration because software

development now takes place between teams located in

different parts of the world. Scientists actively develop AI-

assisted code generation through transformer models and

NLP and deep learning algorithms to create more accurate

and efficient code generation systems. The research

focuses on three essential objectives which include

enhancing code completion systems and building error

detection tools and developing workflow-based

suggestions that match developer needs. The popularity of

real-time collaboration tools in coding platforms

continues to rise because they enable developers to

perform seamless code editing and review tasks together.

The paper performs an in-depth assessment of AI-assisted

code generation research by studying IntelliCode

Compose in detail.The research examines 44 reference

papers to deliver a thorough overview of this developing

field's progress and obstacles and potential future

developments. The paper establishes connections between

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55648 | Page 2

these findings with current research on AI-Assisted Code

Editor with Real-Time Collaboration that investigates

practical applications of these technologies in actual

coding environments. layout of the typeset paper will not

match this template layout.

2. Methodology

The research followed a structured method to evaluate AI

code generation through transformer models in academic

and technical contexts. The research paper IntelliCode

Compose: Code Generation Using Transformer served as

the primary source to study both theoretical and practical

aspects of this field.

The research methodology follows this structure:

• Selection of Primary Source:

The survey begins with IntelliCode Compose as its main

paper because this research paper holds significant

influence in code generation through transformer models.

The paper receives numerous citations because it

demonstrates modern AI-assisted programming tool

development directions. It also aligns closely with the

technical features and goals of the project AI-Assisted

Code Editor with Real-Time Collaboration.

• Compilation of Reference Literature:

The IntelliCode Compose paper included 44 references

which were used for evaluation purposes. The references

present fundamental concepts alongside recent

developments and technical breakthroughs in transformer

models and code completion engines and neural language

models and developer tooling and software engineering

best practices. The research team accessed all papers by

searching through digital academic databases which

included IEEE Xplore and ACM Digital Library and

arXiv and Google Scholar.

•Categorization of Literature:

•The research papers received categorization to enable

efficient analysis of the data.

•The main categories consist of:

•Better Transformer adaptations and architectures for code

generation.

•Optimized Learning-based models for code completion.

•Code summarization, detection and documentation

generation.

•Real-time collaborative development assistance tools.

•Evaluation frameworks for AI-based coding systems.In-

depth Review and Note-taking.

The evaluation process of each paper exposed its research

objectives and its methods and algorithms and datasets and

performance assessment criteria and ultimate research

results. The notes presented a brief overview of the

innovation along with the advantages and weaknesses of

each research study. The assessment analyzed papers

which developed innovative transformer models and

papers that studied code generation context understanding.

• Comparative Analysis with AI Assisted Code

Editor:

The literature analysis enabled researchers to conduct a

comparative assessment of the AI Assisted Code Editor

project. The evaluation process examined these specific

aspects:

Functional overlap (e.g., code suggestion, syntax

awareness)

oReal-time collaboration support.

oScalability and integration features.

oCustomization and user interaction design.

oThe evaluation of AI Assisted Code Editor's uniqueness

and relevance to the broader research ecosystem occurred

through this step.

• Documentation:

The results were documented through a structured process

which followed the sequence of background information

followed by review and comparison and then conclusion.

The survey design follows a methodological approach

which enables reproduction and maintains academic

standards and full transparency.

2.1 Modeling And Analysis

The fundamental principle of AI-assisted code generation

depends on advanced machine learning models which use

transformer-based models to understand and generate

code suggestions. The following section explains the

models from research papers focusing on IntelliCode

Compose while demonstrating their differences with the

methods and design structure of this project.

2.1.1 Transformer Models for Code

Generation:

State-of-the-art code generation systems depend on

transformer models because these models demonstrate

superior ability to analyze both sequence order and

semantic patterns in code. The transformer architecture in

IntelliCode Compose enables Microsoft Visual Studio to

generate context-based code completion suggestions. The

models learn programming idioms and syntax rules and

structural code patterns through training on large open-

source GitHub repository datasets.

2.1.2 Dataset and Pretraining:

State-of-the-art code generation systems depend on

transformer models because these models demonstrate

exceptional ability to recognize both sequence order and

semantic relationships in code. The transformer

architecture in IntelliCode Compose enables Microsoft

Visual Studio to generate context-based code completion

suggestions. The models learn programming idioms and

syntax rules and structural code patterns through training

on large open- source GitHub repository datasets.

2.1.3 Model Optimization Techniques:

The research literature demonstrates multiple model

optimization approaches which enhance performance

through Masked Language Modeling (MLM) for partial

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55648 | Page 3

code snippet understanding and Autoregressive generation

for sequential code suggestion. The model requires

domain-specific dataset fine-tuning for Java and Python

project development. The generated code quality and

diversity improve through the implementation of Beam

search and top-k sampling techniques.

2.1.4 Real-time Code Assistance and

IntelliCode Compose:

The IntelliCode Compose tool lets users create code

through interactive functions that operate within their

Integrated Development Environment (IDE). The

modeling system combines transformer predictive

functions with user code-specific context information. The

system produces recommendations that match the active

line while it analyzes both the surrounding code and the

complete function structure. The system performs real-

time inference through three essential elements which

include Lightweight model deployment. The system

extracts code information through contextual embeddings

that analyze the surrounding programming code. The

system sends fast API requests to local or cloud-based

models to retrieve suggestion results.

2.1.5 SynapseCode System Architecture :

SynapseCode provides intelligent code suggestions

alongside real- time collaboration features as its main

focus. The system uses three main components to achieve

its functionality: An embedded transformer model (such

as CodeT5 or CodeBERT) for local code understanding.

WebSocket or Firebase-based backend for real-time

communication and collaboration. Frontend editor (e.g.,

based on Monaco Editor) with integration hooks for

suggestion APIs.User- aware assistance, where

suggestions are personalized based on the editing

behavior of collaborators.

2.1.6 Analysis and Comparison:

Aspects Traditional

Code Editors

AI-Assisted

Collaborative Code

Editor

Code

Suggestions

Basic

autocompletion

Smart code and

context aware

suggestions

Documentation Manual or

plugin-based

Auto-generated docs

and code explanation

Error Handling Syntax checking Real-time error

detection

Collaboration No real-time

teamwork

support

Multi-user editing

with live updates

Table -1: Comparison

2.1.7 Analysis and Comparison:

Fig.1. How LLMs Assist in Code Editing.

The AI Assisted Code Editor system provides intelligent

code suggestions together with real-time collaborative

features. The system architecture consists of three main

components which include: A transformer model

(CodeT5 or CodeBERT) operates as an embedded system

to analyze local code structure. The system uses

WebSocket or Firebase-based backend technology to

enable real-time communication and collaborative work.

The system uses Monaco Editor as its frontend editor

through which users can access suggestion APIs. The

system provides user-aware assistance through

personalized suggestions which depend on how users edit

the code during collaborative work. The system provides

two main features through its architecture which includes

intelligent code suggestions and real-time collaborative

functionality. The system architecture consists of three

main components which include: A transformer model

(CodeT5 or Code BERT) operates as an embedded

system to analyze local code structure. The system uses

WebSocket or Firebase-based backend technology to

enable real- time communication and collaborative work.

The system uses Monaco Editor as its frontend editor

through which users can access suggestion APIs. The

system provides user-aware assistance through

personalized suggestions which depend on how users edit

the code during collaborative work.

The evaluation shows IntelliCode Compose provides

outstanding intelligent completion tools through its fully

developed IDE system yet AI Assisted Code Editor

expands these concepts by building a team-based coding

environment which solves issues related to shared code

understanding and team member communication.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55648 | Page 4

3. Background And Motivation
The programming environment undergoes a

transformation through Artificial Intelligence (AI)

integration in software development because developers

now use AI to generate code and perform debugging and

optimization tasks. The increasing complexity of

contemporary software development requires developers

to use tools which help them sustain code excellence

while enhancing their work efficiency and minimizing

monotonous activities. The development of AI-assisted

code generation tools has triggered substantial research

efforts which produced intelligent systems that identify

and predict programming patterns.

The field has achieved its most significant progress

through the implementation of transformer-based systems

for code modeling. The programming language

understanding success of NLP transformer models led to

the development of GPT and CodeBERT and T5 for

programming language understanding. The models

process extensive code databases to execute multiple

programming tasks including code completion and

summarization and translation and bug detection.

IntelliCode Compose operates as a functional model of

these systems because it implements them within

Microsoft Visual Studio to deliver real-time context-

specific code recommendations.The existing tools show

advancement yet they do not fulfill the needs of

collaborative coding platforms. AI-enhanced code editors

continue to optimize developer performance

independently instead of supporting simultaneous real-

time teamwork between multiple developers. The lack of

appropriate tools led to the development of AI Assisted

Code Editor which unites intelligent code completion

with immediate team collaboration features.

The AI Assisted Code Editor enhances team work

through transformer models operating in a dynamic

Fig 2. Evolution of Coding Tools.

editing environment to improve collaboration and code

understanding between team members.

The research study examines IntelliCode Compose and

other AI-assisted systems through their existing literature

to evaluate their benefits and drawbacks and identify the

key factors that drove the creation of AI Assisted Code

Editor. The research examines transformer-based models

in coding environments to understand present

developments and potential future applications of

intelligent collaborative programming tools.

3.1 Gaps In Current Research

AI-assisted code generation has achieved notable

advancements yet researchers can explore new

opportunities through IntelliCode Compose development

because current systems have specific weaknesses. The

existing gaps in current systems demonstrate their

operational restrictions which motivate developers to

create more dependable systems that understand context

and work together.

3.1.1 Limited Real-Time Collaboration

Support:

The primary operation of IntelliCode Compose and other

present-day AI code generation tools functions

independently within user-specific environments. The

current tools do not support real-time collaboration

because this feature remains vital for contemporary team-

based software development. The increasing requirement

for AI-based solutions that support collaborative code

editing and immediate communication and conflict

resolution stems from the expanding use of remote and

distributed work arrangements.

3.1.2 Limited Context Understanding:

The IntelliCode Compose tool produces

recommendations through analysis of local code structure

yet it lacks understanding of project-level information.

The current models fail to recognize file and class and

module dependencies which leads to insufficient or

wrong recommendations when developers work on

complex projects.

3.1.3 Language and Framework Bias:

The training data for most transformer-based code

generation models comes from open-source repositories

which show biased

distributions of programming languages and frameworks.

The models achieve better results when processing

Python, JavaScript and Java code.

3.1.4 Lack of Personalization:

The present systems lack the ability to modify their

operations based on individual coding approaches and

team-defined standards. The current models fail to detect

developer-specific preferences and architectural designs

and formatting rules which developers use. The field

requires research to understand how AI code assistants

should learn from user behavior through dynamic

personalization systems.

3.1.5 Privacy and Security Concerns:

AI models trained on public codebases produce

unintentional code suggestions which contain security

vulnerabilities and licensing problems and sensitive

patterns. The process of real-time inference through

cloud-based models reveals proprietary code to outside

servers which generates security risks. Privacy-

preserving models require secure operation within local

or hybrid systems.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55648 | Page 5

3.1.6 Evaluation Metrics for Code Quality:

Research into AI-generated code effectiveness

assessment continues to develop as a new field of study.

The current evaluation metrics which use BLEU scores

and token-level accuracy do not effectively measure

semantic correctness and maintainability and

performance. Real-world code generation systems need

new evaluation frameworks which will assess their

operational value effectively.

3.2 Future Scope

The AI-assisted code generation tools including

IntelliCode Compose demonstrate how artificial

intelligence can transform software development through

their shown capabilities. The field exists at its beginning

stage while providing various opportunities to enhance its

development. The research and development potential in

this domain extends widely into promising territory.

3.2.1 Expansion into Real-Time

Collaborative Development:

AI assistance will evolve into a future development path

which will integrate with actual-time collaborative coding

platforms. The AI Assisted Code Editor proposes that AI

technology can create smart developer teamwork between

multiple users while providing help to individual

developers. AI-based real-time conflict resolution

systems combined with shared code suggestions and

synchronized team workflows will revolutionize the way

distributed software teams work together.

3.2.2 Project-Wide and Cross-Project

Context Understanding:

Future AI systems need to advance their current ability to

analyze limited code snippets. AI systems need to

understand complete project structures and all file

relationships and past project records to generate

intelligent code suggestions that match project context.

AI systems will enhance their ability to support complex

software development through cross-project learning

which enables them to learn from multiple connected

projects.

3.2.3 Personalized and Adaptive AI Models:

The market demand for AI tools that modify their

operations based on developer actions and team coding

rules and

organizational standards keeps growing. Research should

focus on building models which learn from ongoing user

interactions to generate customized coding assistance that

fits individual developer and team preferences and

workflows.

3.2.3 Privacy-Preserving AI Systems:

The growing dependence on AI tools will make data

protection and user confidentiality issues more urgent

than ever. The development of future AI systems needs to

focus on building secure local AI models which operate

independently from external servers without exposing

proprietary code.

3.2.4 Integration with Modern Software

Engineering Tools:

The implementation of AI-assisted code generation

should occur seamlessly within current software

engineering toolchains which include version control

systems and CI/CD pipelines and code review platforms

and testing frameworks. A single AI assistant that handles

all stages of software development from coding to

deployment and maintenance operations would

significantly boost developer efficiency.

3.2.5 Improved Evaluation Metrics and

Benchmarking:

Research in the future should focus on developing

enhanced evaluation metrics which assess both syntactic

accuracy and semantic quality and operational efficiency

and security and maintainability of automatically

generated code. The development of standardized

benchmarking datasets and protocols for AI code

generation models will enable researchers to evaluate

new advancements through consistent and meaningful

assessments.

3. CONCLUSION

The survey of IntelliCode Compose and other AI-assisted

code generation tools through literature analysis

demonstrates artificial intelligence has brought major

transformations to software development practices. The

tools that use transformer-based models for intelligent

code completion have demonstrated their ability to

enhance coding speed and reduce manual tasks which

results in better developer productivity. The tools

demonstrate an AI-based development environment

which provides developers with automated code

suggestions that match their current work environment.

The tools function independently within single files yet

they fail to address complex project structures and

individual requirements and simultaneous team work.

The ethical deployment of AI-generated code requires

developers to follow responsible AI development

practices because of security risks.

Artificial intelligence shows promise for software

development but IntelliCode Compose's intelligent

coding assistance has not reached its full potential.

Research must focus on solving existing challenges by

improving context understanding and personalized

recommendations and secure model deployment and

creating better assessment methods. The software

engineering lifecycle will experience a complete

transformation through AI-assisted tools which will

evolve from basic code completion features into vital

partners for all development stages. The upcoming years

will bring revolutionary changes to software development

and maintenance through continuous innovation and

refinement of AI-assisted tools.

https://ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM55648 | Page 6

ACKNOWLEDGEMENT

We thank Dr. V. A. Kulkarni who serves as Principal of

KLS Vishwanathrao Deshpande Institute of Technology

Haliyal for allowing us to use their facilities and work

environment which enabled us to finish this review paper.

We thank Prof. Poornima Raikar who leads the Computer

Science (AI & ML) department for her ongoing support

and her helpful advice and her continuous backing

throughout our work. throughout the course of this work.

We owe our deepest gratitude to Prof. Narasimha Dixit

who provided ongoing assistance through his expert

guidance and valuable recommendations that led to our

successful paper completion. His ongoing feedback and

guidance enabled us to develop our knowledge and

methods for this research.

REFERENCES

[1] Z. Austin, L. Smolensky, Y. Liu, R. Wray, C. Brooks,

S. Fink, and A.Sutton, "IntelliCode Compose: Code

Generation Using Transformer," In Proceedings of the

43rd International Conference on Software Engineering

(ICSE), 2021.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.

Jones, A.

N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention Is All

You Need," In Advances in Neural Information

Processing Systems (NeurIPS), 2017.

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. Pinto, J.

Kaplan,

H. Edwards, et al., "Evaluating Large Language Models

Trained on Code," • arXiv preprint arXiv:2107.03374,

2021.

[4] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M.

Gong, L. Shou, B. Qin, T. Liu, and D. Jiang, "CodeBERT:

A Pre- Trained Model for Programming and Natural

Languages," arXiv preprint arXiv:2002.08155, 2020.

[5] A. Svyatkovskiy, S. Deng, S. Fu, and N. Sundaresan,

"Intellicode: Leveraging AI to Improve Developer

Productivity," In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering:

Companion Proceedings (ICSE-Companion), 2020.

[6] W. Allamanis, M. Brockschmidt, and M. Khademi,

"Learning to Represent Programs with Graphs," In

International Conference on Learning Representations

(ICLR), 2018.

[7] P. Yin and G. Neubig, "TRANX: A Transition-Based

Neural Abstract Syntax Parser for Semantic Parsing and

Code Generation," In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language Processing

(EMNLP), 2018.

[8]] A. Rabinovich, M. Stern, and D. Klein, "Abstract

Syntax Networks for Code Generation and Semantic

Parsing," In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (ACL), 2017.

[9] M. Brockschmidt, "Generative Code Modeling with

Graphs," arXiv preprint arXiv:1905.13340, 2019.

[10] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang,

"Unified Pre-training for Program Understanding and

Generation," • arXiv preprint arXiv:2103.06333, 2021.

https://ijsrem.com/

