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Abstract—Practical decision support in farming often
requires two complementary capabilities: identifying
crops that match local soil-weather conditions and
estimating how strongly irrigation may be needed under
the same conditions. This paper presents a compact
machine-learning workflow that addresses both tasks
using a public crop-recommendation dataset. First, a
Random Forest classifier maps soil nutrients (N, P, K) and
environmental measurements (temperature, humidity, pH,
rainfall) to one of 22 crop classes. Second, because public
data typically lacks ground-truth irrigation volumes, we
define a transparent Irrigation Demand Score (IDS) that
increases with thermal stress and decreases with rainfall
and humidity, while mildly accounting for pH deviation
and nutrient imbalance. Multiple Linear Regression is
then trained to predict IDS for interpretability and low-
cost deployment. On the held-out test split, the classifier
achieves 98.5% accuracy, and the regression attains R?
=0.87 against the engineered score. The overall system is

instrumentation contexts, while remaining extensible to

real sensor-based water measurements in future work.
Index crop

recommendation, Random Forest, linear regression,

Terms—Precision agriculture,

irrigation demand score, soil nutrients, machine learning.

I. INTRODUCTION

Agricultural decisions such as choosing a crop or
planning irrigation are frequently made with limited local
analytics, despite substantial variability in soil chemistry
and microclimate within short distances. In India, this
challenge is amplified by irregular rainfall patterns,
increasing temperature extremes, and gradual nutrient
depletion. As a result, farmers may select crops that are
poorly matched to soil conditions or apply irrigation
without a clear estimate of climatic stress.

Machine learning offers a practical way to convert
historical measurements into decision support. Given
tabular records containing soil nutrients and
environmental variables, models can learn non-linear

relationships that distinguish crop suitability patterns.

reproducible, lightweight, and suitable for low- . .
However, two constraints often appear in real
deployments. First, farmers need recommendations that
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are computationally inexpensive and easy to explain.
Second, irrigation modeling often depends on
instrumentation (soil moisture sensors or irrigation logs)
that may not be available, and many public datasets do not
contain irrigation labels.

To address these constraints, we propose a unified
pipeline with two outputs: (i) a crop recommendation via
Random
Forest classification, and (ii) an irrigation-related
predicted via Multiple Linear
Regression (MLR). Instead of claiming physical irrigation
volume, we define an [rrigation Demand Score that

continuous  score

follows agronomically reasonable monotonic trends with

temperature, humidity, and rainfall, and includes small

penalty terms for pH deviation and nutrient imbalance.
The contributions of this work are:

. A reproducible crop recommendation model using
Random Forests on common soil and climate
features.

. A transparent engineered irrigation score (IDS) to
enable regression when irrigation labels are absent.

. An integrated workflow and interface suitable for
later extension to loT/sensor-driven systems.

II. RELATED WORK

ML in agriculture has been studied for crop suitability
analysis, soil fertility assessment, and irrigation planning.
Tree-based classifiers are widely used for crop
recommendation because they handle heterogeneous
feature scales and capture non-linear feature interactions.
Random Forests are particularly popular due to their
robustness and the availability of feature importance
measures.

Irrigation estimation is often approached through
evapotranspiration formulas or sensor-driven monitoring
(soil moisture, water flow, and weather station data).
While these approaches can be physically grounded, they
may require additional meteorological variables and
continuous sensing. When only limited features are
available, regression-based approximations and decision-
support indices can still provide actionable guidance,
provided the scope and units are clearly defined.

Integrated systems combining recommendations and
irrigation control frequently rely on IoT infrastructure and
cloud connectivity, which may be cost-prohibitive in
smaller farms. Our work focuses on a lightweight

alternative that can run offline, while remaining
compatible with future sensor integration.

III. DATASET AND PREPROCESSING

We use the Kaggle Crop Recommendation Dataset,
containing 2200 samples and 22 crop classes. Each record
includes soil nutrient values (N, P, K) and environmental
measures (temperature, humidity, pH, rainfall), along with
the crop label.

A. Features

. N, P, K: Macronutrient concentrations (mg/kg)
. Temperature: Ambient temperature ("C)
 Humidity: Relative humidity (%)

- pH: Soil acidity/alkalinity

. Rainfall: Rainfall (mm)

. Label: Crop class (22 categories)

B. Integrity Checks

We verify missing values, inspect extreme observations,
and confirm plausible bounds (e.g., pH). Crop labels are
encoded for classification. For regression, features are
standardized (zscore) to support stable coefficient
estimation.

IV. EXPLORATORY DATA ANALYSIS

EDA is to understand distributions and
relationships among variables. Nutrient features exhibit

used

broad ranges, indicating diverse soil conditions. Rainfall
spans dry to humid regimes, and pH covers acidic to
alkaline soils. A correlation heatmap (Fig. 1) is used for
interpretation (not causality). For example, temperature
and humidity often show opposing trends. Crop-wise
feature patterns (e.g., higher rainfall preferences) help
explain why the classifier separates classes effectively.

V. METHODOLOGY
A. Input Vector
Each instance is represented as:

x =[N,PK,TH,pH,R], (1)

where T is temperature, H is humidity, and R is rainfall.
B. Task 1: Crop Recommendation (Random Forest)

Random Forest aggregates multiple decision trees
trained on bootstrapped samples. The predicted crop is
obtained by majority vote:

k i

clip [ 0455 4020 1=5g | 4+0.251= 55 4 L0650+, .
" (8) Yo =
(2)

argmax*I(h(x) = ¢),
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ci=1
where 4;is the i-th tree and I(+) is an indicator.

C. Task 2: Irrigation Demand Scoring (MLR)

We train Multiple Linear Regression to predict a

continuous score. The model is:

“-5'."!! - -!'.'f|| + Z _ljJi.].'-_i
il . 3)
MLR is chosen for interpretability, small memory

footprint, and straightforward deployment.

D. Engineered Irrigation Demand Score (IDS)

Because irrigation ground truth is not available, we

define a unitless score that obeys the following intuition:

. Higher temperature = higher irrigation demand.

. Higher humidity and rainfall = lower irrigation
demand.

. pH farther from neutral adds mild stress.

. Large imbalance among normalized N, P, K adds

mild stress.

We normalize features to [0,1] using training-set min—

max values:

i A TVYTY

i
el

T Lrnin. (4)

Define stress and availability terms:

Sp=z(T), Syp==z(H), Sp=2zR)
. H -7
(5) Sp = I1 . ‘|I
(6)
. . ) Ea e g
For nutrient imbalance, let~ = ] and

[2{N) — Z| + |2(F) — 2| + |=(K) — Z|

7
3 W

ﬂr.'l."-' PK =
The final score is clipped to [0,1] and scaled to [0,100]:

IDS =100

Note: IDS is a decision-support index, not a physical

water volume.

E. Training and Metrics

We use an 80-20 train/test split; classification is

stratified across 22 classes.
. Classification: Accuracy, macro Precision/Recall/F1.
. Regression: R*, MSE, RMSE (in IDS points).

VI. IMPLEMENTATION AND RESULTS

Experiments are implemented in Python 3.10 with

scikitlearn. Random seeds are fixed for repeatability.
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A. Crop Classifier Performance

A Random Forest with 200 trees achieves 98.5% test
accuracy. The confusion matrix is shown in Fig. 3, indicating
strong diagonal dominance.

B. Regression Performance

MLR is trained to predict the engineered IDS. On the test
split, the regression obtains:

- R*=0.87

* RMSE = (replace with your computed value) IDS points

C. Visualizations
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Fig. 1. Correlation heatmap of soil and environmental features (interpretive).

VI1I. DISCUSSION

The classifier results suggest that the combination of nu-
trient measures and basic climate indicators is sufficient to
discriminate among the 22 crops in the dataset. Feature
importance analysis indicates that a small subset of variables
(commonly nitrogen and rainfall) contributes strongly, consis-
tent with crop water and nutrient sensitivity.

For irrigation scoring, linear regression fits the engineered
IDS with a high RZ, supporting the idea that the score is
primarily driven by additive effects of temperature, humidity,
and rainfall. However, since IDS is engineered, it should be
interpreted as a relative demand indicator rather than a ground-
truth irrigation recommendation. Replacing IDS with mea-
sured irrigation volumes or evapotranspiration-derived targets
is a direct next step.

Farmer / User

4

Soil & Weather Input
N, P, K, Temperature,
Humidity, pH
Rainfall

Data Preprocessing
Cleaning, validation

scaling
| I 3
Random Forest Multiple Linear
Classifier Regression
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Fig. 2.

L | — 1

Prediction Fusion &
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|
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Workflow: feature processing, crop recommendation, and irrigation

demand scoring.
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Confusion Matrix (3 Selected Crops)
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Predicted label

Fig. 3. Confusion matrix for 22-class crop classification.
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Fig. 4. Random Forest feature importances for crop
recommendation.
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Fig. 5. Residuals vs. predicted IDS values for linear
regression.

== Smart Crop and Soil Monitoring System ==
Enter the following soil and environmental parameters:

N (Nitrogen, mg/kg): 25
P (Phosphorus, ng/kg): 2%
K (Potassium, mg/kg): 25
Temperature (°C): 25
wasidity (X): 85

Soil pH: 9.2

Rainfall (wm): S5

== Prediction Results ===

Recommonded crop 1 mungbean
Estimated water required ! 668.23 ml
Top 3 crop probabllities:
mungbean T 26.06%
- watermelon : 18.06%
mothbeans 1 17.0a%

Thank you for using the Smart Crop and Soil Monitoring System,

Fig. 6. User interaction module for crop recommendation
and IDS prediction.

VIII. CONCLUSION

This work presents an integrated, lightweight ML
pipeline for precision farming that outputs (i) crop
recommendations from soil-weather conditions using
Random Forests and (ii) an interpretable irrigation
demand score predicted using Multiple Linear Regression.
The approach achieves 98.5% classification accuracy and
R?= (.87 for IDS prediction on the test split. The system
is reproducible and deployable in lowinstrumentation
settings, and it can be extended with sensor data to obtain
physically grounded irrigation estimates.

IX. FUTURE WORK

. Replace the engineered IDS with real irrigation logs,
soil moisture sensing, or evapotranspiration-based
targets.

. Evaluate non-linear regressors (e.g., Gradient
Boosting, Random Forest Regressor) once real
targets are available.

. Add an IoT layer for periodic measurement and
streaming inference.

. Package the trained models in a mobile/edge
application for offline use.
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