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Abstract- 5G network proliferation has helped reshape the 

architecture and operational paradigms of modern 

telecommunications infrastructure, ushering in service-based 

architectures, network function virtualization (NFV), and 

even radio access component disaggregation. However, as 

these transformations enhance aspects such as scalability, 

flexibility, and performance, they simultaneously introduce an 

unprecedented level of complexity and dynamism. Hence, 

anomaly detection, a critical aspect of guaranteeing network 

reliability for performance optimization and efficient cyber- 

resilience, requires adaptive, intelligent functions that can 

operate in real-time in a complex and diverse environment. 

Since traffic patterns are evolving continuously and the slicing 

architectures of 5G Core (5GC) and RAN utilize software- 

defined components, traditional rule-based or statistical 

detection frameworks are often ineffective in generalizing 

these data. This paper proposes a holistic perspective on AI- 

driven anomaly detection, promoting intelligent decision- 

making to address the complex issues in 5G networks. 

This paper introduces a multi-level anomaly detection 

framework that leverages advanced machine learning and 

deep learning algorithms such as Long Short Term Memory 

(LSTM) networks, autoencoders, and clustering-based outlier 

detection models to identify anomalies in system logs, 

telemetry data, and performance metrics for the primary 5G 

core network functions like Access and Mobility Function 

(AMF), Session Management Function (SMF), User Plane 

Function (UPF), as well as RAN components, e.g., gNodeBs, 

CU-DU split architectures, and Open RAN interfaces. This 

includes a mix of both supervised and unsupervised learning 

techniques, as the training data is drawn from synthetic 

workload traces (limited labeled data) and real-time traffic 

flows (unlabeled). 

Real-time feature engineering across high-dimensional data 

sources is central to this framework, allowing for precise 

profiling of control and user plane activities. Adaptive 

thresholding and dynamic baseline are employed to account 

for the variation introduced by multi-tenancy, network slicing, 

and latency-sensitive service types, such as Ultra-Reliable 

Low-Latency Communications (URLLC) and Massive 

Machine-Type Communications (mMTC). The framework 

also includes edge-based inference to reduce detection latency 

and provide quick feedback to the self-organizing network 

(SON) controller for implicit healing. 

Through the formulation of a typical AI model architecture for 

anomaly detection use cases applicable both at 5GC and RAN 

layers, our approach leverages federated learning to address 

distributed inference over multi-site deployments; making 

sure that network operators have gain insights from 

monitoring logs containing readings on their in-house systems 

by integrating interpretability mechanisms based on SHAP 

(SHapley Additive exPlanations) values. Our models achieved 

dramatically higher testbed detection accuracy, precision, and 

recall than baseline statistical models when evaluated using 

simulations and open-source 5G core implementations 

(Open5GS, srsRAN). The results show improved false- 

positive rates in our predictions and faster anomaly 

localization, which could be used to enable proactive fault 

management and cyber-threat mitigation. 

The results of the new white paper provide incontrovertible 

evidence of a significant leap in another area, operational 

intelligence, as well as demonstrating AI's ability to enhance 

intelligent network automation. The work addresses the 

scalability, interpretability, and integration that enable 6G core 

technologies for network resilience and autonomic 

management capabilities within telecom-grade environments, 

paving the way for the future development of resilient, self- 

healing 6G systems. On the technical side, this work lays a 

foundation for telecom operators, equipment vendors, and 

researchers to enhance the security of 5G infrastructures 

through AI-enabled monitoring and defense capabilities. 

Keywords: G Core (5GC), Radio Access Network (RAN), 

Anomaly Detection, Artificial Intelligence (AI), Machine 

Learning (ML), Network Slicing, NFV, Edge Computing, 

Real-Time Monitoring, Self-Healing Networks, Network 

Function Virtualization, Telemetry Analytics, Open RAN, 

Zero-Touch Automation. 

I. INTRODUCTION 

The emergence of 5G wireless networks marks a significant 

leap in mobile communications, characterized by high 

bandwidth, ultra-reliable low-latency communications 

(URLLC), and massive machine-type communications 

(mMTC). These capabilities are crucial in enabling advanced 

applications such as autonomous vehicles, smart cities, 

industrial automation, and remote surgery. Unlike its 

predecessors, 5G does not merely enhance data rates—it 

introduces a fundamental re-architecture of mobile networks. 

This includes the adoption of cloud-native principles, 

microservices-based  deployment  models,  distributed 
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computing at the edge, and a separation of control and user 

planes. Consequently, the 5G Core (5GC) and Radio Access 

Network (RAN) components are no longer static and 

monolithic, but dynamic, virtualized, and software-driven. 

These architectural evolutions present new performance, 

observability, and security challenges that necessitate 

intelligent anomaly detection mechanisms tailored to their 

complexity. 
 

Figure 1: Evolution of Anomaly Detection Capabilities in 

Telecom Networks. 

Anomaly detection is crucial for identifying unexpected 

patterns that may indicate faults, performance degradation, or 

malicious activity within a network. In 5G environments, 

anomalies can manifest in various forms, including abnormal 

handover rates, unauthorized access attempts, session 

dropouts, excessive jitter, or misconfigurations in network 

slicing. The traditional anomaly detection systems employed 

in 4G or earlier generations often rely on rule-based systems 

or static thresholds. These are largely ineffective in 5G 

ecosystems due to the scale, velocity, and heterogeneity of 

data generated across the control and user planes. Moreover, 

with the increased adoption of network slicing and mobile 

edge computing, the detection landscape becomes even more 

fragmented, as each slice may have its own performance 

baseline and anomaly profile. 

The virtualized and containerized nature of 5G network 

functions, especially within the 5GC—comprising entities 

such as the Access and Mobility Management Function 

(AMF), Session Management Function (SMF), and User 

Plane Function (UPF)—and the disaggregated Open RAN 

architecture with components such as the Central Unit (CU) 

and Distributed Unit (DU), introduce intricate telemetry 

pipelines. These generate high-dimensional, multivariate, and 

temporally dependent data streams that require advanced 

analytics and real-time processing for effective monitoring 

and analysis. Anomalies in such systems are often subtle and 

contextual—rendering traditional static rules obsolete. For 

example, a sudden spike in handover failures in one slice may 

be typical during peak load but anomalous at other times. 

To address this, artificial intelligence (AI) and machine 

learning (ML) techniques have emerged as promising tools for 

next-generation anomaly detection. These methods can model 

complex behaviors, learn from historical and real-time data, 

and adapt to evolving network states. Specifically, deep 

learning models such as Recurrent Neural Networks (RNNs), 

Long Short-Term Memory (LSTM) networks, and 

autoencoders have demonstrated efficacy in time-series 

prediction, sequence modeling, and outlier detection. 

Clustering algorithms, such as DBSCAN and k-Means, can 

uncover hidden structures in unlabeled data, while ensemble 

models can enhance robustness across dynamic environments. 

The application of these methods in the context of 5G offers 

opportunities for real-time, adaptive, and low-latency 

detection that integrates seamlessly with self-organizing 

networks (SON) and zero-touch automation frameworks. 

This paper presents a comprehensive AI-based anomaly 

detection framework targeting both 5GC and RAN 

components. The goal is to enable proactive identification of 

performance bottlenecks, security threats, and operational 

deviations across distributed, multi-vendor, and multi-slice 5G 

environments. Our contributions include designing an 

intelligent monitoring pipeline, evaluating different machine 

learning models for time-series anomaly detection, 

implementing edge-based detection for latency-sensitive 

metrics, and assessing model interpretability through 

techniques such as SHAP for operator insights. 

 

 

II. LITERATURE REVIEW 

The use case of anomaly detection in telecommunications has 

undergone a significant transformation with the advent of 5G 

networks, moving from plain-vanilla rule-based models and 

statistical control charts to advanced AI & ML-driven 

approaches. With the introduction of 5G, service-based 

architecture, distributed control planes, and disaggregated 

RAN implementations, traditional monitoring techniques fall 

short of providing the necessary granularity, speed, and 

context-awareness required for real-time anomaly detection. 

In earlier work, the detection of anomalies in telecom 

networks primarily focused on 3G and 4G systems. Anomalies 

in call data records (CDRs), network KPIs, and user behavior 

profiles were detected using techniques ranging from support 

vector machines (SVMs) to decision trees and basic 

thresholding. The background for performance anomaly 

detection was likely first established by Thottan and Ji [1] 

using statistical process control methods. These work well for 

static environments, but they do not apply to the real-time 

telemetry that a 5G system will exhibit, which involves 

complex, multivariate, and fast-varying patterns. 

As such, NFV and SDN have also been applied to LTE- 

Advanced as well as pre-5G networks, as it is evident that 

using machine learning models is particularly interesting 

when dealing with non-linearities, allowing for iterations over 

network dynamism—the work by Sedjelmaci et al. The work 

in [2] investigated intrusion detection experimentation in SDN 

environments using supervised ML classifiers. Nevertheless, 

this relies on supervised datasets that are scarce in the telecom 

space, where most of our anomalies may be novel or 

unsupervised. 

Recently, research has focused on using deep learning models 

to  perform  anomaly  detection  for  virtualized  and 
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containerized network functions in the sphere of 5G Core. 

Autoencoder-based architectures excel in unsupervised 

anomaly detection since they learn the latent representations 

of normal behavior and can indicate deviations. Li et al. 

AnomalyNet [3] presented a deep autoencoder-based 

approach for detecting anomalies in NFV deployments that 

outperforms state-of-the-art methods without relying on 

labeled attack data. This is especially suitable for UPF/SMF 

components in 5G, where complex data paths and session 

states lead to variability of network behaviors. 

New monitoring challenges emerge with Open RAN and 

disaggregated RAN architectures. Because vendor-neutral 

components, even on the DU and CU interfaces, are separate 

from layer 1-3 functions, this calls for very fine-grained 

monitoring across fronthaul and midhaul links. Mehmeti et al. 

[4] proposed a deep multi-layer monitoring framework based 

on LSTM networks, which considers temporal correlation in 

fronthaul traffic. According to their results, deep learning 

models outperformed static baselines in terms of detecting 

jitter spikes and packet loss patterns. 

Apart from deep learning, federated learning and edge AI are 

emerging to enable distributed, real-time anomaly detection 

without the need for a centralized data pool. Zhang et al. [5] 

designed a federated anomaly detection model for RAN 

components, providing real-time alerting at the base station 

level without disrupting privacy or introducing latency 

bottlenecks. 

AI has been emphasized as a driving force in observability 

across various industry initiatives. The O-RAN Alliance Non- 

RT RIC (RAN Intelligent Controller) architecture enables the 

release of an AI model for real-time decision-making 

applications. Such AI-native control loops are reported to be 

essential for self-healing 5G networks [6] and form the 

feedback path towards closed-loop remediation based on 

anomaly signals. 

This task notwithstanding, there are still significant obstacles 

to implementing AI-driven anomaly detection in operational 

5G networks, including, but not limited to, data scarcity, class 

imbalance, real-time inference constraints, interpretability, 

and integration with orchestration systems. While previous 

works provide a foundation, full-fledged frameworks that 

interconnect multi-layer data sources, leverage hybrid 

learning paradigms, and provide actionable insights in pre- 

production 5 G setups are required. 

III. METHODOLOGY 

The methodology adopted in this research focuses on the 

design, development, and evaluation of an AI-powered 

framework for detecting anomalies within 5G Core (5GC) and 

Radio Access Network (RAN) components. The proposed 

architecture is based on a hybrid AI approach that incorporates 

both supervised and unsupervised learning paradigms to 

capture a broad spectrum of anomalous behaviors, from 

sudden spikes in latency and packet loss to subtle deviations 

in protocol signaling sequences. The implementation is 

modular and cloud-native, aligning with the distributed and 

virtualized nature of 5G networks, particularly within Service- 

Based Architecture (SBA) and Open RAN deployments. 

Data collection serves as the foundational step in the 

methodology. Synthetic and real traffic patterns were 

generated using open-source 5G testbeds such as Open5GS 

and srsRAN to simulate diverse network conditions, including 

control plane interactions through Access and Mobility 

Management Function (AMF), session establishment via 

Session Management Function (SMF), user plane packet 

forwarding through User Plane Function (UPF), and gNodeB 

handovers. Metrics such as CPU utilization, memory usage, 

packet inter-arrival times, RRC signaling rates, throughput, 

and latency were captured in both control and user planes. 

These metrics were collected from distributed probes and 

telemetry agents deployed across the containerized network 

functions, and then centralized using Prometheus and 

Elasticsearch for downstream feature extraction and analysis. 

After preprocessing, the dataset underwent normalization and 

dimensionality reduction using Principal Component Analysis 

(PCA) to address multicollinearity and computational 

overhead. Time-series characteristics were preserved by using 

sliding windows, ensuring that the temporal context was 

incorporated into deep learning models. For unsupervised 

anomaly detection, autoencoders were employed to learn the 

compressed representation of normal operational states and 

identify deviations based on reconstruction error thresholds. 

These models were especially effective in capturing anomalies 

in packet delay variation and session setup latency across 

different slices. For time-series anomaly detection in control- 

plane signaling, Long Short-Term Memory (LSTM) networks 

were trained to predict the next state of the system, with 

anomalies flagged when prediction errors exceeded the 

learned confidence interval. 

To complement deep learning models, clustering algorithms 

such as DBSCAN and k-Means were used for anomaly 

segmentation and root cause categorization. These models 

helped identify the co-occurrence of anomalies across various 

network layers and functions. For instance, a detected 

anomaly in RRC connection failures was correlated with CPU 

saturation events in the AMF container, enabling deeper 

contextual awareness. The hybrid detection pipeline was 

deployed at both the edge (near RAN sites) and the core data 

center using Kubernetes-based microservices. Edge inference 

was prioritized for real-time decisions and rapid remediation, 

particularly in latency-sensitive applications, while batch 

learning and model refinement occurred centrally. 

The anomaly signals generated by the detection engine were 

forwarded to a Kafka-based message bus, which triggered 

closed-loop automation workflows managed by an intent- 

based network orchestrator. This feedback loop enabled real- 

time mitigation actions such as scaling UPF instances, 

rerouting traffic, or triggering alarms for human-in-the-loop 

analysis. For model explainability, SHAP (Shapley Additive 

exPlanations) values were computed to provide feature-level 

attribution for each anomaly, ensuring transparency and aiding 

in operational trust. The models were continuously retrained 

using a federated learning strategy, allowing model updates to 
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be distributed across multiple RAN sites without requiring 

centralized data pooling, thereby preserving data privacy and 

minimizing backhaul congestion. 

This methodological framework ensures robust anomaly 

detection while maintaining adaptability to dynamic 5G 

environments. The architecture is resilient to concept drift, 

scalable across multi-vendor deployments, and designed for 

low-latency anomaly response. It establishes a practical 

foundation for intelligent observability in 5G networks, 

paving the way for fully autonomous, self-healing telecom 

infrastructures. 

 

 

IV. RESULTS 

The experimental evaluation of the proposed AI-based 

anomaly detection framework was conducted using a hybrid 

5G simulation environment composed of open-source 5G core 

implementations (Open5GS) and RAN emulators (srsRAN). 

The goal of this evaluation was to measure the accuracy, 

responsiveness, and interpretability of various AI models 

when deployed to monitor anomalies in dynamic 5G 

environments. Key performance metrics included precision, 

recall, F1-score, false-positive rate, and latency of detection. 

These metrics were calculated for each model—Autoencoder, 

Long Short-Term Memory (LSTM), DBSCAN, k-Means, and 

the final integrated Hybrid model. 
 

Figure 2: Precision and Recall Comparison of AI Models for 

Anomaly Detection in 5G Core and RAN 

The Autoencoder model demonstrated high performance in 

detecting deviations in traffic patterns and system KPIs. It 

achieved a precision of 0.91 and a recall of 0.88, effectively 

identifying subtle anomalies such as session setup latency 

spikes and increased jitter in UPF flows. The LSTM model, 

trained on time-series data from the AMF and SMF logs, 

demonstrated a slightly better recall of 0.90 but a slightly 

lower precision of 0.89. These results were consistent with its 

capacity to capture sequential dependencies and predict 

anomalous transitions in network states. 

Unsupervised clustering algorithms were also tested. 

DBSCAN yielded a precision of 0.76 and a recall of 0.73, 

performing best in detecting group anomalies caused by CPU 

contention and container restarts in the gNodeB virtual 

functions. However, it struggled with temporal anomalies and 

often produced overlapping cluster boundaries. K-Means, 

while computationally efficient, showed limited effectiveness 

in real-time scenarios with a precision of 0.72 and recall of 

0.70, due to its assumption of fixed centroid distances in a 

highly dynamic feature space. 

The integrated Hybrid model, which fused the output of 

autoencoders and LSTM models and incorporated DBSCAN- 

based contextual tagging, achieved the best overall 

performance. It attained a precision of 0.94 and a recall of 

0.92, with an F1-score of 0.93, significantly reducing the 

false-positive rate by 35% compared to traditional statistical 

methods. The model was able to localize anomalies across 

RAN-CU and UPF elements simultaneously and flag 

cascading impacts in end-to-end network slices. The average 

detection latency was measured at 1.3 seconds, enabling 

timely remediation actions through SON integration. 

Furthermore, explainability was evaluated through SHAP 

value distributions. These confirmed that the most influential 

features in anomaly detection were abrupt changes in packet 

loss, increases in RRC re-establishment failures, and drops in 

per-slice throughput. Visual dashboards were constructed to 

present these SHAP scores, making the AI system 

interpretable for network operators. Additionally, the 

deployment of inference modules at edge locations (near DU 

sites) ensured minimal backhaul delay and offered near real- 

time feedback loops for anomaly response. 

This robust evaluation demonstrates that AI models, 

particularly hybrid architectures, significantly enhance 

anomaly detection in 5G Core and RAN networks. They not 

only increase detection accuracy but also support real-time 

observability, making them viable for production-grade 

telecom deployments. 

 

 

V. DISCUSSION 

The experimental findings confirm that artificial intelligence, 

particularly hybrid deep learning architectures, offers 

substantial benefits in the domain of anomaly detection for 5G 

Core and RAN infrastructures. The superior performance of 

the hybrid model, achieving a precision of 0.94 and a recall of 

0.92, demonstrates not only its statistical robustness but also 

its operational viability in identifying and responding to 

complex anomalies across distributed telecom environments. 

However, translating these technical results into real-world 

deployments introduces several important considerations that 

merit further discussion. 

One critical advantage observed was the hybrid model’s 

ability to detect a broad range of anomaly types, from transient 

control-plane disruptions to persistent user-plane 

degradations. The fusion of Autoencoder and LSTM 

architectures enabled the model to capture both spatial and 

temporal characteristics of network behavior, making it 

effective in uncovering anomalies that occur in both sequence- 

sensitive contexts (e.g., signaling state transitions) and in 

static performance indicators (e.g., jitter, packet drops). This 

dual capability is vital in 5G networks where anomalies may 

stem from a variety of sources, including software faults, 
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hardware degradation, configuration drifts, and even 

coordinated cyberattacks. 

The integration of edge-based inference proved to be 

instrumental in reducing detection latency. Deploying AI 

inference modules closer to the data source—in this case, the 

RAN edge near Distributed Units—enabled anomaly alerts 

within 1.3 seconds of detection. This edge-first approach not 

only aligns with 5G’s low-latency architectural design but also 

supports real-time responsiveness, a necessity for mission- 

critical applications like remote surgery or autonomous 

vehicle communication. Moreover, by reducing backhaul 

pressure through decentralized inference, the framework 

enhances scalability and efficiency, making it well-suited for 

dense urban deployments and massive IoT scenarios. 

Model interpretability emerged as another vital aspect. By 

incorporating SHAP-based explainability, the framework 

provided insights into feature contributions that led to specific 

anomaly classifications. For example, an anomaly detected in 

the UPF was explained as being primarily driven by packet 

inter-arrival time deviation and per-slice bandwidth 

saturation. Such insights are not just valuable for verification 

and validation, but also improve the confidence of network 

operators in AI-driven decisions, a key consideration for 

operational adoption. 

Nevertheless, the study also revealed several challenges 

associated with deployment. One issue was the imbalance in 

training data, particularly the limited availability of labeled 

anomaly instances. This is a common challenge in anomaly 

detection where the data is inherently skewed toward normal 

operations. Although the use of synthetic data generation and 

augmentation partially addresses this gap, further 

enhancements, such as self-supervised learning or active 

learning frameworks, may be required for production 

deployments. Additionally, while federated learning enables 

distributed model updates without centralized data pooling, 

ensuring synchronization and consistency across 

geographically dispersed RAN sites remains a complex task, 

especially in high-mobility scenarios. 

Another important consideration is integration with 

orchestration and automation platforms. While the current 

implementation supported anomaly alerts via Kafka and 

integration with a SON system for closed-loop mitigation, the 

automation logic remains relatively static. Future work should 

focus on making the automation layer more adaptive by 

utilizing reinforcement learning or intent-based policy 

frameworks that can evolve based on operational feedback 

and network goals. 

The findings also suggest implications beyond 5G. As the 

telecom industry begins to conceptualize 6G networks— 

expected to be more intelligent, decentralized, and experience- 

centric, AI-based observability will no longer be optional but 

fundamental. Techniques validated in this study offer a 

foundational layer upon which more advanced, autonomous, 

and proactive network management systems can be built. 

The discussion highlights that while AI-based anomaly 

detection for 5G networks presents compelling performance 

improvements, its real-world adoption hinges on addressing 

challenges related to data, latency, interpretability, and 

orchestration. The proposed architecture not only serves 

current 5G operational needs but also lays the groundwork for 

next-generation self-organizing and self-healing network 

paradigms. 

 

 

VI. CONCLUSION 

The rapid evolution of 5G networks, with their virtualized, 

disaggregated, and software-defined architectures, has 

fundamentally altered the requirements for network 

observability, fault tolerance, and performance assurance. As 

mobile networks become increasingly complex, dynamic, and 

distributed, especially across the 5G Core and Radio Access 

Network components, traditional anomaly detection 

mechanisms have proven inadequate in identifying nuanced or 

emergent network behaviors. This paper proposed and 

validated a comprehensive AI-based anomaly detection 

framework that leverages deep learning and clustering 

techniques to detect, interpret, and respond to anomalies in 

real time across both 5GC and RAN components. 

The proposed framework integrates autoencoders, LSTM 

networks, and clustering algorithms, such as DBSCAN and k- 

Means, ultimately producing a hybrid model capable of 

capturing both spatial anomalies in performance metrics and 

temporal deviations in control-plane interactions. 

Experimental evaluations conducted on 5G testbed 

environments, comprising Open5GS and srsRAN 

deployments, demonstrated that the hybrid model 

significantly outperformed individual models in terms of 

precision, recall, and detection latency. Notably, the system 

achieved an F1-score of 0.93, demonstrating its reliability and 

robustness in varied traffic scenarios, including low-latency 

services, high-mobility sessions, and slice-specific workloads. 

 

 

Figure 3: Key Barriers and Enablers for AI-Based Anomaly 

Detection in Production-Grade 5G Networks. 

The framework’s edge-centric design and integration with 

message queues and SON-based automation workflows 

facilitated near real-time detection and mitigation, reducing 

reaction time to under 1.5 seconds. Furthermore, the 

incorporation of SHAP-based explainability ensured that 

contextual  insights  accompanied  each  anomaly  alert, 
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empowering network operators with greater trust and 

operational visibility into AI-driven decisions. These features 

make the solution not only technically effective but also 

operationally deployable in real-world, multi-vendor 5G 

ecosystems. 

However, the research also underscored key challenges that 

must be addressed for widespread adoption. Issues such as 

training data imbalance, model drift, cross-domain 

deployment complexity, and the orchestration of AI outputs 

into dynamic policy enforcement remain open areas for future 

work. Moreover, while this study focused on supervised and 

unsupervised learning, future research may explore 

reinforcement learning-based anomaly remediation policies or 

generative models for simulating rare events to enhance 

detection under zero-day conditions. 

As telecom operators move toward end-to-end automation and 

zero-touch network operations, AI-native monitoring systems 

like the one proposed in this paper will be instrumental in 

supporting self-healing networks, reducing mean time to 

detect (MTTD) and mean time to recover (MTTR), and 

ensuring service continuity in critical applications. The 

modular, scalable, and interoperable design of the framework 

also positions it as a strong candidate for extension into 6G 

architectures, where decentralized intelligence, context-aware 

adaptability, and continuous learning are expected to be core 

design pillars. 

This work contributes a deployable, explainable, and high- 

performance AI-based anomaly detection solution tailored to 

the unique challenges of 5G Core and RAN networks. It 

bridges a critical gap in intelligent telecom network 

management, offering a practical path forward for embedding 

AI in the operational fabric of next-generation communication 

systems. 
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