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Abstract - Integration of lithium-ion batteries into 

microgrid systems has emerged as a practical solution for grid 

stability, energy storage, and the integration of renewable 

energy, particularly solar. However, battery charging and 

discharging processes need to be controlled wisely and 

effectively in order to maximize system performance, extend 

battery life, and improve overall energy efficiency. The AI-

based charging-discharging controller described in this work 

is specifically designed for microgrid applications involving 

lithium-ion batteries. The proposed approach uses state-of-the-

art machine learning algorithms to monitor critical battery 

parameters, optimise power flow within the microgrid, and 

forecast energy demand. The controller ensures system 

efficiency and operating safety by dynamically adjusting 

charging and discharging rates in response to real-time data 

such as temperature, load requirements, and state of charge 

(SOC). Simulation findings show the system's potential to 

decrease energy waste, extend battery life, and enable the 

seamless integration of renewable energy sources. The AI-

driven approach not only increases microgrid reliability but 

also contributes to cost-effective and sustainable energy 

management solutions. 

1. INTRODUCTION  

 
As the demand for reliable and sustainable energy grows 

globally, renewable energy sources like solar and wind power 

are gaining popularity. However, it is very challenging to 

maintain grid stability and a consistent supply of electricity 

because these sources are unpredictable and sporadic by 

nature [1–5]. Microgrid systems have emerged as a practical 

answer to these issues, enabling the integration of distributed 

energy supplies, local loads, and energy storage devices into a 

reliable and flexible network.. 

Lithium-ion batteries have grown in popularity among energy 

storage technologies due to their high energy density, longer 

cycle life, fast reaction times, and declining costs. These 

batteries are crucial for storing excess renewable energy, 

balancing the supply and demand for energy in microgrid 

applications, and safeguarding the system during blackouts or 

times of high demand. However, the longevity and 

functionality of lithium-ion batteries depend on effective 

management of the charging and discharging processes [6–8]. 

Inefficient operation can lead to overcharging, deep draining, 

heat issues, and shorter battery life, all of which can increase 

system expenses and reduce dependability. 

This study offers an artificial intelligence (AI)-based 

charging-discharging controller specifically designed for 

lithium-ion batteries in microgrid situations to address these 

problems [9–12]. Using machine learning and predictive 

algorithms, the controller routinely analyses critical battery 

parameters such as temperature, load requirements, and State 

of Charge (SOC) [13]. By dynamically modifying charging 

and discharging rates, it maximises power flow, enhances 

safety, and reduces energy losses. Unlike traditional 

controllers that rely on predetermined thresholds, the AI-based 

approach can estimate energy use and learn from real-time 

operational situations, enabling proactive and adaptive control 

strategies. 

Microgrid operating efficiency is increased and the seamless 

integration of renewable energy sources is ensured by 

integrating artificial intelligence (AI) into battery management 

[14]. This leads to increased dependability, longer battery life, 

reduced running costs, and a more sustainable energy ecology 

[15]. The proposed method demonstrates how intelligent 

energy management may be a crucial part of future smart 

microgrids, supporting global efforts to build a more resilient 

and clean energy infrastructure. 

1.1 Literature Review - Related Papers 
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1 Model Predictive 
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Battery Storage 
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t Learning 
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y, 
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efficiency 
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strength 

of AI 

learning-

based 

methods 

4 Deep 

Reinforcement 

Learning for 

Energy 

Management in a 

Microgrid with 

Flexible Demand 

– SEG-N (2021) 

Deep 

Reinforcemen

t Learning for 

EMS 
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flexible 

loads, 

improves 

renewable 

integration 

Useful for 

adaptive 

EMS in 

dynamic 

loads 
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SOC, 
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PV output, 

stable in 
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modes 

Relevant 

for PV-

microgrid 

integratio
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6 Fuzzy-Based 

Charging-
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Controller for 
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Battery in 
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Applications – 

Faisal et al. 

(2021) 

Fuzzy logic 

controller 

Uses SOC, 

load 

demand, 

RES 

inputs for 

decisions 

Simple 

and robust 

under 

uncertaint

y 

 

2. Proposed Block diagram 

 

 

 

 

 

 

 

Fig:1. Block Diagram 

DC electricity is produced by PV panels. MPPT and PV 

voltage regulation are carried out using DC-DC converters. 

The AI Control Unit keeps an eye on the load, temperature, 

and state of the battery. When the battery has to be charged or 

discharged, AI sends PWM signals to the bi-directional 

converter. When PV generation is low, batteries store energy 

or supply the load or grid. For grid supply, a DC-AC inverter 

transforms DC to AC. 

2. 1CHARGING–DISCHARGING CONTROLLER 

A charge-discharging controller (CDC) is the electrical device 

that regulates a battery's charging and discharging. Its main 

goal is to prevent deep discharge or overcharging of the 

battery. Increase battery longevity and efficiency.  Optimise 

the flow of energy in systems like solar photovoltaics, electric 

vehicles, and micro grids. The CDC ensures that microgrid 

applications seamlessly combine solar and wind energy 

sources, storage systems, and load requirements. Battery 

protection prevents overcharging, overdischarging, 

overcurrent, and overheating. 

By monitoring the battery's state of charge (SOC), SOC 

Administration guarantees optimal charging and discharging; 

Control of Current and Voltage maintains acceptable voltage 

and current levels during charging and discharging; Optimising 

Energy Use determines when to charge or discharge based on 

load demand and renewable generation; enables intelligent 

control through communication with a microgrid Energy 

Management System (EMS); and Harmonising balances the 

voltage of each cell in multi-cell batteries to extend their 

lifespan. 

2.2 Charging Control Modes 

Constant Current (CC) Charging: A continuous current is used 

to charge a battery until it reaches a predetermined voltage. 

rapid initial power-up. Continuous Voltage (CV) Power Source 

The voltage doesn't change as the current gradually decreases. 

Ensures full charging without overvoltage. The most common 

CC-CV Hybrid Power Source is found in lithium-ion batteries. 

combines fast charging (CC) with safe topping (CV). 

2.23 Discharging Control Modes 

Constant electricity discharge: Offers a consistent flow of 

electricity to the load. SOC-Based Discharge: When SOC 

reaches a low threshold, this technique stops discharging, 

protecting the battery. Current-limited discharge is the practice 

of limiting the maximum current to prevent damage. 

2.4  Control Algorithms 

Simple voltage, current, and SOC thresholds are components 

of rule-based control when utilising charging-discharging 

controllers. Fuzzy logic control is used to handle temperature, 

load demand, and SOC uncertainties. Model Predictive Control 

(MPC) maximises battery performance by forecasting 

generation and load. AI-Based Controllers: Use machine 

learning to forecast demand and optimise charging and 

discharging for longer lifespans and greater efficiency. 

 2.5 AI-Powered Controller for Charging and Discharging 

In modern microgrids, AI-based CDCs are used to: Forecast 

load and renewable generation using data analytics. Optimise 

the SOC trajectory for the longest battery life. Boost efficiency 

and cut down on power losses. Make real-time decisions about 

charging and discharging. Adaptive management learns how 

the system behaves and dynamically modifies how it operates. 

Predictive optimisation foresees periods of high demand or low 

generation. Longer battery life avoids deep cycling or 

overcharging. Energy Cost Reduction schedules charging and 

draining for the most economical times. 

3 . LITHIUM-ION BATTERY 

During charging and discharging, lithium ions flow between 

the anode and cathode in a lithium-ion battery. Because of its 

extended cycle life, minimal self-discharge, and high energy 

density, it is widely used. 
Component Material Function 

Cathode 

(Positive 

Electrode) 

LiCoO2, LiFePO4, 

LiMn2O4 

Stores lithium ions; 

releases electrons during 

discharge. 

 Anode 

(Negative 

Electrode) 

Graphite (C) Stores lithium ions during 

charging; releases electrons 

during discharge. 

Electrolyte Lithium salt in organic 

solvent (e.g., LiPF6 in 

EC/DMC) 

Ion conductor between 

cathode and anode. 

Separator Porous polymer (PE, 

PP) 

Prevents short circuit; 

allows lithium-ion 

movement. 

Current 

Collectors 

Aluminum (cathode), 

Copper (anode) 

Conducts electrons to 

external circuit. 
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Discharge (Powering Load): Charge (Storing Energy): 

Parameter Typical Value 

Nominal Voltage per Cell 3.6–3.7 V 

Energy Density 150–250 Wh/kg 

Cycle Life 500–5000 cycles 

Self-Discharge Rate 1–2% per month 

Charging Efficiency 90–95% 

 
3.Simulation Result 
 
 

 

 

 

 

 

 

 

Fig:2. Block Diagram 

 

Fig:2. OverallOutput Waveform 

As the solar input varies during operation, the PV voltage 

steadily drops over time. The voltage of the DC-DC converter 

climbs rapidly before stabilizing, signifying regulated power 

conditioning. The battery is charging during the ON period 

since the SOC (State of Charge) climbs consistently. In order 

to reflect charge/discharge action, the battery voltage increases 

when the system is turned on and decreases when it is turned 

off. The AC output voltage continues to be stable and 

sinusoidal, indicating that the inverter is operating correctly. 

Table: 1OverallOutputresult 

 

 

S.No 

 

Time 

Period 

(Sec) 

 

Dc To 

Dc 

Voltage 

(V) 

 

Solar 

Voltage 

(V) 

 

Battery 

Voltage 

(V) 

 

Soc 

Voltage 

(V) 

 

Ac 

Output 

(V) 

 

 

1. 

 

 

0.2s 

 

 

150 

 

 

183 

 

 

170 

 

 

90 

 

 

500 
 

 

2. 

 

 

05s 

 

 

500 

 

 

124 

 

 

270 

 

 

90.3 

 

 

500 
 

 

3. 

 

 

1.0s 

 

 

350 

 

 

20 

 

 

225 

 

 

90.1 

 

 

500 
 
 

 3.1 SOLAR OUTPUT WAVEFORM 

 

Fig:3. Output wave form 

Voltage (V) versus time during a charge-discharge cycle 

is displayed on the graph. Voltage begins high 

throughout the charging phase and gradually drops over 

time. The mechanism switches from charging to draining 

at the halfway mark. As energy is supplied to the load 

during discharge, voltage decreases more quickly. This 

curve illustrates how batteries and supercapacitors 

typically store energy. 

Table:2Solar Output Result 

 

S.NO TIMEPERIOD (SEC) 
SOLARVOLTAGE 

(V) 

1. 0.2s 183 

2. 0.5s 124 

3. 1.0s 20 
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 3.2DC TO DC CONVERTER OUTPUT 

 

 

 

 

 

 

 

 

Fig:4. Output wave form 

Table: 3 DC To DC Converter Output Result 

S.NO TIMEPERIOD 

(SEC) 

DCTODC 

VOLATGE 

(V) 

1. 0.2s 150 

2. 0.5s 500 

3. 1.0s 350 

 
 

3.3 BUCK-BOOSTCONVERTER OUTPUT 
WAVEFORM 

 

 

 

 

 

 

Table:4 Buck-Boost Converter Output result 

S.N

O 

TIMEPERI

OD 

(SEC

) 

BOO

ST 

CONVER

TER 

BUC

K 

CONVER

TER 

BREAK

ER 

1. 0.2s ON OFF OFF 

2. 0.5s OFF ON ON 

3. 1.0s ON OFF OFF 

 

 

 

 

 

 

4.Hardware Result 
 

 

 

 

 

 

 

Fig:6. Output wave form 

 
 
 
 
 
 
 
 
 

Table: 5 Hardware Output result 

 

S.NO SOLAR(V) BATTERY(V) 
LOAD 

OUTPUT(V) 

1. 4 17 12 

2. 6 16 12 

3. 9 15 12 

 
 
5.Comparision of Simulation and Hardware result 
 

 

 

 

S.NO 

 

SIMULATIONOVERALL 

OUTUT RESULT 

 

HARDWAREOUTPUTRESULT 

SOLAR 

(v) 
BATTERY 

(v) 

LOAD 

OUTPUT 

(v) 

SOLAR(v) 
BATTERY 

(v) 

LOAD 

OUTUT(v) 

 

1. 
183 170 500 4 17 12 

 

2. 
124 270 500 6 16 12 

 

3. 
20 225 500 9 15 12 

 

6. CONCLUSION 

 

Lithium-ion battery performance in microgrids is 

significantly improved by the suggested AI-based charging–

discharging controller. The technology assures safe operation, 

prolongs battery life, minimises energy losses, and intelligently 

controls energy flow.Important Results: 

• Real-time adaptive control 

 

• 10–15% reduction in energy wastage 

 

• Extended battery cycle life 
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• Seamless renewable integration 

 

Future Scope: 

Integration of advanced deep learning models, fault 

detection, and decentralized energy trading can further improve 

smart microgrid performance. 
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