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Abstract 

 

The aim of this project is to create an artificial intelligence that can play chess and analyze how it 

has improved with the different iterations of the engine. To achieve this goal different approaches to 

chess engines will be explored. These different algorithms will be implemented into Python with the 

aim of creating a low to midlevel chess engine 

 

 

1 Introduction 

Artificial Intelligence (AI) is a fast-growing computer science field, and it is easily accessible to the public. 

Its social and technological impact is growing exponentially. Major tech giants like Google, Facebook, 

Amazon, or Microsoft have been providing AI-based services and solutions. There have been a variety of 

applications developed with this technology, such as video games, financial services, or standalone 

automation.(Krittanawong, 2018.) 

One of the ways to test AI development is to investigate the history of chess engines, and how they emerged 

over the years. From the time they defeated the best human chess player when Garry Kasparov in 1997 

until today when Google DeepMind created a neural network that played chess and in 4 hours of training hit 

the best known chess engine until until now. Chess is a complex game, and it is not solved from today and will 

not be solved soon. So developing Artificial Intelligence that can understand and play the game at a good 

level is a challenge. (Kumar et al, 2021.) 

 

 

“The human mind isn’t a computer; it cannot progress in an orderly fashion down a list of 

candidate moves and rank them by a score down to the hundredth of a pawn the way a chess 

machine does. Even the most disciplined human mind wanders in the heat of competition. This 

is both a weakness and a strength of human cognition. Sometimes these undisciplined 

wanderings only weaken your analysis. Other times they lead to inspiration, to beautiful or 

paradoxical moves that were not on your initial list of candidates.” ― (Garry Kasparov, 2017) 

 

 

In this project, we will explore the different techniques used in chess systems and how each of them helps the 

machine to develop a better understanding of chess. The difference between the traditional chess engine 
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method and the new neural network approach. Subsequently, the chess engine has been upgraded with the 

goal of finding a lower level of chess content and explores how different duplication of test and search 

function affects the power or response time of a chess engine. 

 

 

1 Development of Computational Chess 

 

1.1 History 

 

In the early years of chess engines, the idea of having a computer that played chess at the same level as the 

best grandmasters was unimaginable. Since chess requires a lot of creativity and has millions of 

possibilities, the average number of legal different positions that you can find is around 10^40 and 

10^50(Holcomb). Nevertheless, nowadays it has been proven that chess engines are far superior to the best 

grandmasters. 

The first instance of a chess engine defeating a world champion happened in 1997, where Deep Blue, an 

engine created by IBM, defeated Garry Kasparov. This happened over 20 years ago and today the advances 

in Artificial Intelligence and computer hardware are huge. (“IBM100 - Deep Blue,” 2012.) 

 

 

 

Figure 7. Garry Kasparov playing vs Deep Blue 1997 (George Widman) 

 

 

It should be noted that chess engines and humans approach chess in a different way. Fundamentally they both 

analyze and calculate moves and search ahead to predict how the game would go if they followed that line. 

The major difference is, when the best chess player Kasparov can only analyze 3 to 5 positions per second, 

Deep Blue was analyzing at the time 200 million positions per second (IBM100 - Deep Blue, 2012). Even 

with this disparity, the games ended up even. Out of the 6 games 
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played between them, Kasparov won 1 tied 3 and lost 2. We can make the conclusion that humans 

are much more efficient at choosing the correct line to follow. (“IBM100 - Deep Blue,” 2012.) 

 

The major fight of chess engines is knowing which lines are better to pursue, and it has proven that this is 

quite an arduous task. Having the computational capacity of an engine and the human intuition would be 

perfect, but how do humans get that game sense and how can we recreate it on a chess engine? Well, this 

concept is very abstract, the best chess players play, analyze and observe millions of games which gives 

them that game sense. As for today, this intuition has not yet been programmed fully. (Podlesak, 2019.) 

There have been different approaches to this, the main ones being Stockfish, which is the strongest traditional 

chess engine to date, having an ELO rating of ~3550, to put this in perspective the best chess player in the 

world Magnus Carlsen has an ELO of ~2862 and his best is 2882. (FIDE Ratings.) 

On the other hand, there has been a new approach to chess engines, which attempts to duplicate human 

learning experience in order to make it work better. This is accomplished by using machine learning instead 

of solid coding that makes it as beautiful as a stockfish. With machine learning, the computer only acquires a 

game of chess and basic rules and learns by playing games against it. This has been a success and the most 

popular engine using this method is AphaZero developed by DeepMind a Google-owned enterprise focused 

on Artificial intelligence. (Podlesak, 2019.) 

 

 

Figure 8. AlphaZero vs Stockfish historical match (Pete, 2019) 
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Lastly, the stockfish team in 2020 joined the traditional chess engine with neural networks. They created 

what is today as Stockfish NNUE (Efficiently Updatable Neural Networks). On September 02, 2020, 

Stockfish 12 was released with a huge jump in playing strength due to the introduction of this technology. 

The architecture of Stockfish NNUE is extremely different from the neural networks AlphaZero uses. 

AlphaZero uses an extremely deep, convolutional neural network with as many as 40 layers. 

 

1.1.1 Evaluation function 

 

Testing work is a very important module, today the main improvement of chess engines comes in 

transforming the test function. The input of this module is a chess area, and the output is a number. If this 

number gives us a test of 0, it means that the area is equal to both players. The higher the positive number, 

the greater the gain in white, the lower the negative number, the greater the benefit in black. There is a 

different data algorithm that looks like it will come out with a test. This has been hardcoded to mimic a 

grand mastermind. This is fundamental for understanding chess and chess engines. Stockfish uses the 

following methods to calculate the evaluation: (CPW- Evaluation.) • Material 

A value is assigned to each piece in chess, for example, a knight is worth 3 points and a queen 9. And the 

material will be the sum of all available pieces. Material value is what influences most of the evaluation. 

(Material - Chessprogramming Wiki.) 

• Piece-Square Tables 

 

 

 
 

Figure 9. Piece-Square Table example (Hartikka, 2017) 
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Each piece receives a bonus value depending on what square the piece is in. Each piece of each color has its 

own table. The value of a square for a certain piece can vary through the game and with this we can achieve 

different goals, like pawns advancing in the endgame or knights and bishop developing in the opening stages 

of the game. To make a semidecent chess engine just with material and Piece-Square Tables are enough, 

but nowadays we will need much more to compete with toplevel engines. (Piece-Square Tables - 

Chessprogramming Wiki.) 

• Pawn Structure 

This term is used to describe the position of the pawns on the board. This will ignore all the other pieces. 

To determine a good or bad pawn structure we can look if we have doubled pawns, which means, having 2 

pawns on the same file or having a pawn with a clear path for promotion. This last situation is known as a 

passed pawn. There are more things to take into consideration for pawn structure like isolated pawns, pawn 

islands, etc. This will be all hardcoded considering the benefits and inconveniences of each situation. (Pawn 

Structure 

- Chessprogramming Wiki.) 

 

• Evaluation of Pieces 

 

 

 

Every piece can have its evaluation changed depending on the board state, for example, if the rook is on an 

open file the value of the rook will go up significantly. On the other hand, if your black square bishop is 

trapped and cannot move because it is behind black squared pawns, the value of that bishop will go down. 

Each of the 6 different pieces will have some specific rule to either make its value better or worse. 

• Evaluation Patterns 

- There are some positions that will require additional knowledge to make a correct evaluation, one of the 

most famous examples will be when you fianchetto your bishop and its part of your king defensive 

formation it is undesirable to exchange it for a knight or bishop. (AKDEMIR.) 
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Figure 10. Example of position showing undesirable bishop-knight exchange. 

• Mobility 

This term refers to the number of legal moves the player has on the given position. Generally, the more 

moves you have, the better your position is. Since you have more piece activity. (Chess Programming Part 

VI.) 

• Center Control 

Controlling the center squares in chess is a really good strategy that generates space and allows pieces to get to 

the desired spaces. Normally the center is controlled by pawns, but we have seen some modern chess openings 

where the center is controlled by pieces from far away. (Chess Programming Part VI.) 

• Connectivity 

http://www.ijsrem.com/
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It is important that every piece is well defended. So having defended pieces will make the evaluation go in 

your favour while having undefended pieces will work against the evaluation function. (Levinson & Weber, 

2001.) 

• King Safety 

For humans, king’s safety is the number one priority in chess. This task is very hard to put into code. There 

are a lot of factors that can go inside the calculation of king's safety, for example, how well structured is the 

pawn shield in front of the king, how many attacking pieces does the enemy have, are there files open near 

the king. (Tesauro, 2001.) 

• Tempo 

Tempo refers to the ability to make moves. The fewer moves you need to get a piece to a certain square you 

will gain a tempo. This is important in chess because if you always make a threat on every move, your 

opponent loses a tempo responding to it, but the moment you make a passive move, your opponent can take 

the initiative and gain tempo. 

These are the variables that go into a chess evaluation function. It is to be noted that every single detail has 

been human conclusions and hardcoded. These concepts are a part of the experience of humans after 

centuries of chess games being played. Nevertheless, every time we discover new positions or different 

tactical approaches to different positions, this is what makes conventional chess engines flawed. It is 

impossible to make a truly objective evaluation function, this is the reason why the evaluation function keeps 

changing every year to keep up with the new chess discoveries and cover up these little details. 

 

 

1.1.2 Search function 

This module will be the one in charge to calculate the different variants given a position. This is a very 

complex thing to do, and once again it tries to mimic humans. You may be able to make a move that 

improves your position but leads to forced mate in several moves from the opponent. Calculating the 

variables optimally and knowing which will be the best path to pursue is critical for winning at chess. There 

have been different algorithms that chess engines have used over the years. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                    Volume: 06 Issue: 05 | May - 2022                         Impact Factor: 7.185                      ISSN: 2582-3930                                                                                                                                               

 
 

© 2022, IJSREM      | www.ijsrem.com                DOI:  10.55041/IJSREM12906                                         |        Page 8 

 

 

 

We can differentiate them into two types: brute-force search and selective search. In the earlier days, the 

selective search was favoured. This type had a major risk since it had the possibility to oversee some 

tactics. Nowadays, with the amount of computing power available, programs are closer to a brute-force 

search, but they still use some characteristics of the selective search. The most popular search algorithms 

used today are minimax and alpha-beta. 

• Minimax 

John von Neumann, in 1928 classified chess as a two-player zero-sum game with perfect information. And, 

as he stated, there will be an optimal solution to it. First, to understand this algorithm the concept of a zero-

sum game needs to be clear. A zero-sum game is when one person’s gain is equivalent to another’s loss, so 

the net change in benefit is zero, for example, if in a game of chess player A has an advantage of 1 queen is 

because player B has an advantage of -1 queen. One player can only win what another player has lost. The 

previous example is a very simplified version of chess, but you can get a similar conclusion after analyzing 

a chess position. 

Now that the concept of a zero-sum game is understood, the minimax algorithm works with the idea that 

both players will go for the best possible move. This is achieved by doing the play that suits the opponent 

the less. So basically, you are minimizing the maximum loss. (Beal, 1982.) 

Figure 11. Example of Minimax Algorithm with Tic-Tac-Toe(Game Tree for Tic-Tac-Toe Game Using 

MiniMax Algorithm.) 

http://www.ijsrem.com/
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In the previous figure, we can see a minimax algorithm in action, it is working with a depth of 3. All of X’s 

moves will be calculated and then all of O’s possible answers till we reach 3 moves for the starting 

position. Player X will choose the highest number and Player O will choose the lowest number. So, even if 

you choose the left or the middle path, you can still win as player X, if player O plays perfectly you will not 

win. In this example, we are just dealing with values of -1 or 1 in chess. The evaluation function will give 

you a higher range of numbers, but the same concept still applies. One player will be denominated max and 

he will choose the highest value and the other player will be min, and he will choose the smaller value. 

 

 

 

Figure 12. Example of Minimax algorithm using numeric values. (“Alpha–Beta Pruning,” 2021) 

 

 

In this new example, we have a depth of 4. On move 3, min chooses the lowest value from move 4. Min 

chooses 10 since 10 is smaller than infinite, it also chooses -7 since -7 is lower than -5. On the other hand, 

on move 2 the player max chooses the highest possible number from the 3rd row and this continues till we 

reach row 0. One important aspect that can be observable is the number of different states and positions are 

derived from the first, the growth is exponential. In the middle game of a chess game on average, you have 

30 possible plays. This would mean that having a depth of 5 will lead to 30^5=24.300.000 positions. Even by 

today's standards of technology, it will be impossible to approach high depths. 

http://www.ijsrem.com/
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• Alpha-beta pruning 

Alpha-beta algorithm is an improvement of the minimax search algorithm that reduces the number on a large 

scale the number of nodes evaluated. Stockfish 12 is using, with additional improvements this algorithm. To 

illustrate this with a real-life example, suppose somebody is playing chess, and it is their turn. Move "A" will 

improve the player's position. The player continues to look for moves to make sure a better one hasn't been 

missed. Move "B" is also a good move, but the player then realizes that it will allow the opponent to force 

checkmate in two moves. Thus, other outcomes from playing move B no longer need to be considered since 

the opponent can force a win. The maximum score that the opponent could force after move "B" is negative 

infinity: a loss for the player. This is less than the minimum position that was previously found; move "A" 

does not result in a forced loss in two moves (Alpha–Beta Pruning, 2021). To further explain how it works 

we will use as an example the next tree: 

 

 

Figure 13. Alpha-beta pruning example (Alpha–Beta Pruning, 2021) 

 

 

In this example, we have the max player playing with the white pieces. It has calculated the next possible 

results with a depth of 4. First, starting at the bottom min chooses between 5 and 6 and it chooses 5. Then 

min has to choose again between 7, 4, or 5, this time it stops evaluating positions at value 4 because the next 

move will be max turn to play and it will have to choose between 5 or 4, and since max is always going to 

pick 5 (the highest number possible), there is no need to keep exploring that branch since max will not pick 

it so we can discard it, or in the case of this algorithm, 

http://www.ijsrem.com/
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function alphabeta(node, depth, α, β, maximizingPlayer) is if depth = 0 

or node is a terminal node then return the heuristic value of node 

if maximizingPlayer then value := −∞ for each child of node do 

value := max(value, alphabeta(child, depth − 1, α, β, FALSE)) α := 

max(α, value) if α ≥ β then 

break (* β cutoff *) return value 

else 

value := +∞ for 

each child of node do 

value := min(value, alphabeta(child, depth − 1, α, β, 

TRUE)) β := min(β, value) if β ≤ α then 

break (* α cutoff *) return value (* 

Initial call *) 

alphabeta (origin, depth, −∞, +∞, TRUE) 

 

prune it. On the second main branch. We start from the bottom again. Min chooses 6 and then it has the 

option to choose between 6 or 9, and pruning happens again. Since we have the same value in both children 

nodes and max will choose the highest it serves no purpose to continue exploring that branch, so we prune it. 

On the third main branch, we will start at depth 2 where min has to choose between 5 or 8. When the value 

of 5 gets evaluated we immediately prune the rest of the tree since we now max will choose 6 or higher, 

there is no point to keep exploring the rest of the tree to get a number lower than 5. 

To translate this concept to programming we have two limits α and β, that will correspond to the most 

convenient evaluation at the moment. The initial value will be -∞ and +∞ and will be updating when different 

variants will be evaluated. The pseudo-code a minimax alpha-beta pruning is as follows: 

 

 

 

 

Figure 14. Pseudo-code of minimax with alpha-beta pruning (Alpha–Beta Pruning, 2021) 

 

As previously mentioned, this algorithm is very similar to minimax but with a well-written program, a 

standard minimax tree with x nodes can be reduced close to the square root of x nodes. This is heavily 

reliant on how well-ordered the tree is. If the best move is always explored first, you 
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eliminate the most nodes, but always knowing what move will be the best in a given position is a complex 

task. Therefore, good move ordering is extremely important, and it is where a lot of the effort in writing a 

successful chess engine resides. To get this result the typical move ordering will be: 

1. Principal variation move (a move that was the previous iteration of an iterative deepening 

framework for the leftmost path) 

2. Hash move from hash tables 

 

3. Winning captures/promotions 

4. Equal captures/promotions 

 

5. Killer moves 

 

6. Non-captures sorted by history heuristic 

One of the problems that may arise is the Horizon effect. This effect is caused by the depth limitation of the 

search algorithm. This happens when a negative event is inevitable but postponable. The engine will only 

be able to analyze a partial part of the search tree, it will choose a move that will seem to avoid the threat, 

but this is not the case. 

 

 
 

Figure 15. Example of the horizon effect 

http://www.ijsrem.com/
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function quiescence_search(node, depth) is if node appears 

quiet or node is a terminal node or depth = 0 then return 

estimated value of node else 

(recursively search node children with quiescence_search) return 

estimated value of children   function normal_search(node, depth) is if node is a 

terminal node then return estimated value of node else if depth = 0 then 

if node appears quiet then return estimated value of node else 

return estimated value from quiescence_search(node, reasonable_depth_value) 

else 

(recursively search node children with normal_search) return estimated value 

of children 

 

 

 

In the situation presented in figure 15, the black bishop is trapped. No matter what the black does white can 

always manoeuvrer the rook to a1 in two moves and capture the bishop in the third move. If we have a chess 

engine with a depth of 6, what could happen is that the best move for black suggested by the engine will be 

to push pawn e3, just to force the king to capture the pawn, then pushing the remaining pawns to force the 

king to keep capturing the pawns in an attempt to save the bishop, but that only will delay the capture of the 

bishop since it’s trapped and will lose you 3 passed pawns. Probably the best line of play for black will be 

to exchange the bishop for a pawn and try to hold the game with connected pass pawns against a rook. 

(Scoones, 2007) To combat this effect, chess engines implement the quiescence search. The main goal of the 

quiescence search is to not have a fixed depth for the evaluation but to have the search module analyze the 

variants until a stable position is reached so it can be evaluated statically. This is achieved by forcing the 

engine to go deeper into volatile positions where there are more captures or moves that can destabilize the 

evaluation function than quiet positions. A quiet position will be one that has no captures or threats. 

The pseudocode for the quiescence search to illustrate the concept algorithmically: (Quiescence 

Search - Chessprogramming Wiki.) 

 

 

Figure 16. Pseudocode of quiescence search(Quiescence Search, 2021). 

 

 

1.1.3 Chess databases 

 

Another important factor to consider is the use of game databases. There are millions of games stored in the 
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different chess databases. During the first moves of the game these databases are very useful, we can look 

at how many times victory was achieved with certain openings. The best engines in the world still use 

opening books from the best chess Grandmasters. This eliminates the need for the engine to calculate the best 

lines during approximately the first ten moves of the game, where the positions are extremely openended and 

therefore computationally expensive to evaluate. As a result, it places the computer in a stronger position 

using considerably fewer resources than if it had to calculate the moves itself. (Opening Book - 

Chessprogramming Wiki.) 

On chess engines, the endgame is approached by Nalimov Tablebases. This is a database that stores all the positions 

with a small piece count. These positions are already determined as winning, losing, or drawing for the player that 

moves. Nowadays it is known the outcome of a chess position with at most 7 pieces on board since 2012. 

(Nalimov Tablebases - Chessprogramming Wiki.)  

 
 

Figure 17. Endgame database with 6 pieces on board. (Chess Endgame Database - Shredder Chess.) 

 

 

1.1 Neural Network approach 

When AlphaZero won against Stockfish it revolutionized the world of computational chess, not only because 

it was proclaimed the best chess player in history, but also it did it in a new way, very different from how 

computer engines were previously programmed. AlphaZero uses neural networks to make extremely 

advanced evaluations of positions which negates the need to look for 70 million positions per second like 

Stockfish, it calculated around 80.000 positions per second. DeepMind, the company that develops 

AlphaZero, stated that AlphaZero reached the benchmarks to defeat Stockfish in a mere four hours. 

Instead of the usual alpha-beta search algorithm with domain-specific enhancements that other engines 

use. AlphaZero uses a general-purpose Monte Carlo tree search. (Silver et al., 2018.) 
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1.1.1 Monte Carlo tree search (MCTS) 

The Monte Carlo tree search is another way to tackle the problem with the search function in chess. Monte 

Carlo in a computing context means that something arbitrary happens. In chess, a module that uses pure 

MCTS will evaluate the position generating a different sequence of moves from the given position in an 

arbitrary manner and averaging the final results (win/draw/loss) that it generates. To select which node to 

keep exploring AlphaZero starts from the root node and uses the following function to calculate the upper 

confidence bound of the next node. (Simple Alpha Zero, 2017.) 

 

 

 

Figure 18. The function that AlphaZero uses to calculate the upper confidence bound. 

 

 

This function will prioritize the nodes that form the moment, are considered the best for having led to better 

results. This selection process will continue recursively for all the nodes in the tree until a node that has not 

been expanded upon is reached. After this process, the node child nodes are calculated the engine will pick 

a random child node since the upper bound function will return a random result for every child node. After 

randomly selecting the child there will be a random simulation of the game where that move was played. 

This is why the algorithm gets the Monte Carlo name. Even though the game is not truly random, there 

have been different heuristics that will take more time for the computer to process but will lead to better 

results. Finally, the algorithm enters the backpropagation where it updates the value of the previous nodes by 

having taken into account the result of the last simulation. (Cinnéide,) 

http://www.ijsrem.com/
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Figure 19. Example of 1 iteration of the Monte Carlo Search Tree (Monte Carlo Tree Search, 2021) 

 

 

1.1.2 Benefits of using Neural Networks 

 

Using neural networks will bring different advantages over conventional chess engines is the use of Graphical 

Processing Units (GPUs). With the use of neural networks, AlphaZero can take advantage of the parallel 

computing power that the GPUs provide. On the other hand, engines like Stockfish were stuck with only 

using CPU power which is slower since the operations that the engine used were good on a sequence that is 

where CPUs excel. AlphaZero uses specialized GPUs called TPUs that are google designed hardware to 

optimize the operation of neural networks. That means adding an additional dimension to the work being 

done. While GPUs are designed to essentially do huge amounts of parallel arithmetic and trigonometry, 

TPUs are optimized to rapidly do huge amounts of Matrix multiplication, the fundamental mathematical 

abstraction of what neurons do. Nowadays, with the latest advancements of Stockfish, they are using a hybrid 

between conventional chess engines and neural networks so it can benefit from both. (Chess.com) 

One of the other benefits of neural networks is the adaptability that it has. The engine only knows the rules 

of chess and does not have hardcoded rules that humans have made up after years of analysis and 

experience, so, it becomes easy when you want the engine to learn different variants of chess. This can be 

useful to find new ways to make chess engaging and learn the best way of playing. There was a paper 

published by DeepMind about different chess variants, and how the different rules that they added to chess 

changed the value of certain pieces or how favored was white to win over black. This would be a harder task 

to accomplish with conventional chess engines since change a few rules of chess can dramatically change 

the optimal way of playing and all the years of analysis 

http://www.ijsrem.com/
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will become obsolete. (Tomašev et ai, 2020.) 

2 Case: Chess engine development 

 

2.1 Introduction 

A chess engine is going to be developed with the goal of it having a low-medium level of chess. Like we 

have seen before there are several approaches on how to tackle this problem. The purpose of this project is 

not to build the best chess engine, it is to build a lowmedium level engine that people can enjoy and observe 

the changes of its behavior when new functionalities to the search and evaluation functions are added. For 

achieving this goal, we must take into account the speed of the engine and the computing power needed for 

it to work properly. Therefore, I have chosen to develop this chess engine using a traditional approach since 

using the neural network approach will need more computing power and will take longer to process the 

different moves. 

 

2.2 Programming 

 

For developing this chess engine, I used Python. This programming language is not the fastest one, but it has 

a lot of documentation and modules that made the development of this project much easier and smooth. 

Within python the python-chess library was used, this library already has the movement generator, board, 

and interface already implemented. For starters, I developed the scholar’s mate using the python chess 

library to learn the basics. 

 

 
 

Figure 20. Implementation of scholar’s mate using python-chess. 
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This is a basic implementation of scholar’s mate. For the board to be displayed on anything else than ASCII 

I made use of Jupyter Notebook, this will help with the visualization of the board. With the python chess 

library, it is possible to make an SVG board that Jupyter notebook can display successfully to enhance the 

visualization of this project. 

For starters, I programmed a player that made random moves on the chessboard, to test if the first iteration of 

the chess engine would beat it: 

 

 

Figure 21. Random player implementation. 

 

After testing this random player was successfully working a function that made possible games between 

computers had to be implemented and the code in figure 21 was implemented. This code makes will show the 

final board and the number of moves that the chess game took. It will display a message saying the result of 

the game and the number of moves it took, also it will display in SVG the final board and a PGN file with 

the moves played in the given game. 

 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                    Volume: 06 Issue: 05 | May - 2022                         Impact Factor: 7.185                      ISSN: 2582-3930                                                                                                                                               

 
 

© 2022, IJSREM      | www.ijsrem.com                DOI:  10.55041/IJSREM12906                                         |        Page 19 

 

 

Figure 22. Play and Who function. 

 

Furthermore, the option to have a human play was also implemented, with the caveat that the 

human will have to enter the moves in UCI fashion and can’t drag the pieces from the chessboard. 

http://www.ijsrem.com/
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This can be something that can be explored in the future development of the project. 

 

After all of this, the first iteration of the chess engine was created. It was a simple engine that only counted 

material on the board. It did not take into account any other things, just what pieces were on the board and it 

has a value assigned to the different pieces. The values assigned in these engines are the ones Tomasz 

Michniewski proposes for a simple evaluation function, these values are: Pawn = 100 Knight = 320 Bishop 

= 330 Rook= 500 Queen = 900, and the function will return 

-9999 or 9999 there is checkmate on the board. 

 

Figure 23. Code for the first evaluation function and search function. 

 

 

Now, the engine can look one move ahead and if it sees the possibility of capturing a piece it will do it. 

This iteration of the engine is still bad since it will not look further than just 1 move and will capture pieces 

aimlessly, without considering if the piece we just capture leaves creates any weaknesses in the position. 

Nevertheless, this engine still plays better than the random player implemented earlier. 

http://www.ijsrem.com/
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The games often end in draws since the engine has no knowledge of endgames and when the enemy king is 

the only piece left, it just makes random moves since it does not have a piece to capture, often leading to 

draw by repetition or stalemates. 

For these reasons, the next step of this engine is to integrate a minimax search so it can look deeper, spot 

potential traps, and see when you have mate in a given depth. This implementation came with great 

improvements in play but, doing the minimax with a depth of 3 was consuming too much time per move, I 

decided to add a timer that tells me how much time it takes for the minimax algorithm to come up with a 

move and, with a depth of 3, in the starting positions only took around 5-6 second to find a move. But, in 

the midgame where there are more pieces developed and more possibilities of moves it can take more than 

1 minute per move. 

 

 

Figure 24. Minimax implementation. 

http://www.ijsrem.com/
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As it was discussed earlier in “Search Function” the minimax algorithm takes really long to calculate this 

amount of data. Therefore, the next step I took to improve this engine is to add the alpha-beta pruning. In 

theory, this should massively reduce the time and computing cost for finding the best move. To implement 

the Alpha-beta pruning I chose the Negamax implementation. Also, the quiescence search is integrated to 

avoid cases where the horizon effect might happen. So now, the engine is using alpha-beta pruning and when 

it is on the max depth it further looks for possible captures to avoid the horizon effect. 

 

 

Figure 25. Implementation of Negamax and quiescence search. 

Even with all of these new improvements, the engine is still weak. In the first stages of the game, it  does not 

make good decisions since it can´t look very deep into the future, for this reason. I decided it was time to add 

piece square tables to the evaluation function so the engine will start seeing the 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                    Volume: 06 Issue: 05 | May - 2022                         Impact Factor: 7.185                      ISSN: 2582-3930                                                                                                                                               

 
 

© 2022, IJSREM      | www.ijsrem.com                DOI:  10.55041/IJSREM12906                                         |        Page 23 

 

 

benefits of developing pieces when there are no possible captures. This should help with the first stages of 

the game and help the engine get to the middle game, where it is the strongest. The piece 

-square tables that I added encourage pieces to perform different tasks. 

 

For pawns, the engine is rewarded by pushing them forward and it is discouraged to leave the central pawns 

unmoved. Knights get better scores when they move towards the center, bishops are incentivized to stay in 

long diagonals while rooks prefer to infiltrate to the seventh rank while avoiding the a and h files. Queen 

also prefers to move to the center than stay on corners, since it will help it cover more squares. Right now 

these square-piece tables are static, they do not vary with the state of the game, so they are pretty general. 

 

 

Figure 26. Implementation of the piece-square tables in the evaluation function. 

 

 

The engine still struggles in the early game and tends to make the same moves every match since it cannot 

be executed at high depths and always follows the same piece-square tables. Therefore, the next step to 

improve this engine is to add an opening book that it can use to help with the early stages of the game. This 

opening book will be implemented using the Polyglot format because the python-chess has a function that 

can make use of this format without trouble. The opening book of choice will be one approved by 

Stockfish. For now, the engine will look for positions inside the book and if the position is found, the 

engine will make a random weighted choice between all the different moves. If the position reached is not in 

the book, the engine will continue to perform as it did before with the old evaluation function and alpha-beta 

search tree. 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                    Volume: 06 Issue: 05 | May - 2022                         Impact Factor: 7.185                      ISSN: 2582-3930                                                                                                                                               

 
 

© 2022, IJSREM      | www.ijsrem.com                DOI:  10.55041/IJSREM12906                                         |        Page 24 

 

# this function will create our x (board) 

def random_board(max_depth=200): 

board = chess.Board() depth = random.randrange(0, 

max_depth) for _ in range(depth): 

all_moves = list(board.legal_moves) 

random_move = random.choice(all_moves) 

board.push(random_move) if 

board.is_game_over(): 

break 

return board# this function will create our f(x) (score) 

def stockfish(board, depth): 

with chess.engine.SimpleEngine.popen_uci('stockfish/13/bin/stockfish') 

as sf: 

 

 

 

 
 

Figure 27. Implementation of the Opening Book in the chess engine. 3.3 

 

 

2.3 Machine learning approach 

First step of course is to come up with a plan and here’s mine 

• Make a dataset of chess position and their evaluations with Stockfish 

• Make a regression model that evaluates a position (like Stockfish) 

 

 

2.3.1 Installing Stockfish 

Now that we know what to do, it's time to first install stockfish. You can clone my GitHub repo here 

(contains all files including stockfish). 

To generate the board and dictate the general play we will use the python-chess library. 

I will be sharing some code and the key ideas and concepts that are involved, the complete code can be 

found here. 

 

http://www.ijsrem.com/
https://github.com/realnihal/Chess-AI-with-TensorFlow
https://github.com/realnihal/Chess-AI-with-TensorFlow
https://python-chess.readthedocs.io/en/latest/
https://python-chess.readthedocs.io/en/latest/
https://python-chess.readthedocs.io/en/latest/
https://python-chess.readthedocs.io/en/latest/
https://github.com/realnihal/Chess-AI-with-TensorFlow
https://github.com/realnihal/Chess-AI-with-TensorFlow
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Using this code we can evaluate any chess position. A positive number “White is winning” or a negative 

number meaning “Black is winning”. Using this function we can create a dataset that can evaluate a set of 

random positions. We can then create a model that can use this information to evaluate future predictions. 

 

 

2.3.2 Creating the dataset 

 

Now we need to convert the board representation to something meaningful. A 3d matrix of sizes 8 x 8 x 14 

where 8x8 represents the board and the 14 represents the 7 different pieces. 

squares_index = { 'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4, 'f': 

5, 'g': 6, 'h': 7 }def square_to_index(square): letter = 

chess.square_name(square) 

return 8 - int(letter[1]), squares_index[letter[0]] 

def split_dims(board): # 

this is the 3d matrix 

board3d = numpy.zeros((14, 8, 8), dtype=numpy.int8) for piece in 

chess.PIECE_TYPES: for square in board.pieces(piece, chess.WHITE): 

idx = numpy.unravel_index(square, (8, 8)) board3d[piece - 1][7 - 

idx[0]][idx[1]] = 1 for 

square in board.pieces(piece, chess.BLACK): 

idx = numpy.unravel_index(square, (8, 8))

 board3d[piece + 5][7 - idx[0]][idx[1]] = 1

 aux = board.turn 

board.turn = chess.WHITE for move in 

board.legal_moves: 

i, j = square_to_index(move.to_square) board3d[12][i][j] 

= 1 

board.turn = chess.BLACK for 

move in board.legal_moves: i, j = 

square_to_index(move.to_square) board3d[13][i][j] = 1

 board.turn = aux return 

board3d 

 

 

This function above maps the pieces to the squares and stacks them into an array of sizes (8,8,14). We can 

use this multi-dimensional array as an input into our Convolutional Neural Network(CNN) to predict our 

evaluation. 

result = sf.analyse(board, 

chess.engine.Limit(depth=depth)) 

result['score'].white().score() 

score = 

return score 

http://www.ijsrem.com/
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def build_model(conv_size, conv_depth): 

board3d = layers.Input(shape=(14, 8, 8)) 

x = board3d for _ in 

range(conv_depth): 

x = layers.Conv2D(filters=conv_size, 

kernel_size=3, padding='same', 

activation='relu')(x) x = layers.Flatten()(x) x = 

layers.Dense(64, 'relu')(x) x = layers.Dense(1, 

'sigmoid')(x) 

return models.Model(inputs=board3d, outputs=x) 

 

2.3.3 Building the model 

I have made a function through which you can train a model on a parameter of depth. Its a simple 

Convolutional layer with a flatten layer proceeding it. It contains a ‘same’ padding parameter as we do not 

want to change the overall dimensions of the input during the flow. 

 

 

 

2.3.4 Result 

What I have learned from these results is that the AI knows how to play chess, but it doesn't really play at a 

good level. Stockfish was very easily able to beat it, this was expected as the AI was trying to imitate 

stockfish and we can’t expect it to be better than the data it was trained on. My over the board rating is 

around 1300 elo and I was comfortably able to beat it. My guesstimate is that this AI might be around 600 

elo or even lower like a beginner in the game. It starts off well, but makes blunders quite often and ends up 

losing the games. 

 

 

2.4 Analysis of games played. 

 

Now I will show and analyze Some test games between different engine strengths. With these different 

tests, we can see if the engine is responding as expected to the new improvements. Every game will include 

the player that played with each color, the result of the game, the moves that were played in PGN format so 

everyone can check how the game developed, for example, in websites like lichess.org, and a visual 

representation of the board when the game ended. 
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2.4.1 Game 1 

[White "player1"] 

[Black 

"ran_player"] 

[Result "1/2-1/2"] 

1. Nh3 c6 2. Ng5 Qb6 3. Nxh7 Na6 4. Nxf8 Rb8 5. Nxd7 Rh3 6. Nxb6 e6 7. gxh3 g6 8. Nxc8 g5 9. Nxa7 g4 

10. Nxc6 Nh6 11. Nxb8 Kd8 12. Nxa6 f6 13. hxg4 Nxg4 14. Nb8 e5 15. Nd7 Nh6 16. Nxf6 

Kc7 17. Ng8 

Nxg8 18. Rg1 Ne7 19. Rg8 Nd5 20. Rh8 Nc3 21. Nxc3 Kb6 22. Rg8 Ka5 23. Rh8 Kb6 24. Rg8 Ka7 25. 

Rf8 Ka6 26. Rg8 Ka5 27. Rf8 b6 28. Rh8 Ka6 29. 

 

Rg8 Ka7 30. Rh8 e4 31. Nxe4 Kb7 32. Rg8 Kc7 33. Rh8 b5 34. Rg8 Kb7 35. Rh8 Kc6 36. 

Rg8 Kb7 37. Rh8 Ka7 38. Rf8 Kb6 39. Rh8 b4 40. Rg8 Kc7 41. Rh8 Kd7 42. Rg8 Ke6 43. Rh8 b3 44. 

cxb3 Ke7 45. Rg8 Kf7 46. Rh8 Kg6 47. Rg8+ Kh5 48. Rh8+ Kg4 49. Rg8+ Kf4 50. Rh8 Kf5 51. Rg8 

Ke6 52. Rh8 Kd5 53. Rg8 Kc6 54. Rh8 Kd5 55. Rg8 Ke6 1/2-1/2 draw: claim 

 

 

 

Figure 28. Test game 1. 
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From this game, we can observe how the first iteration of the engine is working as intended. 

Every time “player1” could capture a piece it will do it. While the random player just kept moving pieces 

aimlessly, it did not punish when white took a piece but left one of their own unprotected. In the endgame, 

“player 1” could not find a mating pattern since it only looks for possible captures, so the game ended in a 

draw with a 3-fold repetition. 

 

 

2.4.2 Game 2 

 

[White "player2"] (depth 3) 

[Black "ran_player"] 

[Result "1-0"] 

1. Nh3 Nh6 2. Ng5 Nc6 3. Rg1 d5 4. Rh1 a6 5. Rg1 Nb4 6. Rh1 g6 7. Rg1 Ra7 8. Rh1 Be6 

9. c3 b6 10. cxb4 f5 11. Nxe6 Qa8 12. Rg1 Qc8 13. Qa4+ c6 14. Nxf8 Qd7 15. Nxd7 Rxd7 16. Qxc6 Ng4 

 

17. Qc8+ Kf7 18. Qxh8 Nxf2 19. Qxh7+ Ke8 20. Qg8# 1-0 checkmate: White wins! 

 

 

 

http://www.ijsrem.com/
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Figure 29. Test game 2. 

 

This game displays interesting behavior. We can see that the engine if it does not see an improvement in the 

next 4 moves, it will just pick the last move from the movement generator list that does not make the 

position worse, from moves 4-8 since black did not have any pieces developed and the algorithm cannot see 

really deep it only moved the rook aimlessly from h1 to g1, until black left the knight in b4 undefended. 

The engine saw it and attacked the knight on the next move. Also, with the white knight on g5, it could 

capture the bishop on e6 for a long time, but the white waited till black blundered and left the bishop 

unprotected to capture it. The engine was also able to win the game unlike the previous iteration, the mate 

was found by having a very good position and not by creating mating patterns. 

 

1.1.1 Game 3 [White 

"player2"] 

[Black "player1 

"] [Result "1/2-

1/2"] 

1.Nh3 Nh6 2. Ng5 Rg8 3. Nxh7 Rh8 4. Nxf8 Rxf8 5. Rg1 Rh8 6. Rh1 Rg8 7. Rg1 Rh8 8. Rh1 Rg8 9. Rg1 

1/21/2 draw: claim 

 

Figure 30. Test game 3. 
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In this game, we can see one of the main problems with the current engines, when there is no improvement 

the engine will keep moving the piece over and over causing a 3-fold repetition. This happens because the 

engine can no see improvements in the position, to solve this problem I changed the evaluation function to 

add randomly a number between 0 and 9 to the evaluation. This will make it less likely to repeat moves and just 

keep improving the position we will repeat this match on game 4 with the new improvements to have proper a 

proper testing environment. 

 

1.1 Conclusion 

The engine development process is done for now. The objectives of the case have been reached successfully. 

The level of play is good. The engine can consistently beat me and I’m on the 60th percentile of players in 

the chess.com database around 1100-1200 rating. So, we can assess that the engine has a medium-low level of 

play. On the other hand, between the possibility of visualization and different test games played, it was 

possible to see how the engine kept evolving and how it improved with each iteration. The engine is still far 

from the best, one of its main flaws is the time required to come with a move. Right now, there is no move 

ordering implemented in any way which will help drastically with the speed the Alpha-beta pruning will 

operate. Other possible solutions for the speed are adding transposition tables and an incremental evaluation 

function, so the engine does not have to calculate over and over positions that it has already seen. 

One of the difficulties encountered while doing the case was learning how to code in a different language 

like python and how to use Jupyter Notebook. This was my first time using Jupyter and some of the libraries 

used in this project. 

Most of the time in the development process was spent fixing bugs and reassuring that the different algorithms 

were implemented correctly. There were a lot of bugs when trying to use the different libraries and 

sometimes, the engine will fail to check if a position is a draw or not, so it will randomly draw the game when 

it’s ahead on material. To check if the algorithms were implemented correctly, I had to check in multiple 

manners. To check if the search and evaluation functions were implemented correctly, I had to check the 

time it took for finding the correct move and compare it to previous iterations of the engine to see if it had 

improved. And to check if it was not missing good moves or if the evaluation function was implemented 

successfully, I had to check the engine of similar strength against each other but with different depths. If the 

engine with a higher depth can consistently beat the one with lower depth the evaluation function and search 

function have been implemented 

correctly. 
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4.1 Application UI 
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5. Summary 

This research was made to create a low-mid level chess engine and analyze how it evolved with the different 

improvements that were added along the way. With the results achieved, we can conclude that goals were 

achieved successfully. This does not mean that the engine cannot be further improved and developed. Engine 

still takes a long to process get the best move on the position. On a depth of 5, it can take up to 30 to 40 

minutes to make the move. A move ordering heuristic will be highly recommended to enhance the speed of 

the engine. 

I would like to highlight the game seven. There is a very interesting interaction that I analyze in the chapter 

4.3.7 where black gets the knight trapped because it does not have enough depth and white is playing with a 

higher depth sees the 5-move sequence to capture it. This leave us wondering, if the engine did not take that 

long to find a move, if we could execute the engine on depths of 10 or 12, like other engines like Stockfish 

can do without much effort, what will be the true strength of the evaluation function that was implemented. 

During the research of this project, I have realized how complex and how much work have been put into 

developing chess engines and how far away are we from reaching the limit. It always feels like we can make 

smaller improvements to the engine, and you will never be done. There will be always something to improve 

in the chess engine world whether it will be through conventional method or neural networks. 
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