

AI-Based Predictive Skill Gap Analysis for Workforce Planning

J.Noor Ahamed¹, Jacob Tom²

¹ Assistant Professor, Department of Computer Applications, Nehru College of Management, Coimbatore, Tamil Nadu, India.

ncmnoorahamed@nehrucolleges.com

²Student of II MCA, Department of Computer Applications, Nehru College of Management, Coimbatore, Tamil Nadu, India.

jacobtom1234@gmail.com

Abstract

Rapid advancements in automation, artificial intelligence, and large-scale digital transformation have fundamentally reshaped workforce requirements across industries and regions. Traditional workforce planning methods, which rely on historical employment trends and static skill classifications, are increasingly inadequate for predicting emerging skill demands in a dynamic economic environment. As a result, organizations, educational institutions, and policymakers face significant challenges in anticipating future talent needs and aligning skill development strategies with industry evolution.

This research presents a **Predictive Skill Gap Intelligence Hub**, an AI-driven analytical platform designed to proactively forecast labor demand-supply gaps, identify high-potential regional opportunity hubs, and evaluate workforce skill readiness. The proposed system integrates multiple macro- and micro-level indicators, including regional economic growth projections, automation velocity, policy intervention strength, investment intensity, and market volatility, into a unified decision-support framework. By combining probabilistic growth modeling with intelligent skill synthesis techniques, the platform enables accurate estimation of future workforce requirements under varying economic and policy scenarios.

Interactive visual analytics, including demand-supply trend analysis, geospatial hotspot mapping, skill gap radar assessment, and policy simulation dashboards, are employed to enhance interpretability and strategic decision-making. Experimental evaluation demonstrates that the system effectively identifies critical talent shortages, highlights regions requiring targeted intervention, and quantifies the impact of automation and policy measures on workforce sustainability. The results indicate that the proposed approach provides valuable insights for data-driven

workforce planning, strategic governance, and long-term skill development initiatives in rapidly evolving digital economies.

Keywords: Skill Gap Analysis, Workforce Analytics, Artificial Intelligence, Predictive Modeling, Policy Simulation

1. Introduction

The global workforce landscape is undergoing a fundamental transformation driven by rapid advancements in artificial intelligence, automation technologies, and data-centric decision-making frameworks. Organizations across industries are increasingly adopting intelligent systems to improve efficiency, reduce operational costs, and enhance competitiveness. While these technological developments create new opportunities, they also disrupt traditional job roles and redefine the skills required for sustained employability. As a result, workforce demand is no longer stable or linear, making conventional workforce planning approaches increasingly ineffective.

Traditional workforce planning methods rely heavily on historical employment trends, fixed occupational classifications, and static skill taxonomies. Such approaches fail to account for the accelerating pace of technological change, the shortening life cycle of skills, and the emergence of interdisciplinary roles. Consequently, organizations struggle to anticipate future talent requirements, while educational institutions face difficulties in aligning curricula with evolving industry expectations. This disconnect contributes to persistent skill shortages, underemployment, and inefficient utilization of human capital.

In the Indian context, these challenges are further intensified by uneven regional economic growth and sector-specific variations in digital adoption. Technology-driven states experience a growing demand for advanced digital and analytical skills, while other

regions face limited access to reskilling opportunities. Government initiatives aimed at workforce development often lack data-driven insights to target interventions effectively. This imbalance highlights the urgent need for intelligent systems capable of forecasting skill demand at both national and regional levels.

To address these challenges, this paper proposes a **Predictive Skill Gap Intelligence Hub**, a comprehensive AI-based analytical platform designed to support proactive workforce planning and strategic governance. The proposed system integrates economic growth indicators, automation velocity, investment intensity, policy intervention strength, and market volatility into a unified analytical framework. By leveraging predictive modeling, geospatial analysis, and interactive visual analytics, the platform enables stakeholders to forecast labor demand-supply gaps, identify high-potential industrial hubs, and assess workforce skill readiness.

The primary objective of the proposed system is to bridge the gap between academic skill development and real-world industry requirements. By providing actionable insights for organizations, policymakers, and educational institutions, the Predictive Skill Gap Intelligence Hub supports informed decision-making, targeted reskilling initiatives, and long-term workforce sustainability in a rapidly evolving digital economy.

2. Literature Review

Several studies have examined workforce analytics and skill forecasting using machine learning techniques and economic indicators. Traditional labor market analysis models primarily rely on employment statistics, historical trends, and fixed occupational classifications. While these approaches provide descriptive insights, they offer limited adaptability to rapid technological disruption and evolving industry requirements.

Recent research has introduced artificial intelligence-based methods for predicting job market trends, emphasizing the growing influence of automation, digital transformation, and emerging technologies on workforce demand. These studies highlight the importance of data-driven decision-making in workforce planning; however, many existing systems remain constrained in their practical applicability.

Most current approaches suffer from several key limitations, including limited regional granularity in skill forecasting, minimal integration of policy and macroeconomic variables, and the absence of interactive decision-support mechanisms. Additionally, existing models often focus on aggregate workforce

trends while providing limited assessment of individual skill readiness and competency gaps.

Visualization-driven platforms using tools such as Plotly and Streamlit have demonstrated potential in improving interpretability and stakeholder engagement. Nevertheless, few systems effectively combine predictive analytics, geospatial intelligence, and strategic governance frameworks into a unified platform. This research addresses these gaps by integrating probabilistic forecasting, regional analysis, and skill-level benchmarking within a comprehensive AI-driven workforce intelligence system.

3. Objectives of the Study

The primary objectives of this research are:

1. To design an AI-driven framework for predicting future skill demand and supply gaps
2. To identify optimal regional hubs for skill development and industrial expansion
3. To assess individual skill readiness against future industry requirements
4. To evaluate the impact of automation, investment, and policy interventions on workforce sustainability
5. To provide an interactive decision-support system for organizations and policymakers

4. Existing System

Existing workforce planning systems rely primarily on static labor surveys, historical employment records, and retrospective statistical analysis. While these approaches provide a general overview of labor market conditions, they suffer from delayed insights and limited responsiveness to rapid technological changes. As a result, such systems are often unable to capture emerging skill requirements driven by automation, artificial intelligence, and digital transformation.

Most current platforms focus on descriptive analytics, offering summaries of past workforce trends without incorporating predictive or prescriptive capabilities. These systems lack the ability to forecast future labor demand and supply dynamics or to evaluate alternative workforce planning strategies. Furthermore, existing approaches rarely integrate regional economic growth patterns, automation intensity, or policy intervention scenarios, which are critical for effective strategic workforce planning.

These limitations reduce the practical usefulness of traditional workforce planning systems for organizations and policymakers. The absence of real-time intelligence and scenario-based analysis highlights

the need for an advanced, predictive, and region-aware workforce analytics framework capable of supporting informed decision-making in dynamic economic environments.

5. Proposed System

The proposed **Predictive Skill Gap Intelligence Hub** overcomes the limitations of traditional workforce planning approaches by introducing a dynamic, AI-driven system architecture. The platform integrates multiple analytical layers, including regional economic growth projections, automation velocity, investment levels, policy intervention strength, and market volatility, to support proactive workforce analysis and strategic decision-making.

Fig. 1 illustrates the overall architecture of the proposed Predictive Skill Gap Intelligence Hub.

Fig. 1. Architecture of the Predictive Skill Gap Intelligence Hub

The system offers several key features designed to address emerging workforce challenges:

- Predictive demand-supply forecasting using compound growth models
- Geospatial mapping of industrial opportunity hotspots
- AI-based skill synthesis for identifying future competency requirements
- Skill-bridge analysis using similarity matching algorithms
- Policy simulation sandbox to evaluate alternative strategic scenarios

The system is implemented using **Python**, **Streamlit**, and **Plotly**, ensuring scalability, transparency, and real-time interactivity. **This modular architecture enables flexible analysis, supports system scalability, and allows stakeholders to interact with workforce insights in real time for effective planning and policy evaluation.**

6. System Implementation

The implementation of the proposed Predictive Skill Gap Intelligence Hub follows a modular and scalable design to ensure flexibility, interpretability, and real-time responsiveness. Each module is implemented independently while maintaining seamless interaction with other components of the system. The

implementation leverages Python-based analytical libraries and interactive visualization frameworks to support data-driven workforce intelligence.

Fig. 2 illustrates the overall workflow of the proposed Predictive Skill Gap Intelligence Hub, highlighting the interaction between data processing, analytics, and decision-support modules.

Fig. 2. Workflow of the Predictive Skill Gap Intelligence Hub

6.1 Data Processing Module

The data processing module serves as the foundation of the system by managing and structuring workforce-related inputs. State-wise economic growth indicators, workforce statistics, and domain-specific parameters are collected and organized into a multidimensional dataset. This structured representation enables efficient processing and comparative analysis across regions.

To enhance regional differentiation, a dynamic momentum score is calculated for each state based on domain relevance, historical growth trends, and industry alignment. This scoring mechanism allows the system to identify regions with higher potential for skill demand concentration. Data normalization and preprocessing techniques are applied to ensure consistency and accuracy across multiple data sources.

6.2 Predictive Analytics Engine

The predictive analytics engine is responsible for forecasting future labor demand and supply trends. Growth-adjusted compound models are employed to project workforce requirements over a defined time horizon. The engine dynamically incorporates influencing factors such as automation intensity, investment levels, market volatility, and policy intervention strength.

By adjusting growth rates based on these parameters, the system simulates multiple workforce scenarios under varying economic conditions. This approach enables stakeholders to analyze potential outcomes and identify risk zones associated with talent shortages. The predictive engine supports scenario-based forecasting, allowing users to evaluate best-case, worst-case, and baseline workforce projections.

6.3 Skill-Bridge Assessment Module

The skill-bridge assessment module focuses on evaluating individual skill readiness against future

competency requirements. User-provided skill profiles are compared with synthesized industry-relevant competencies generated by the analytics engine. Similarity matching techniques are used to quantify alignment between existing skills and projected requirements.

The results of the assessment are visualized using radar charts and skill gap graphs, which clearly highlight areas of strength and deficiency. This module supports personalized upskilling recommendations by identifying critical skill gaps that require targeted intervention. The assessment framework is designed to be adaptable across multiple domains and industry sectors.

6.4 Visualization and Decision Support

The visualization and decision-support module translates analytical results into actionable insights through interactive dashboards. Trend graphs illustrate demand-supply convergence, while geospatial maps highlight regional opportunity hotspots. Policy comparison scenarios enable stakeholders to evaluate the impact of different intervention strategies.

Interactive controls allow users to adjust parameters such as automation levels, investment intensity, and policy strength in real time. This module enhances transparency and interpretability, enabling organizations and policymakers to make informed workforce planning decisions. The integration of visual analytics ensures that complex data patterns are presented in an intuitive and accessible manner.

7. Results and Discussion

The experimental evaluation of the proposed Predictive Skill Gap Intelligence Hub demonstrates its effectiveness in identifying future workforce imbalances across regions and domains. Demand-supply forecasting results indicate a significant divergence under high automation scenarios, particularly in the absence of targeted policy intervention. As illustrated in Fig. 3, projected labor demand consistently exceeds supply, highlighting the risk of sustained talent shortages if proactive measures are not implemented.

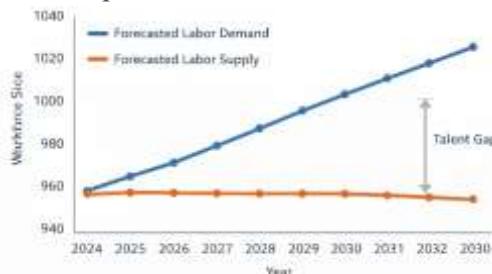


Fig. 3. Forecasted Labor Demand and Supply Trends

Geospatial analysis further reveals that technology-driven regions exhibit higher demand concentration for advanced digital and analytical skills. These regions emerge as optimal hubs for focused skill development and strategic investment. The visualization of regional momentum enables stakeholders to prioritize interventions based on location-specific workforce dynamics.

The skill-bridge assessment results demonstrate measurable mismatches between current individual skill profiles and future industry competency requirements. Fig. 4 highlights gaps across multiple skill dimensions, emphasizing the growing need for continuous reskilling and upskilling initiatives. The radar and bar chart visualizations provide clear insights into areas requiring immediate attention.

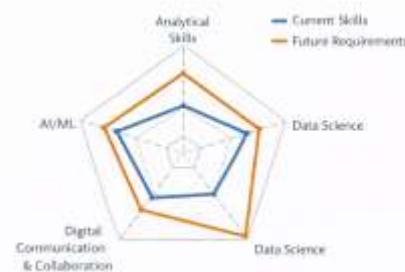


Fig. 4. Skill Gap Assessment Based on Future Competency Requirements

Policy simulation outcomes confirm that increased investment and governance interventions significantly mitigate workforce risks. As shown in Fig. 5, enhanced policy strength improves workforce supply projections and reduces the magnitude of the talent gap. These findings validate the importance of data-driven policy planning in addressing workforce sustainability challenges.

Overall, the results confirm that the proposed system provides actionable insights for workforce planning, enabling organizations and policymakers to make informed decisions under varying economic and technological scenarios.

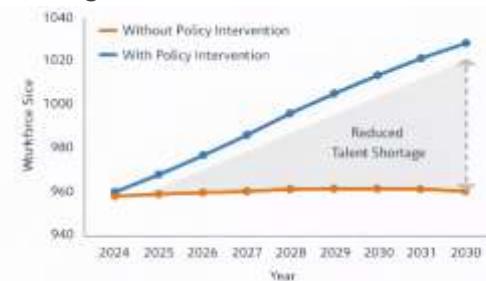


Fig. 5. Impact of Policy Intervention on Workforce Supply

8. Conclusion

This research successfully demonstrates the effectiveness of an AI-driven **Predictive Skill Gap Intelligence Hub** for workforce planning and strategic governance. By integrating predictive analytics, geospatial intelligence, and skill-level assessment, the proposed system provides a comprehensive solution to emerging labor market challenges. The experimental results validate the system's ability to identify talent shortages, regional opportunity hubs, and skill mismatches under varying economic and policy conditions.

The platform supports informed decision-making for organizations, educational institutions, and policymakers by enabling proactive responses to automation-driven disruption. Overall, the proposed approach contributes toward sustainable workforce development by aligning skill planning strategies with dynamic industry and economic requirements.

9. Future Enhancements

Future enhancements of the proposed system aim to further improve prediction accuracy, scalability, and practical applicability across diverse workforce ecosystems. One important extension involves the integration of real-time labor market application programming interfaces (APIs), which would enable continuous data ingestion from job portals, industry reports, and government sources. Such integration can enhance the system's responsiveness to rapidly changing market conditions and emerging skill demands.

Additional improvements may focus on the adoption of advanced machine learning and deep learning models capable of capturing nonlinear workforce dynamics and complex interdependencies among economic, technological, and policy factors. Incorporating industry-specific micro-skill mapping can provide finer-grained competency analysis, allowing organizations to identify precise skill deficiencies at both individual and organizational levels.

Future versions of the system may also include multilingual support to improve accessibility across regions with diverse linguistic backgrounds, particularly in large and heterogeneous economies. Furthermore, integration with learning management systems (LMS) can enable automated and personalized reskilling recommendations by directly linking predicted skill gaps with relevant training modules. These enhancements would strengthen the system's role as a comprehensive decision-support platform for sustainable workforce development.

References

1. World Economic Forum, *The Future of Jobs Report*, 2023.
2. OECD, *Skills Outlook: Thriving in a Digital World*, 2022.
3. J. Manyika et al., "Jobs lost, jobs gained," McKinsey Global Institute, 2017.
4. S. Russell and P. Norvig, *Artificial Intelligence: A Modern Approach*, Pearson.
5. M. Porter, *Competitive Strategy*, Free Press.
6. A. Brynjolfsson and T. Mitchell, "What can machine learning do?" *Science*, 2017.
7. K. Schwab, *The Fourth Industrial Revolution*, WEF.
8. NASSCOM, *FutureSkills Prime Report*, 2024.
9. ILO, *Global Employment Trends*, 2023.
10. P. Drucker, *Management Challenges for the 21st Century*.
11. T. Davenport, *Analytics at Work*, Harvard Business Press.
12. McKinsey & Company, *Skill Shift Automation Study*, 2022.
13. IBM Institute for Business Value, *Workforce 2030*.
14. MIT Sloan, *AI and the Future of Work*.
15. IEEE, *Ethics in Artificial Intelligence*, 2021.
16. UNDP, *Human Development Report*, 2023.
17. Google Research, *People Analytics Insights*.
18. Accenture, *Digital Skills Gap Report*, 2024.
19. Harvard Business Review, *Reskilling the Workforce*.
20. World Bank, *Jobs and Development*, 2023.