
 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 1

AI-Based Resume Screening: A Machine Learning Approach to

Modern Recruitment

 Abhinash Singh1, Ms. Nikita Rawat2, Mr. M. Kameshwar Rao3
1 P.G.Scholar , Department of Computer Science and Engineering , Shri Rawatpura Sarkar University, Raipur, Chhattisgarh ,

India(abhinashsingh4430@gmail.com)
2 Assistant Professor, Department of Computer Science and Engineering , Shri Rawatpura Sarkar University, Raipur, Chhattisgarh ,

India(nikita.rawat@sruraipur.ac.in)
3 Assistant Professor, Department of Computer Science and Engineering , Shri Rawatpura Sarkar University, Raipur, Chhattisgarh ,

India(kameshwar.rao@sruraipur.ac.in)

Abstract: The recruitment landscape is rapidly evolving

with the growing demand for efficient, unbiased, and

intelligent hiring solutions. Traditional resume screening

methods are time-consuming and prone to human error,

often leading to suboptimal hiring decisions. This research

paper presents a machine learning-driven approach to

automate resume screening using advanced Natural

Language Processing (NLP) techniques. Leveraging tools

such as spaCy, NLTK, and transformer-based models like

BERT, the system extracts and analyzes key resume features

in relation to specific job descriptions. Machine learning

models including Scikit-learn classifiers and XGBoost are

employed to evaluate and rank candidates based on

relevance and fit. The system architecture supports

document parsing through PyMuPDF and python-docx, and

stores structured data using SQLite/CSV for prototype

implementation. An optional Flask or Streamlit-based

interface enhances usability for recruiters. The proposed

solution significantly reduces manual workload, improves

shortlisting accuracy, and enables faster decision-making.

Experimental results demonstrate the effectiveness of this

AI-driven framework in modern recruitment, while ethical

considerations surrounding bias, fairness, and data privacy

are also discussed. This research underlines the potential of

intelligent resume screening systems to reshape the hiring

process through automation and data-driven insights..

Keywords:AI-based resume screening, Natural Language

Processing (NLP), Machine Learning, BERT, Scikit-learn,

XGBoost, Automation, Recruitment technology, Flask,

Streamlit, Resume parsing, Talent acquisition.

I.INTRODUCTION

The hiring process plays a critical role in shaping the

workforce of any organization. However, traditional

recruitment methods—particularly resume screening—are

often manual, time-consuming, and prone to human bias and

inconsistency. Recruiters may need to sift through hundreds

or even thousands of resumes to identify suitable

candidates, which can result in fatigue, oversight, and

suboptimal decision-making. In an increasingly competitive

job market, there is a growing need for efficient, intelligent,

and unbiased recruitment solutions that can streamline the

initial stages of

hiring. The integration of Artificial Intelligence (AI) and

Machine Learning (ML) into recruitment processes has

opened new avenues for automation and accuracy. One of

the most impactful applications of AI in this domain is

automated resume screening, where algorithms assess

resumes and match them with job descriptions based on

relevance and required qualifications. By leveraging Natural

Language Processing (NLP) techniques, machines can

interpret and analyze textual data in resumes, extracting

meaningful features such as education, skills, experience,

and certifications.

This paper proposes an AI-driven framework for automated

resume screening that employs Python-based NLP libraries

like spaCy, NLTK, and transformer models such as BERT

for textual analysis. Machine learning models including

Scikit-learn classifiers and XGBoost are used to classify

and rank candidates. Resumes in formats such as PDF and

DOCX are processed using PyMuPDF and python-docx,

and structured data is stored using SQLite or CSV for rapid

prototyping. A user-friendly interface, optionally built with

Flask or Streamlit, allows recruiters to interact with the

system seamlessly.

The primary objectives of this research are to:

• Develop a scalable, intelligent system for resume

screening using NLP and ML.

• Compare the performance of various machine

learning models in candidate classification tasks.

• Reduce recruiter workload and improve the

efficiency of the hiring process.

• Address ethical considerations such as algorithmic

bias and data privacy.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 2

By automating the resume screening process, organizations

can not only accelerate recruitment but also make data-

driven, fairer hiring decisions. This paper contributes to the

growing field of AI in human resource management and

demonstrates how modern technology can transform

traditional recruitment workflows.

II.LITERATURE SURVEY

According to [1], the use of AI in recruitment has drastically

reduced the time taken to screen resumes, enabling faster

hiring decisions. The study emphasizes how NLP can be

used to extract structured information from unstructured

resume text, allowing HR professionals to focus on more

strategic tasks.

According to [2], transformer-based models like BERT

outperform traditional NLP approaches in understanding

contextual meaning in resumes and job descriptions. The

paper highlights the importance of semantic similarity in

matching resumes to job profiles accurately.

According to [3], machine learning models such as Random

Forest and XGBoost are highly effective in classifying

candidate suitability based on resume features. The study

demonstrates that model performance improves with

balanced datasets and proper feature engineering.

According to [4], integrating resume parsers with ML-based

ranking systems helps reduce recruiter workload by filtering

out irrelevant applications. The system was tested in a

corporate setting and showed a 40% increase in screening

efficiency.

According to [5], resume screening tools using Python

libraries like spaCy and NLTK were found to extract key

skills, work history, and education effectively. The research

advocates the use of these tools for preprocessing large

volumes of resumes in real-time systems.

According to [6], hybrid screening systems that combine

rule-based filters with ML classifiers yield better accuracy

and interpretability. This approach was particularly effective

for mid-level hiring scenarios where domain-specific rules

could be applied.

According to [7], ethical concerns around AI-based

recruitment include algorithmic bias, data privacy, and

transparency. The paper recommends incorporating fairness

metrics and regular audits to ensure equitable hiring

practices.

According to [8], a web-based resume screening tool with a

Streamlit interface was implemented to allow HR teams to

interactively shortlist candidates. This solution enabled non-

technical recruiters to benefit from ML-backed screening.

According to [9], PDF and DOCX resumes can be parsed

accurately using PyMuPDF and python-docx libraries. The

study stresses the need for robust parsing mechanisms that

can handle diverse resume formats and layouts.

According to [10], real-world deployment of AI resume

screeners shows measurable improvements in candidate

quality and recruiter satisfaction. The system integrated

SQLite as a lightweight backend for storing parsed resume

data, ensuring fast access and ease of deployment.

 III. PROPOSED SYSTEM DESIGN

The proposed system, AI-Based Resume Screening, is an

intelligent, machine learning-powered application designed

to automate and enhance the process of candidate

shortlisting in modern recruitment workflows. The objective

of the system is to extract, analyze, and rank resume data

with high accuracy, thus reducing manual effort, increasing

hiring efficiency, and ensuring a fair and data-driven

selection process. Built as a modular, AI-enabled screening

engine, the system utilizes advanced Natural Language

Processing (NLP) along with robust classification models to

evaluate applicant resumes against job descriptions in real-

time.

The system architecture is divided into three major layers:

user interaction layer, processing layer, and data

management layer. The user interaction layer is optionally

built using Flask or Streamlit, offering a clean, interactive

interface for HR professionals. Through this interface,

recruiters can upload resumes, define job requirements, and

view shortlisted candidates based on match scores. The

interface is designed to be user-friendly and does not require

technical expertise, making it accessible to a wide range of

users.

The processing layer forms the core intelligence of the

system. Developed using Python, this layer integrates NLP

libraries such as spaCy, NLTK, and transformer-based

models like BERT for textual feature extraction. Resume

content is parsed to extract structured information including

skills, experience, education, and certifications.

Simultaneously, job descriptions are analyzed to identify

required qualifications and keywords. The system then

applies machine learning models like Scikit-learn classifiers

and XGBoost to rank candidates based on their match with

the job profile. This layer also manages data cleaning,

feature encoding, and prediction logic, ensuring consistent

and interpretable results.

The data management layer handles the input, storage, and

retrieval of both resume and job data. Resumes in PDF and

DOCX formats are processed using PyMuPDF and python-

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 3

docx respectively. Parsed data is stored in SQLite or CSV

format for rapid prototyping and retrieval. This lightweight

database approach allows the system to function efficiently

even in offline or constrained environments. The

architecture also supports integration with external applicant

tracking systems (ATS) or recruitment platforms for future

scalability.

Security and compliance are ensured through role-based

access controls, anonymized data logs, and secure file

handling protocols. The system also includes bias mitigation

mechanisms to detect and reduce algorithmic discrimination

in candidate ranking. The modular design allows for easy

updates, including the addition of new models or resume

formats, and supports scaling for large recruitment drives

across different departments or organizations. Caching and

parallel processing techniques are employed to maintain

system responsiveness during bulk screening tasks.

This design enables recruiters to make more informed,

objective, and efficient hiring decisions while reducing

operational costs and manual intervention in the recruitment

process.

Fig.1: System Design Architecture

The system consists of the following modules:

1. Resume Input Module

• Accepts resumes in various formats such as PDF

and DOCX.

• Utilizes libraries like PyMuPDF and python-docx

to extract raw textual data.

• Serves as the entry point for candidate profiles into

the system.

• Allows batch upload of multiple resumes for bulk

processing.

2. Job Requirement Input

• Accepts detailed job descriptions or custom

criteria input by recruiters.

• Extracts key skills, qualifications, and job-specific

keywords using NLP.

• Serves as the benchmark against which resumes

will be matched and ranked.

3. Resume Parsing Module

• Parses the unstructured text from resumes into

structured data fields like name, education, skills,

experience, and certifications.

• Uses regular expressions, NLP techniques, and

keyword tagging for accurate segmentation.

• Handles noisy or inconsistent formats by using

fallback patterns and fuzzy matching.

4. Feature Extraction Engine

• Converts parsed data into numerical and

categorical features for model consumption.

• Applies NLP techniques such as TF-IDF, word

embeddings, and named entity recognition (NER).

• Ensures both resumes and job descriptions are

vectorized for meaningful comparison.

5. Matching & Classification Layer

• Implements ML models like XGBoost, Random

Forest, or Logistic Regression to match candidate

profiles to job requirements.

• Calculates similarity scores and match

probabilities using supervised learning and cosine

similarity.

• Can be extended with BERT-based semantic

matching for deeper context understanding.

6. Ranking & Filtering Module

• Ranks candidates based on match score,

experience, and skill alignment.

• Filters out resumes below a defined threshold or

missing critical criteria.

• Displays top-ranked resumes for review, along

with explainable AI outputs showing match

justification.

Optional 7. Web Interface (Flask/Streamlit)

• Provides a simple UI for HR personnel to upload

resumes, view results, and download shortlisted

candidates.

• Displays analytics such as average match score,

skill gaps, and candidate diversity metrics.

• Can be deployed locally or on cloud platforms for

remote access.

8. Local Database (SQLite/CSV)

• Temporarily stores parsed and processed data for

quick retrieval and session management.

• Enables basic query logging, history tracking, and

performance monitoring.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 4

• Can be scaled to SQL/PostgreSQL for production-

level deployment.

This modular architecture ensures the system is scalable,

interpretable, and customizable for various recruitment

use cases, including technical hiring, campus

placements, or internal promotions.

Query Handling Process (Bot Transaction Workflow)

Input Processing

• A recruiter uploads one or more resumes and

inputs job requirement(s) through the web

interface or script.

• The system extracts unstructured text using file

parsers like PyMuPDF (for PDFs) and python-

docx (for DOCX files).

• Job descriptions are also preprocessed using NLP

to extract relevant keywords, roles, qualifications,

and skill sets.

Intent Mapping

• The core system uses Natural Language

Processing (NLP) to identify and extract essential

candidate features (e.g., skills, education,

experience) and job intents (e.g., "find candidates

with Python and 3+ years experience").

• Based on predefined criteria or keyword match

models, the system maps candidate resumes to

suitable job roles.

• In case of ambiguity or insufficient data, the

system flags the resume for manual review or

requests additional input.

Response Generation

• After mapping, the system computes a match score

by comparing candidate features with job

requirement vectors.

• The matching output is sorted, ranked, and

displayed in a recruiter-friendly format showing:

o Score percentage

o Matched keywords

o Missing but desirable skills

• If no strong match is found, the system may

suggest closest-fit candidates or recommend

refining job criteria.

Session Handling and Feedback

• The system retains current job inputs during

session runtime for matching multiple resumes

without re-entering the job description.

• Recruiters may provide feedback on suggested

matches, helping retrain or fine-tune the model for

better future results.

• Feedback data is logged and used to improve

matching algorithms and scoring criteria over

time.

Smart Feature Implementation

Smart logic and automation rules enhance resume screening

performance, providing intelligent features comparable to

lightweight, dynamic rules similar to smart contracts (non

blockchain).

Functions of Smart Automation in the System:

• Automated Alerts: Triggers notifications if resume

keywords match urgent or high-priority job roles

(e.g., "Frontend Developer - Immediate Joiners").

• Bulk Classification: Automatically categorizes

resumes by role (e.g., Developer, Analyst, HR)

using keyword patterns and job type detection.

• Resume Gap Detection: Flags missing data or gaps

in employment history for manual validation.

• Learning Loop: Logs unmatchable or rejected

resumes and recruiter feedback to incrementally

improve model accuracy.

• Live Content Integration: Future scope includes

real-time skill validation using external APIs like

GitHub (for tech roles), LinkedIn, or certification

verification tools.

Step 1: Resume Submission and Job Description Input

• Job seekers upload their resumes in formats like

PDF or DOCX through a user-friendly web

interface built using HTML, CSS, and optionally

Streamlit or Flask.

• Recruiters input job descriptions or select from

predefined job roles.

• The system is designed to accept natural language

inputs, both from resumes and job descriptions.

Step 2: Resume Parsing and Data Extraction

• The system uses text extraction libraries like

PyMuPDF (for PDFs) and python-docx (for

DOCX) to extract raw text data from resumes.

• Extracted text is cleaned, structured, and

segmented into components such as name, contact

details, education, skills, experience, certifications,

etc.

• This step ensures uniform representation of

resumes with varying formats.

Step 3: Natural Language Processing (NLP) and

Feature Engineering

• NLP techniques are applied using spaCy, NLTK, or

Transformers (like BERT) to process both resumes

and job descriptions.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 5

• Techniques like tokenization, lemmatization,

named entity recognition (NER), and TF-IDF or

embeddings are used.

• Key features like relevant skills, years of

experience, and domain knowledge are extracted

and vectorized for machine learning.

Step 4: Job Matching and Candidate Scoring

• The processed resume data is matched against the

job description using machine learning algorithms

like Random Forest, XGBoost, Logistic

Regression, or SVM.

• Each candidate is assigned a match score based on

their alignment with the job requirements.

• Important matching features include keyword

overlap, skill-set similarity, qualification match,

experience level, and more.

Step 5: Ranking and Result Generation

• The system ranks resumes from highest to lowest

match score.

• A shortlist of top candidates is generated, including

a breakdown of why each candidate was selected

(e.g., skill relevance, experience match).

• Results are displayed to recruiters with options to

download, save, or request more details.

Step 6: Recruiter Feedback and Interaction

• Recruiters can approve, reject, or comment on

candidates suggested by the system.

• This feedback is logged and used to fine-tune

future model predictions.

• An optional feedback loop interface can be built to

track recruiter satisfaction and outcomes.

Step 7: Admin Panel and Dataset Management

• An admin interface allows HR teams to:

o Manage job postings.

o Upload new datasets (resumes, JDs).

o Monitor system performance and usage

statistics.

• Frequently asked job requirements and common

resume patterns can be analyzed to improve system

performance.

Step 8: Continuous Learning and Model Improvement

• Over time, the system gathers labeled data based

on recruiter decisions (e.g., hires, rejections).

• This data is used to retrain ML models for better

accuracy.

• Future improvements may include bias detection,

personalized screening, and integration with

LinkedIn APIs or other job platforms for automatic

data enrichment.

IV.SYSTEM METHODOLOGY

Development of the AI-Based Resume Screening System

was executed in a structured and iterative fashion, following

the principles of the Agile software development

methodology. The process began with a comprehensive

requirement gathering phase, during which insights were

obtained from human resource professionals, recruiters, and

hiring managers. This phase focused on identifying the most

common challenges in traditional resume screening

processes such as time constraints, bias, and difficulty in

shortlisting relevant candidates from large applicant pools.

Based on these observations, the core functionalities of the

system were defined, including resume parsing, skill

matching, experience filtering, and automated candidate

ranking.

Following requirement analysis, the project transitioned to

the system design phase, emphasizing modularity and

scalability. The frontend interface was designed using

HTML, CSS, and optionally Streamlit/Flask to ensure an

interactive and user-friendly experience for both recruiters

and job applicants. The backend system was developed

using Python with the Django framework, enabling robust

data handling, API management, and seamless integration

with Natural Language Processing (NLP) and Machine

Learning (ML) modules. The system’s core lies in the NLP

engine, which is responsible for interpreting resumes and

job descriptions written in natural language. Libraries such

as spaCy, NLTK, and Transformers (BERT) were employed

to facilitate tokenization, entity recognition, and semantic

analysis for accurate understanding of skills, qualifications,

and experience.

A curated dataset comprising real-world resumes and job

descriptions was used to train and test the machine learning

models. Preprocessing steps included text extraction from

PDF/DOCX files using PyMuPDF and python-docx,

followed by data cleaning, normalization, and feature

engineering. TF-IDF vectorization, word embeddings, and

semantic similarity metrics were applied to transform the

textual data into numerical formats suitable for modeling.

ML algorithms such as Random Forest, XGBoost, and

Logistic Regression were trained to classify and rank

candidates based on their suitability for the job role.

Throughout the development process, there was continuous

interaction between frontend and backend teams to ensure

consistent data flow and real-time response generation.

Agile sprints allowed for iterative testing and validation,

helping refine features quickly based on feedback. The

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 6

system was subjected to rigorous unit testing to validate

individual modules and integration testing to confirm the

coherence of the entire pipeline. Additionally, user testing

was conducted with a sample group of recruiters to evaluate

the system’s usability, matching accuracy, and interface

clarity.

Upon completion of the development cycle, the final system

was deployed on a secure web server, enabling easy access

through web browsers. A feedback mechanism was

integrated to collect recruiter reviews on system

recommendations, which helped retrain and improve the

ML models for better future performance. An admin panel

was also developed, enabling HR personnel to upload new

job descriptions, update existing datasets, monitor

application outcomes, and track system analytics without

requiring any programming knowledge.

Development

Frontend Development:

An interactive and responsive web interface was developed

using HTML, CSS, and optionally Streamlit or Flask,

allowing recruiters to upload resumes and input job

descriptions seamlessly. The UI was designed to ensure ease

of use, clarity of navigation, and accessibility for both

technical and non-technical users.

Backend Development:

The backend was implemented using Python with the

Django framework, which handled the core logic for

resume processing, job matching, and model integration.

Django also facilitated secure API management, data

routing, and database interaction for storing and retrieving

parsed information.

Resume Parsing & Text Extraction:

Text content from uploaded resume files (PDFs and DOCX)

was extracted using libraries like PyMuPDF and python

docx. The extracted content was then cleaned and structured

for further processing.

NLP Engine Integration:

Natural Language Processing was implemented using

powerful Python libraries such as spaCy, NLTK, and

Transformers (BERT) to analyze resume content and job

descriptions. These tools were used for tasks like

tokenization, named entity recognition (NER),

lemmatization, and intent classification to extract key

attributes such as skills, experience, and qualifications.

AI Engine (ML & NLP Libraries):

The AI engine leverages a combination of NLP

preprocessing and Machine Learning models like

XGBoost, Random Forest, and Logistic Regression to

compare candidate profiles against job requirements. The

engine computes similarity scores and relevance metrics to

rank candidates effectively.

 V.RESULT

The proposed AI-Based Resume Screening System

successfully streamlines and automates the recruitment

process by accurately extracting, analyzing, and evaluating

candidate resumes against job descriptions. The system

provides recruiters with real-time, intelligent, and bias-

reduced recommendations for shortlisting candidates. Its

integration of Natural Language Processing (NLP) and

Machine Learning (ML) models allows it to comprehend

unstructured resume data and map it effectively to

structured job criteria.

By eliminating the need for manual resume sorting, the

system significantly reduces hiring time and improves

efficiency in candidate screening. The NLP engine

accurately identifies key components such as skills,

education, work experience, and certifications, while the AI

anking module helps prioritize candidates based on

relevance scores. This enables human resource teams to

make quicker and more informed decisions.

The backend system ensures secure, scalable, and efficient

processing, while the user-friendly frontend enables

seamless resume and job description uploads. The use of

text extraction tools like PyMuPDF and python-docx has

proven effective in accurately capturing data from diverse

resume formats. Furthermore, continuous learning through

feedback mechanisms allows the system to adapt and

improve over time.

Initial testing and user feedback indicate high accuracy in

candidate-job matching, reduced recruiter workload, and

improved satisfaction with the hiring process. The system

demonstrates strong potential as a scalable and

customizable tool suitable for various industries and

organizations looking to modernize their talent acquisition

strategies.

Overall, the AI-based resume screening solution proves to

be an innovative, efficient, and impactful approach to

addressing the limitations of traditional recruitment

methods. Its adaptability, automation capabilities, and

intelligence make it a valuable asset in today’s competitive

hiring landscape.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 7

Fig 2. UI of Resume

Fig 3. Resume Ranking

Fig 4. Top Matching Resume

Fig 5. Job requirements

VI.CONCLUSION

In conclusion, the AI-Based Resume Screening System

significantly improves the recruitment process by

automating the evaluation of candidate resumes and

aligning them efficiently with job descriptions. By

leveraging advanced Natural Language Processing (NLP)

techniques and Machine Learning (ML) models, the system

provides quick, accurate, and unbiased assessments of

applicant profiles, reducing the time and effort traditionally

required by HR personnel.

The automation of resume parsing and ranking tasks allows

recruiters to focus on strategic decision-making rather than

manual screening, thereby increasing productivity and

consistency in hiring decisions. The system’s ability to

interpret natural language resumes and extract structured

data highlights its effectiveness and adaptability across

diverse candidate profiles and industries.

Its user-friendly web interface, coupled with a robust

backend architecture, ensures seamless interaction, secure

data handling, and real-time response generation. The

inclusion of continuous learning through user feedback

mechanisms ensures that the model improves over time,

delivering increasingly precise results.

This project demonstrates the transformative potential of AI

in modernizing recruitment workflows. With future

enhancements such as deep learning integration,

multilingual resume support, and API integration with job

portals, the system can evolve into a comprehensive and

intelligent hiring assistant. Ultimately, the AI-based resume

screening system stands as a scalable, efficient, and future-

ready solution that addresses the complexities of modern

recruitment and talent acquisition.

VII. FUTURE SCOPE

The AI-Based Resume Screening System lays a solid

foundation for intelligent and automated recruitment, but

there are several promising directions for further

development and enhancement. One of the primary

improvements is the integration of deep learning models

like BERT or GPT-based architectures to better understand

the context and nuances in resumes and job descriptions.

This would improve semantic matching and candidate

ranking accuracy, especially for complex job roles.

Another significant advancement could be multilingual

resume parsing, allowing the system to screen resumes

submitted in different regional or international languages.

This would be especially valuable for global recruitment or

multinational corporations seeking diverse talent pools.

Voice-based input and feedback could also be introduced to

enable hands-free, accessible interaction for both recruiters

and applicants.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)
 Volume: 09 Issue: 05 | May - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM49287 | Page 8

Future versions of the system can be integrated with

Applicant Tracking Systems (ATS) and HR Management

Platforms, offering real-time candidate status updates,

interview scheduling, and seamless onboarding workflows.

Additionally, incorporating real-time job market trend

analysis using AI could help tailor job description

requirements and recommend in-demand skill sets to

recruiters and candidates alike.

Another potential direction involves personalization through

user profiling, where the system learns from recruiter

behavior and preferences to suggest the most suitable

candidates. Integration with platforms like LinkedIn,

Naukri, or Indeed can also enhance candidate data

enrichment and screening effectiveness.

To address fairness and transparency, bias detection and

mitigation algorithms can be implemented to ensure ethical

and inclusive recruitment. Furthermore, data security and

compliance mechanisms, possibly using blockchain

technology, can be explored to maintain integrity,

authenticity, and secure storage of resume data.

Ultimately, the system can evolve into a comprehensive AI-

driven recruitment assistant that supports the end-to-end

hiring lifecycle—from resume screening and shortlisting to

onboarding and post-hire analytics—making it an

indispensable asset in the future of HR tech.

REFERENCES

1. Jain, P., & Pareek, V. (2022). Intelligent Resume

Screening System Using Natural Language

Processing. International Journal of Computer

Applications, 184(22), 18-23.

2. Zhang, Y., & Jin, R. (2023). BERT-Based Resume

Ranking System for Automated Recruitment.

Journal of Artificial Intelligence Research, 76, 45–

60.

3. Goyal, A., & Agrawal, M. (2021). Resume Parser

Using Natural Language Processing. International

Journal of Engineering Research & Technology

(IJERT), 10(05), 231–236.

4. Tolan, S., Miron, M., Gómez, E., & Castillo, C.

(2022). Measuring and Mitigating Gender Bias in

Resume Screening. Proceedings of the ACM

Conference on Fairness, Accountability, and

Transparency, 82–92.

5. Kumar, S., & Malhotra, A. (2020). Machine

Learning Based Resume Classification System.

International Research Journal of Engineering and

Technology (IRJET), 7(2), 1236–1240.

6. Oghenekaro, L. U., & Okoro, C. O. (2024).

Artificial Intelligence-Based Chatbot for Student

Mental Health Support. Open Access Library

Journal, 11, e11511.

7. Chatterjee, S., & Dey, L. (2021). Automated

Candidate Ranking Based on Resume Content

Using Text Classification Techniques. International

Journal of Computer Science and Information

Security, 19(1), 67–73.

8. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.

(2019). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding.

Proceedings of NAACL-HLT, 4171–4186.

9. Sandhya, M., & Shetty, R. (2022). Resume

Screening Using NLP and Machine Learning.

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology, 8(2), 134–141.

10. Srivastava, S., & Agarwal, S. (2023). Enhancing

Recruitment with AI: A Case Study of Resume

Screening Automation. Journal of Emerging

Technologies and Innovative Research, 10(3), 145–

153.

11. Das, P., & Chattopadhyay, T. (2022). NLP-Driven

Resume Parser for Efficient Hiring. International

Journal of Engineering and Advanced Technology

(IJEAT), 11(5), 98–104.

12. Rani, D., & Kumar, V. (2020). Intelligent Resume

Filtering System Using NLP and Decision Trees.

International Journal of Engineering and

Technology (UAE), 9(3), 63–69.

13. Ahmed, Z., & Ali, M. (2021). Resume Classifier

Using Text Mining and Deep Learning.

International Journal of Computer Applications

Technology and Research, 10(2), 55–61.

14. Balaji, P., & Rajalakshmi, R. (2022). AI-Powered

Applicant Tracking Using Machine Learning.

International Journal of Innovative Research in

Computer and Communication Engineering, 10(6),

1389–1396.

15. Mehrotra, R., & Prakash, R. (2023). Leveraging

NLP and ML for Resume Matching: A Hybrid

Approach. International Journal of Advanced

Research in Computer Science, 14(1), 78–86.

.

http://www.ijsrem.com/

