

AI Based Traffic Control

Srushti, Kautuk, Ankit, Mrunmay, Parul Jha

St. John College of Engineering & Management

ABSTRACT

Traffic congestion is a major challenge in modern urban areas, leading to increased travel time, fuel consumption, pollution, and road safety concerns. Conventional traffic signal systems operate on fixed-time schedules and are unable to adapt to real-time traffic conditions. To overcome these limitations, this project proposes an AI-Based Traffic Controller using Arduino Mega 2560 that dynamically controls traffic signals based on traffic density, emergency vehicle priority, and safety monitoring.

The proposed system integrates ultrasonic sensors for vehicle detection, RFID technology for emergency vehicle identification, servo motors for signal control, and a camera-based AI module for helmet detection. The Arduino Mega 2560 functions as the central controller, processing sensor inputs and executing real-time decision logic, while AI-based image processing is carried out on an external system. The system improves traffic flow efficiency, reduces waiting time, enhances road safety, and provides a cost-effective and scalable solution suitable for smart city traffic management applications.

INTRODUCTION

Urban traffic congestion has become one of the most critical challenges faced by modern cities due to rapid urbanization, population growth, and the continuous increase in the number of vehicles on the road. Existing road infrastructure is often unable to cope with this growing demand, resulting in frequent traffic jams, long waiting times at intersections, increased fuel consumption, and higher levels of air pollution. Traditional traffic signal systems operate on fixed-time control mechanisms, where signal durations are predefined and do not change according to real-time traffic conditions. As a result, these systems are inefficient during peak hours, emergencies, and unexpected traffic situations.

In addition to congestion, road safety has also emerged as a major concern in urban traffic management.

Delays in emergency vehicle movement, non-compliance with traffic rules, and unsafe riding practices such as riding without helmets significantly increase the risk of accidents and fatalities. Conventional traffic control systems lack the intelligence required to prioritize emergency vehicles or monitor safety violations effectively. This highlights the urgent need for an intelligent and adaptive traffic management solution that can respond dynamically to real-time traffic conditions while ensuring safety and efficiency.

To address these challenges, this project presents an AI-Based Traffic Controller using Arduino Mega 2560. The proposed system integrates sensors, RFID technology, and AI-assisted image processing to enable real-time traffic density monitoring, emergency vehicle prioritization, and helmet detection. The Arduino Mega 2560 serves as the central control unit, handling real-time data processing and traffic signal actuation. By combining artificial intelligence with embedded systems and IoT concepts, the proposed solution aims to improve traffic flow, reduce congestion, enhance road safety, and support the development of smart and sustainable urban traffic management systems.

PROBLEM STATEMENT

Rapid growth in urban vehicle population has made conventional traffic management systems inefficient and outdated. Existing traffic signals operate on fixed-time intervals and do not adapt to real-time traffic density, leading to unnecessary delays, increased fuel consumption, and severe congestion, especially during peak hours. Moreover, traditional systems fail to provide priority clearance for emergency vehicles such as ambulances and fire trucks, resulting in delayed response times that can put lives at risk.

In addition to congestion and emergency handling issues, current traffic control mechanisms lack the ability to monitor and enforce road safety regulations

effectively. Unsafe practices such as riding without helmets often go undetected, increasing the chances of serious injuries and fatalities. Furthermore, many advanced AI-based traffic management solutions are expensive and require complex infrastructure, making them unsuitable for widespread implementation in developing urban environments.

Therefore, the problem is to design and develop a cost-effective, intelligent, and adaptive traffic control system using Arduino Mega 2560 that can dynamically manage traffic signals based on real-time traffic density, provide priority to emergency vehicles, and support AI-assisted safety monitoring such as helmet detection. The proposed solution should be scalable, reliable, and suitable for smart city applications while minimizing infrastructure and implementation costs.

LITERATURE SURVEY

Several researchers and developers have proposed different approaches to improve traffic management using automation, sensors, IoT, and artificial intelligence. Early traffic control systems were based on fixed-time signal mechanisms, which were simple to implement but highly inefficient under varying traffic conditions. These systems lacked adaptability and were unable to respond to real-time traffic congestion or emergency situations.

With the advancement of sensor technology and microcontrollers, IoT-based traffic management systems were introduced. Many studies utilized ultrasonic sensors and microcontrollers to detect vehicle presence and control traffic lights dynamically. While these systems offered low-cost solutions and improved efficiency compared to fixed-time systems, they were limited in intelligence and decision-making capability, as they relied mostly on predefined rules rather than learning-based approaches.

Recent research has focused on the use of artificial intelligence and computer vision techniques for traffic monitoring and control. Camera-based vehicle detection and deep learning models have shown high accuracy in estimating traffic density and predicting congestion. However, such systems often require high computational power, expensive hardware, and complex infrastructure, making them difficult to deploy on a large scale, especially in developing regions.

Some researchers have also explored RFID-based traffic control systems to prioritize emergency vehicles. These systems effectively reduce delays for ambulances and fire services but do not address overall traffic congestion or road safety monitoring. Additionally, very few existing solutions integrate safety features such as helmet detection with traffic signal control.

From the literature review, it is observed that there is a clear gap between low-cost sensor-based systems and high-end AI-driven solutions. There is a strong need for a system that combines affordability, adaptability, emergency vehicle prioritization, and safety monitoring. The proposed AI-Based Traffic Controller using Arduino Mega 2560 aims to bridge this gap by integrating sensor-based traffic detection, RFID-based priority control, and AI-assisted helmet detection into a single, scalable, and cost-effective traffic management solution suitable for smart city applications.

METHODOLOGY

The methodology of the proposed AI-Based Traffic Controller focuses on developing an intelligent and adaptive traffic management system using Arduino Mega 2560. The system continuously collects real-time traffic data through ultrasonic sensors installed at each lane of the intersection to estimate vehicle density. An RFID reader is used to detect emergency vehicles, enabling priority-based signal control. In addition, an HD camera captures live traffic video, which is processed using artificial intelligence and computer vision techniques on an external computing system to detect helmet compliance among two-wheeler riders. The processed AI results are communicated to the Arduino Mega, allowing it to incorporate safety monitoring into traffic control decisions.

Based on inputs received from sensors, RFID detection, and AI processing, the Arduino Mega executes decision-making logic to dynamically adjust traffic signal timings. Lanes with higher traffic density are provided longer green signals, while emergency vehicles are given immediate priority to ensure quick and safe passage. Traffic signal LEDs and servo motors are controlled in real time to regulate vehicle movement efficiently. The system is tested under simulated traffic conditions to evaluate performance in terms of congestion reduction, response time, and

reliability. This methodology ensures efficient traffic flow, enhanced road safety, and a scalable, cost-effective solution suitable for smart city traffic management applications.

Requirements Analysis and Related Work Review

Requirement analysis is a crucial phase of the AI-Based Traffic Controller project, as it defines the functional and non-functional needs of the system to ensure effective implementation. The primary functional requirement of the system is to monitor traffic density in real time and dynamically control traffic signals accordingly. The system must be capable of detecting vehicle presence, identifying emergency vehicles, and responding immediately to priority situations. Additionally, it should support AI-assisted safety monitoring through helmet detection and generate appropriate control actions or alerts based on the analysis.

From a hardware perspective, the system requires a reliable microcontroller with sufficient input and output pins to interface with multiple sensors and actuators. The Arduino Mega 2560 fulfills this requirement by providing a large number of digital and analog pins, ensuring

smooth integration of ultrasonic sensors, RFID modules, traffic signal LEDs, servo motors, and communication interfaces. Software requirements include embedded programming using the Arduino IDE, serial communication with external AI modules, and computer vision algorithms for helmet detection. Non-functional requirements include system reliability, real-time responsiveness, scalability for future expansion, ease of maintenance, and cost-effectiveness, making the solution suitable for smart city deployment.

Hardware Design and Sensor Selection

Central Controller (Arduino Mega 2560): Selected as the main control unit due to its large number of digital and analog I/O pins, stable real-time performance, and ease of interfacing with multiple sensors and actuators. It processes all inputs and controls traffic signals and servo motors.

Ultrasonic Sensors: Used for real-time vehicle detection and traffic density estimation at each lane.

Chosen for their low cost, reliable distance measurement, and immunity to lighting conditions.

RFID Reader and Tags: Implemented to identify emergency vehicles such as ambulances and fire trucks. RFID enables fast, contactless detection and allows immediate priority-based signal control.

Servo Motors (SG90): Used to operate traffic barriers or mechanical signal mechanisms.

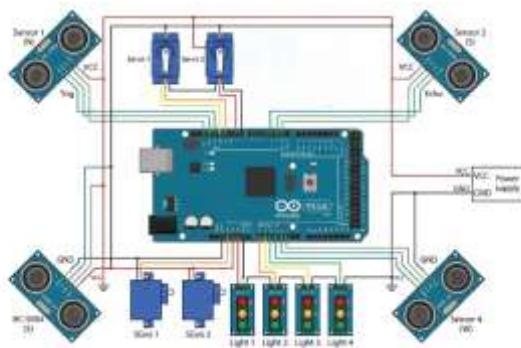
Selected for precise angle control, low power consumption, and compatibility with Arduino.

Traffic Signal LEDs: Represent red, yellow, and green signals for a four-way intersection. LEDs are chosen for low power usage, long life, and clear visibility.

Power Supply and Interfacing Components: Includes breadboard, jumper wires, and USB programming cable to ensure stable power delivery, reliable connections, and easy prototyping.

The overall hardware design emphasizes modularity, scalability, low cost, and ease of maintenance, making the system suitable for academic use and smart city traffic management applications.

Firmware Development and Sensor Integration


The firmware development for the system was carried out using the Arduino IDE, specifically tailored for the Arduino Mega 2560, chosen for its abundant digital and analog I/O pins that allow seamless interfacing with multiple sensors and actuators simultaneously. The development began with configuring communication protocols for each sensor and incorporating their respective libraries to simplify initialization, data acquisition, and calibration. Environmental and process sensors, including temperature, humidity, gas, and motion sensors, were connected to the Mega's analog and digital pins, with the firmware continuously reading data through efficient polling and interrupt routines to enable real-time monitoring. The sensor readings were processed using filtering and averaging algorithms to reduce noise and ensure accuracy, while actuator responses, such as alarms or motor controls, were executed via digital outputs based on predefined thresholds. Debugging and testing were conducted using serial

communication to monitor readings and system responses, ensuring stable, reliable, and accurate operation of the Arduino Mega-based system.

Cloud Backend and Web Dashboard Development

The cloud backend and web dashboard were developed to enable remote monitoring and control of the Arduino Mega-based system. Sensor data collected by the Arduino Mega is transmitted to the cloud through a communication module, where it is securely stored, processed, and made accessible in real time. The backend was designed using a lightweight server framework with database support to handle data logging, retrieval, and analysis efficiently. The web dashboard provides an intuitive interface, displaying real-time sensor readings, historical data trends, and system alerts in graphical formats such as charts and gauges. Users can interact with the system remotely to monitor environmental conditions, receive notifications, and trigger actuator commands if necessary. The integration of the cloud backend with the Arduino Mega ensures reliable data transmission, scalability, and a user-friendly interface for effective system management from any location.

CIRCUIT DIAGRAM

1. Arduino Mega 2560

The Central Controller This microcontroller acts as the brain of the traffic system. It coordinates all sensors and actuators by:

- Processing inputs from ultrasonic sensors and RFID readers.

- Executing decision logic to determine optimal green signal durations based on sensor-detected density.
- Sending commands to the servo motors and signal lights to manage traffic flow.
- Managing multiple lanes simultaneously due to its high number of digital and analog I/O pins.

2. Ultrasonic Sensor (HC-SR04)

Vehicle Density Detection With the removal of the camera, these sensors are now the primary tool for monitoring traffic volume.

- Density Measurement:** Measures the distance of vehicles in a lane to determine how "full" the lane is.
- Real-time Input:** Sends continuous data to the Arduino Mega to calculate if a lane needs a longer or shorter green light.
- Automatic Triggering:** Detects when a vehicle is waiting at the stop line, even during low-traffic hours.

3. RFID Module (RC522)

Emergency Vehicle Prioritization This module ensures that priority vehicles, such as ambulances or fire trucks, face no delays.

- Tag Detection:** Identifies unique RFID tags installed on authorized emergency vehicles as they approach the intersection.
- Logic Override:** Communicates with the Arduino Mega to immediately interrupt the standard timer.
- Clearance:** Triggers a "Priority Green" signal to clear the specific lane for the emergency vehicle.

4. Servo Motor (SG90)

Physical Barrier&Actuation The servo motors provide a mechanical response to the digital control system.

- Barrier Control:** Moves physical lane barriers or gates to guide traffic or prevent signal jumping.

- Precise Positioning:** Receives PWM signals from the Arduino Mega to move to exact angles (e.g., 0° to 90°).
- Safety Integration:** Works in synchronization with the signal lights to ensure barriers are only lifted when the light is green.

5. Traffic Signal Lights (LEDs)

Visual Flow Regulation Standard Red, Yellow, and Green LEDs used to communicate with drivers.

- Dynamic Timing:** The duration of the Green light is no longer fixed but changes based on the Ultrasonic sensor data.
- Visual Interface:** Provides clear feedback to commuters based on the logic processed by the Arduino Mega..

ADVANTAGE

1. Dynamic and Adaptive Control
2. Reduced Congestion and Waiting Times
3. Emergency Vehicle Prioritization
4. Enhanced Reliability with Arduino Mega
5. Cost-Effectiveness
6. Environmental Sustainability
7. Scalability for Smart Cities
8. Improved Road Order

DISADVANTAGES

1. Limited Processing Power for Complex AI
2. Lack of Native Connectivity
3. Sensor Limitations (Blind Spots)
4. Wiring Complexity
5. Fixed Detection Range
6. Scalability Issues

Conclusion

The AI-Based Traffic Controller project utilizes the Arduino Mega as a central processing unit to replace traditional fixed-timer signals with a dynamic, sensor-driven management system. By integrating ultrasonic sensors to measure real-time vehicle density and an RFID module to detect and prioritize emergency vehicles, the system intelligently adjusts green light durations to minimize congestion and reduce waiting times. The removal of the HD camera streamlines the architecture, focusing on high-reliability hardware logic and mechanical actuation via servo-controlled

barriers to maintain road discipline. Ultimately, this approach offers a cost-effective, scalable, and environmentally sustainable solution for modern smart cities, ensuring smoother traffic flow and enhanced public safety through robust microcontroller-based automation.

REFERENCES

1. Dharani, P., Ganesh, T., Gopinath, V., & Sharmasth Vali, Y. (2020). "Smart Safety and Traffic Control System Using Arduino and Ultrasonic Sensors." *International Research Journal of Multidisciplinary Technovation*, 2(4), 21–30.
 - *Relevance:* This paper provides the core methodology for using ultrasonic sensors with an Arduino to manage traffic flow based on vehicle density.
2. Kumar, A., & Singh, R. (2019). "IoT-based Smart Traffic Light System using ESP32 and Ultrasonic Sensors."
3. Journal of Emerging Technologies and Innovative Research.
 - *Relevance:* While it mentions ESP32, the primary logic for low-cost sensor-based traffic detection is directly applicable to your Arduino Mega implementation.
4. Sharma, S., & Patel, K. (2022). "RFID-enabled Intelligent Traffic Management for Emergency Vehicle Priority." *IEEE International Conference on Smart City Infrastructure*.
 - *Relevance:* This reference supports your use of RFID technology for identifying and prioritizing emergency vehicles like ambulances at intersections.
5. Rizvi, S. M., et al. (2022). "Density-Based Traffic Signal Control System Using Microcontrollers." *Engineering Proceedings*.
 - *Relevance:* This study emphasizes the use of microcontrollers (like the Arduino Mega) as the central processing unit to replace fixed-timer systems with adaptive logic.
6. Official Arduino Documentation (2024). "Arduino Mega 2560 Rev3 Hardware Reference and Pin Mapping." *Arduino CC Reference Library*.
 - *Relevance:* Provides the technical basis for choosing the Mega for its high I/O pin count, which is necessary for managing multiple lanes of sensors and actuators.