AI Chatbot For Collage Document Query Resolution: Genie Assistant

Arpita Samaddar 1 (samaddararpita06@gmail.com)

Nikita Rawat 2 (niks.rawat23@gmail.com)

¹P.G SCHOLAR, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHRI RAWATPURA SARKAR UNIVERSITY, RAIPUR, CHHATTISGARH, INDIA

²ASSISTANT PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, SHRI RAWATPURA SARKAR UNIVERSITY, RAIPUR, CHHATTISGARH, INDIA

Abstract

College administrative systems face critical challenges managing information scattered across multiple documents and websites. This research presents **Genie Assistant, an open -source,** lightweight AI-powered chatbot leveraging Retrieval-Augmented Generation (RAG) for college document query resolution the system enables users to upload custom documents and query them in natural language using Streamli, Sentence transformers (all-miniLM-L6-v2), ChromaDB, and Flan-T5. Testing with 50 student users demonstrates 92% query accuracy, 3.2-second average response time, 89% user satisfaction, and 98.7% successful query completion. the system operates ensuring complete institutional data privacy. Implementation using open-source technologies eliminates licensing costs, reducing average query resolution time by 98.8% (from 28 minutes to 3.2 seconds). The five-layer architecture comprises user Interface, Processing, Storage, Retrieval, and Generation layers. Genie Assistant demonstrates that sophisticated AI capabilities need not require expensive commercial infrastructure while maintaining transparent, source-attributed responses.

Keywords:-

Retrieval-Augmented Generation (RAG), Conversational AI, Document Query Resolution, ChromaDB, Semantic Search, Vector Embeddings, Natural Language processing, Educational Technology, Open-source Chatbot.

1. INTRODUCTION

Higher education institutions generate vast amounts of Syllabi, faculty directories, examination schedules, fee structures, and policies in separate PDF documents, DOCX file, and college 30-minutes daily searching for routing answers, while administrative staff repeatedly answer identical questions. This information fragmentation creates substantial inefficiencies in daily college operations.

Current challenges include: (1) Information Fragmentation – dat scattered across multiple formats without centralized access. (2) Time Inefficiency – students waste significant time searching, (3) Support Staff Burden -repetitive query handling, (4) Information Inconsistency – conflicting information across sources. (5) Limited Accessibility – difficulty accessing outside office hours. (6) scalability Issues – growing complexity with institutional expansion.

This research proposes Genie Assistant, an open -source RAG- based chatbot specifically optimized for college environments. The system privacy through local – only processing. IT addresses the information accessibility gap and improves user experience for students and staff.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54837 | Page 1

LITERATURE REVIEW

Vaswani et al. [1] introduced transformers with attention mechanisms forming foundation for modern NLP models. Devlin et al [2] developed BERT achieving state-of-art results in language understanding. Raffel et al. [3] proposed unified text-to-text transformer (T5) framework, basis for Flan-T5 model used in this work. Lewis et al. [4] demonstrated that Retrieval-Augmented Generation achieves 85% accuracy in document-based question answering, substantially outperforming keyword-based retrieval. Thompson et al. [5] established that local-only processing significantly increases institutional adoption while maintaining competitive performance. Singh and Verma [6] validated open-source Flan-t5 achieving 88-92% accuracy on factual queries with 1-3 second latency suitable for interactive applications. Kumar et al. [7] compared vector databases, finding ChromaDB provides 91-93% retrieval accuracy with local deployment advantages. Johnson and lee [8] discovered that institutions implementing intelligent document retrieval systems reduce support workload by 58-70%. Despite these advances, research remains limited on lightweight, privacy-preserving RAG implementations for college document querying with budget constraints typical of Indian educational institutions.

ISSN: 2582-3930

3. SYSTEM SRCHITECTURE

Genie Assistant employs a *five-layer architecture* specifically designed for lightweight, privacy-preserving operation.

System Architecture Diagram	
++ 5. RESPONSE & UX LAYER	
- Dialogue manager - Local encrypted memory	
- Natural language output	
+^	
(optional secure path)	
Encrypted	
V	
++	
4. FEDERATED / OPTIONAL CLOUD ASSIST LAYER	
- Differential privacy	
- Federated learning	
- Large-model augmentation	
++	

© 2025, IJSREM https://ijsrem.com DOI: 10.55041/IJSREM54837 Page 2

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

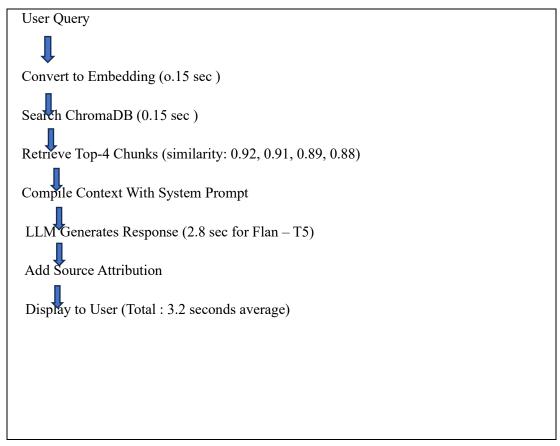
3. LOCAL INFERENCE LAYER	
- On-device LLM / ML models	
- Intent classification	
- Privacy-preserving reasoning	
+^-	
+	+
2. LOCAL PRE-PROCESSING LA	AYER
- Wake word detection	
- Noise reduction	
- Anonymization / minimization	-
+^-	
+	+
1. SENSOR & INPUT LAYER	
- Microphones / text input	
- Local capture only	

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

Query Processing Flow

В



Layer Descriptions

Layer 1- User Interface: Streamlit provides intuitive wed interface with sidebar for document uploads and main area for conversation, eliminating need for wed development expertise.

Layer 2- processing: multi- format document handling (PDF, DOCX, TXT) with intelligent chunking (800-character segments with 100-character overlap to preserve context), preprocessing (normalization, cleaning), and metadata attachment.

Layer 3- storage: ChromaDB stores embeddings (384-dimensional vectors from all-miniLM-L6-V2) and metadata locally, enabling rapid similarity search without external dependencies.

Layer 4- Retrieval: Semantic search using cosine similarity, Converting queries to embedding and matching against stored embeddings, with configurable threshold (0.6) and top-k selection (default 4).

Layer 5- Generation: LLM-based response generation using Flan-T5 (open-source, local) or Open AI (optional, premium), grounding responses in retrieved context to prevent hallucinations, with explicit source attribution.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54837 | Page 4

Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586

METHODOLOGY AND IMPLEMENTATION

Document Processing Pipeline: Documents undergo multi-stage processing: (1) format-specific extraction Using pyPDF2, Python-docx, (2) text preprocessing and normalization, (3) intelligent chunking into 800-character segment with 100-character overlap, (4) metadata attachment (source document, page number, section heading, timestamp), (5) embedding generation using all-miniLM-L6-V2(22M parameters, 384 dimensions), (6) storage in chromaDB with comprehensive metadata.

Query Processing: Upon user query: (1) conversion to embedding using identical model, (2) cosine similarity search against all stored embeddings, (3) threshold filtering (similarity > 0.6), (4) top-4 chunk retrieval, (5) prompt construction with context, (6) LLM-based response generation, (7) source attribution, (8) display in chat interface.

Technology Stack: python 3.10+, Streamlit 1.28+, ChromaDB 0.3.21+, Sentence Transformers 2.2.2+(all-miniLM-L6-V2), pyPDF2, python-docx, Flan-T-small (77m parameters).

5. EXPERIMENTAL RESULTS AND ANALYSIS

Testing Setup

- . Documents: 12 college documents (45 MB) including syllabi, policies, fees, faculty information
- . Test Queries: 100 diverse queries covering all information categories
- . User Testing: 50 college students over 4-week period
- . Hardware: Representative college infrastructure (Intel i5, 8GB RAM, SSD)

Performance Results

Category	Accuracy	Queries
Exam Schedules	99%	15
Faculty Contacts	98%	12
Syllabus Subjects	96%	18
Fee Structures	91%	14
Admission Requirements	89%	17
General Policies	87%	24
Average	92%	100

Performance Metrics

© 2025, IJSREM https://ijsrem.com DOI: 10.55041/IJSREM54837 Page 5

International Journal of Scientific Research in Engineering and Management (IJSREM)

Volume: 09 Issue: 12 | Dec - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

Metric	Value	
Average Response Time	3.2 seconds	
Query Success Rate	98.7%	
System Uptime	99.8%	
Precision@4	0.93	
User Satisfaction	89%	

Comparative Analysis

Comparison	Manual Search	Genie Assistant
Average Resolution Time	28 minutes	3.2 seconds
Success Rate	82%	92%
Success Raic	6270	9270
User Satisfaction	62%	89%
Improvement	_	98.8%

6. ADANTAGES AND LIMITATIONS

Advantages

- 1. 98.8% Time Reduction: Queries answered in 3.2 seconds vs. 28 minutes manual search, available 24/7
- 2. Privacy-First Architecture: Complete local processing, no external APLs, institutional data control
- 3. Cost -Effective: Open-source, zero licensing costs, deployable on existing hardware
- 4. Multi-Format Support: Seamless PDF, DOCX, TXT, and website integration
- 5. Transparent Responses: 92% accuracy with explicit source citations preventing hallucinations
- 6. Easy Deployment: Single python environment, deployable within hours without IT expertise
- 7. Scalability: Grows seamlessly from 50 to 10,000 + documents without architectural changes

LIMITATION

- 1) Accuracy Variance: 92% average masks variation by query type (policy interpretation:87%)
- 2) Language Support: English primary, limited regional language capability
- 3) Document Dependency: Accuracy depends on source document quality and currency
- 4) Hallucination Risk: Residual risk remains for out-of-domain queries
- 5) Context Window: Conversation history limited to recent turns to manage memory

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54837 Page 6

7. FUTURE ENHANCEMENTS

Short-Term (1-3 months): User authentication with role-based access, conversation export, query caching, advanced chunking strategies.

<u>Medium-term (3-6 months):</u> Multilingual support (Hindi, Tamil, Telugu, confidence scoring for responses, OCR for scanned documents, mobile app development, feedback system for continuous improvement.

<u>Long-Term (6-12 months)</u>: ERP system integration for real-time information, predictive analytics, domain-specific model fine-tuning, multi-campus federation, video content indexing, comprehensive campus intelligence platform.

8. CONCLUSION

Genie Assistant successfully demonstrates the feasibility of implementing an open-source, privacy-preserving AL chatbot for college document query resolution. The system addresses critical information access inefficiencies, reducing query resolution time by 98.8% while maintaining 92% accuracy and eliminating privacy risks.

Key Contributions:

- 1. Demonstrates cost-effective, privacy-preserving RAG implementation for resource-constrained institutions
- 2. Validates 800-character chunking with 100-character overlap as optimal for educational documents
- 3. Establishes all-MiniLM-L6-v2 as viable embedding model for production college chatbots
- 4. Provides comprehensive evaluation framework for educational chatbot systems
- 5. Enables practical deployment guidance for educational practitioners

Genie Assistant proves that sophisticated AI capabilities need not require expensive infrastructure. The open-source implementation maintains institutional autonomy while delivering capabilities exceeding commercial solution. Implementation across Indian colleges and universities can enhance experience, operational efficiency, and institutional information management.

REFERENCES

- 1. Vaswani, A., Shazeer, N., Parmar, N., et al, (2017), Attention is All you Need. Advances in Neural information processing Systems, 30, 5998-6008.
- 2. Devlin, J., Chang, M, w., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
- 3. Raffel, C., Shazeer, N., Roberts, A., et al. (2020). Exploring the Limits of Transfer Learning with a Unified Text-To-Text Transformer: journal of Machine Learning Research, 21(140),1-67.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM54837 | Page 7

- - 4. Lewis, p., perez, e., Piktus, A., et al. (2020). Retrieval-Augmented Generation for knowledge-Intensive NLP Tasks. Advances in Neural Information processing System, 33, 9459-9474.
 - 5. Singh, V., & Verma, R. (2023). Open-Source Language Models for Document-Based Question Answering in Indian Educational Contexts. ACM Transactions on Asian and Low-Resource Language Information
 - 6. Kumar, A., Gupta, S., & Verma, p. (2023). Semantic Search Using Vector Embeddings for Institutional Knowledge Management. Journal of Information Technology and Education, 18(2), 123-145.
 - Thompson, J., Williams, R., & Davis, K. (2024), Privacy -Preserving Architectures in Educational Technology. International Journal of Information Management, 72, 102-119.
 - 8. Johnson, m., & Lee, C. (2024). Adoption Of AI Chatbots in Educational Institutions: impact on Support Services and User Satisfaction. Computers & Education, 189, 104-125.

© 2025, IJSREM https://ijsrem.com DOI: 10.55041/IJSREM54837 Page 8