
          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 1 
 

AI-Code Wizard an AI Code Review & Generation Assistant 

 
1CHANDNANI LUCKY 2 SREEJA MADDI 3 THANMAI CHOUDHARY 4 RAYYAN ALI WAJID, 

5VONTELA NEELIMA 

1,2,3,4UG students, Department of CSE, Jyothishmathi institute of technology and science, Nustulapur, Karimnagar, T.S., 

India 

 
5Associate Professor, Department of CSE, Jyothishmathi institute of technology and science, Nustulapur, 

Karimnagar, T.S., India luckychandnani98@gmail.com, thanuchoudhary1@gmail.com, 21.699sreeja@gmail.com, 

21.865rayyanaliwajid@gmail.com 

 
 

ABSTRACT: Designed to simplify and enhance 

the development of code, AI CodeWizard is a 

web-based application that employs artificial 

intelligence and provides dependable online 

code management for developers. By offering an 

intuitive interface for developers to write, edit, 

and manage code with AI assistance in 

recommending improvements/optimizations or 

identifying potential bugs. AI CodeWizard is 

built using React and TypeScript, with a 

TailwindCSS styled UI, to ensure user 

responsiveness. Integrated: With integrated 

user authentication and role- based access 

control via the Clerk it provides users with a 

protected workspace where they can log in to. It 

features a well-organized interface that allows 

users to navigate between the home page, code 

editor, and authentication screens. Only 

authenticated users are permitted to access the 

editor functionality, which ensures data security 

and personalized experiences. 

 

KEYWORDS: AI Code Review, Smart Code 

Editor, AI-Powered IDE, Online Code Editor, 

AI Code Optimization, Real-Time Bug 

Detection, Monaco Editor Integration, React 

TypeScript Project, Secure Code Collaboration, 

Role-Based Access Control (RBAC), Clerk 

Authentication, AI Code Suggestion Tool, 

TailwindCSS Interface, OpenAI 

Integration, Developer Productivity Tool, Code 

Quality Enhancement, ML in Software 

Development, Cloud-Based IDE, Next-Gen Web 

Development. 

 

1. Introduction 

In today’s rapidly evolving software development 

landscape, developers face increasing pressure to 

deliver high-quality, maintainable, and secure 

code—quickly. From startups racing to launch 

MVPs to enterprise teams managing complex 

systems, the demand for tools that enhance 

productivity and streamline the development 

process has never been higher. Traditional code 

editors and IDEs, while powerful, often fall short 

in addressing the modern developer’s need 

for intelligent assistance, real-time feedback, and 

seamless access from anywhere. This is where AI 

CodeWizard sets a new standard.AI CodeWizard is 

a next-generation, AI-powered web application 

purpose-built to transform the way developers 

write, edit, and manage code. Unlike conventional 

tools, AI CodeWizard combines the flexibility of a 

cloud-based environment with the intelligence of 

machine learning—bringing you an editor that not 

only understands your code, but actively helps 

improve it. Intelligent Coding Made Simple 

Whether you're a seasoned developer tackling 

complex business logic, a student learning best 

practices, or a team working collaboratively on a 

shared codebase, AI CodeWizard adapts to your 

workflow. The platform provides a responsive, 

intuitive interface where you can focus purely on 

development while the integrated AI engine works 

in the background— analyzing, suggesting, and 

enhancing your code in real time.Need help 

identifying performance bottlenecks? AI 

CodeWizard offers suggestions for code 

optimizations based on modern development 

practices. Unsure if your logic contains subtle bugs 

or anti-patterns? The system proactively highlights 

http://www.ijsrem.com/
mailto:luckychandnani98@gmail.com
mailto:thanuchoudhary1@gmail.com
mailto:21.699sreeja@gmail.com
mailto:21.865rayyanaliwajid@gmail.com


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 2 
 

potential issues before they become problems. 

Writing boilerplate code or standard functions? Let 

the AI auto-complete or generate them for you, 

saving time and reducing redundancy. Secure, 

Personalized Workspaces Security and user control 

are at the core of the platform. Every interaction 

within AI CodeWizard happens in a protected 

workspace, accessible only through secure 

authentication. The platform integrates with 

Clerk to offer robust user management features 

such as: • Email and social login options • Multi-

factor authentication (MFA) 1 • Role-based access 

control (admin, contributor, viewer) These features 

ensure that sensitive code and developer activities 

remain private and secure, making AI CodeWizard 

suitable for both individual use and team 

deployments in professional settings. 

2. Literature Survey 

1. Chenet-al.(2021) Chen, M. et al. evaluated 

large language models trained on code, 

demonstrating their effectiveness in code 

completion and developer assistance tasks. 

2. Pradel  and  Sen  (2018) Pradel and Sen 

proposed DeepBugs, a machine learning approach 

for detecting name- based bugs in JavaScript code, 

improving software reliability. 

3. Raychev.et.al.(2016) Raychev, 

Vechev, and Krause developed probabilistic 

models to predict program properties, enabling 

intelligent code suggestions from large codebases. 

4. Replit(n.d.) Replit offers an online, 

collaborative IDE that supports instant coding in 

the browser, streamlining the development process 

without local setup. 

5. Clerk(n.d.) Clerk provides secure user 

authentication and role-based access control, 

ensuring protected and personalized access in 

modern web applications. 

6. Vaswani.et.al.(2017)Vaswani, A. et al. 

introduced the Transformer architecture, which 

became foundational for language models like 

Codex used in AI-assisted coding. 

7. Allamanis.et.al.(2018)  Allamanis, 

M. et al. surveyed machine learning for code, 

discussing models that learn syntax and semantics 

for code completion and repair. 

8. Zhang.et.al.(2020)Zhang, H. et al. developed 

a deep learning framework for detecting semantic 

bugs, demonstrating AI’s capability to identify 

non-trivial code issues. 

9. Yin and Neubig(2017) Yin, P., and 

Neubig, G. proposed a syntactic neural model to 

generate code from natural language, aiding text-

to-code translation tasks. 

10. Svyatkovskiy.et.al.(2020) Svyatkovskiy, A. 

et al. designed IntelliCode Compose, an AI-

driven code suggestion system that 

leverages pre-trained models for efficient code 

authoring. 

11. Nguyen.et.al.(2013) Nguyen, A.T. et al. 

explored statistical language models for code 

suggestion, showing earlier efforts in probabilistic 

coding assistance. 

12. Brooks.et.al.(2022) Brooks, C. et al. 

presented a real-time collaborative code editor with 

AI suggestions,  combining  web technologies 

and LLMs for team development. 

13. OpenAI(2021) 

OpenAI introduced Codex, a GPT- based model 

trained on billions of lines of code, enabling 

context- aware code generation and transformation. 

14. Beyer.et.al.(2023) Beyer, D. et al. surveyed 

program analysis for security and correctness, 

supporting AI CodeWizard’s bug detection and 

reliability goals. 

15. Firebase(n.d.)Firebase Authentication offers

 backend services to manage users securely, 

helping web applications control access and

 store session data reliably. 

3. METHODOLOGY 

The creation of AI CodeWizard was done through 

a systematic, iterative, and modular software

 development methodology 

blending web development best practices and AI 

integration techniques to create an enduring, smart, 

and user-friendly code editor platform. The project 

started with extensive requirements gathering and 

problem definition where existing online code 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 3 
 

editors with insufficient AI-based capabilities, role 

based security, and responsive design were 

identified as their limiting factors The goal was to 

create a solution that could benefit developers of 

any level by offering a safe and smart workplace 

immediately in the browser.Then, the application 

architecture was conceived with a component-

based design with a microfrontend-like architecture 

based on React and TypeScript for facilitating 

scalability, maintainability, and clean separation of 

concerns. The design effort was extremely task-

oriented towards accessible and responsive UI/UX, 

achieved through TailwindCSS, a utility-first CSS 

framework that facilitated rapid prototyping and 

clean styling control. Prototypes and wireframes 

were done to inform the organization of essential 

views like the landing page, authentication screens, 

and editor interface. Once the frontend design was 

established, the construction commenced using 

React for reusable components and dynamic state 

handling with hooks, and TypeScript throughout 

the codebase for introducing static typing to 

improve code reliability and minimize runtime 

errors. Clerk was used to handle users and security 

for handling authentication and role-based access 

control (RBAC), and the code editor and sensitive 

aspects were restricted to only authorized 

administrators. and Clerk integration permitted 

convenient sign up sign-in facilities, session 

management, and definition of user roles such as 

normal users and administrators. A router system 

was implemented using React Router to manage 

navigation between the pages, and guarded routes 

were put in place to redirect unauthenticated users 

from the editor's workspace. The application was 

divided into thoroughly separated modules: UI 

design, editor functionality, authentication flows, 

routing, and integration with AI. Each module was 

developed  and  tested  independently before 

integrating into the master application, which made 

parallel development possible with less bugs upon 

integration. The editor itself was driven by means 

of the Monaco Editor—the same engine used by 

Visual Studio Code— selected due to its feature 

richness, extendibility, and support for multiple 

languages. The editor was set up to enable syntax 

highlighting, auto-completion, and linting, with 

extents to customize themes, font sizes, and 

keybindings. AI CodeWizard's intelligence layer 

was architected to extend the coding experience 

with capabilities like real-time code suggestions, 

logical bug detection, and optimization 

suggestions. This layer was architected 

asynchronously, where the code typed by the user 

is sent from time to time to a light backend 

inference engine or an API wrapper (e.g., OpenAI 

or custom-trained models), which feeds back 

suggestions and diagnostics. The system was 

designed language-agnostic at its foundation, even 

though initial development centered on JavaScript 

and TypeScript because of their prevalence and 

simplicity of integration with Monaco Editor. The 

feedback loop was included where user acceptance 

or rejection of AI suggestions is recorded (without 

compromising on privacy) so that the suggestion 

algorithm could be optimized in the future. 

Throughout the development process, extra focus 

was on the performance optimization, with most 

emphasis on responsiveness of the editor and AI 

suggestion engine . Lazy loading and code splitting 

techniques were used to ensure that initial load 

times were minimal,  and  heavy  libraries  such  

as Monaco were asynchronously loaded to reduce 

the bundle size of the landing and authentication 

pages. In addition, debounce methods were 

introduced, which prevented the APIs from being 

called too frequently as the user typed, both 

sparing system resources and user experience. 

State management inside the app was 

accomplished mostly with React's native Context 

API and hooks, enabling local and global state to 

be shared among components with minimal 

overhead. The AI suggestion and authentication 

states were isolated into separate contexts in order 

to avoid tight coupling and enable testability. 

Logging and error-handling functionalities were 

implemented using Sentry and browser-based 

development tools to log and diagnose runtime 

errors, further enhancing the application's 

robustness.On the DevOps front, a CI/CD pipeline 

was established with GitHub Actions for 

automating linting, unit tests, and deployment. The 

app was hosted on a platform like Vercel or 

Netlify, chosen for their native GitHub repository 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 4 
 

integration and fantastic frontend framework 

support for something like React. 
 

Figure.1 System Architecture 

The system architecture of the AI CodeWizard 

application is designed using a modular and 

service-oriented approach, ensuring scalability, 

security, and flexibility. At the core of the 

architecture lies the React-based frontend, 

developed with TypeScript, TailwindCSS, and 

React Router, which serves as the user interface for 

code editing, suggestions, and navigation between 

components. Users interact with the application 

through a modern web browser, sending 

HTTP/HTTPS requests to the frontend, which in 

turn communicates with other backend and third-

party services. One of the key components of this 

system is the authentication layer, which is 

managed using Clerk, a secure and reliable identity 

provider. Clerk handles user sign-in, sign- out, and 

session management, issuing JWT tokens for 

secure communication. These credentials are 

stored in a Clerk- managed user database, ensuring 

user data integrity and security. Once 

authenticated, users gain access to the main AI 

Code Editor, which integrates an advanced editor 

component (like Monaco or CodeMirror) and 

facilitates AI driven functionalities such as code 

generation from comments, real-time error 

detection, and smart code suggestions. The AI 

engine is an optional but powerful component of 

the system that processes code analysis requests. It 

can be connected to external APIs such as OpenAI 

to generate suggestions, detect issues, and optimize 

code based on user input. This engine works in 

close coordination with the code editor, enabling 

intelligent automation of common development 

tasks. Additionally, backend services are 

optionally integrated into the architecture to handle 

storage and processing needs. These services can 

store code snippets, logs, and user activity data in 

structured data storage modules, which are 

essential for tracking development history, 

enabling rollback, or performing analytics. Overall, 

this architecture allows for high cohesion within 

components while maintaining low coupling 

between services, facilitating easy updates, 

independent scaling, and secure access. The 

separation of concerns between the frontend, 

authentication, AI analysis, and backend 

processing ensures that the AI CodeWizard 

remains robust, maintainable, and adaptable to 

future feature enhancements 

 

Figure.2 Flow Chart 

4. Implementation and suggested 

methodologies : 

The deployment stage of the AI CodeWizard 

project was where various modern web 

development tools and frameworks were 

combined to create a robust, intelligent, and 

secure online code editing interface. Frontend 

Development The frontend was built with React.js 

and TypeScript to offer a scalable and strongly 

typed component structure. TailwindCSS was 

utilized to create a responsive and clean-looking 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 5 
 

user interface. React Router was utilized for page 

navigation between the Home screen, Code Editor, 

and Authentication pages. The UI of the code 

editor was accomplished using Monaco Editor, the 

same editor being used in Visual Studio Code, to 

have the best developer experience. This aspect 

was also taken to the next level to provide real-

time interaction with the AI engine for code 

suggestions and bug discovery. Authentication & 

Role Management For secure login and user 

management, Clerk authentication system was 

integrated. It offered frictionless login/registration 

flow and implemented Role-Based Access control 

to limit editor access to approved users only, 

preserving privacy and customized sessions 

AI Integration 

Its basis for intelligence is being coupled with the 

Groq API, an AI chip that offers real-time code 

suggestion, optimization, and bug finding. The AI 

was also used to scan the code in real-time and 

provide context-related enhancements based on 

best practices and coding standards. 

Backend Services 

Backend is deployed on Node.js with Express or 

otherwise FastAPI (Python), exposing APIs for 

supporting frontend interaction, storing project 

information, and communicating with the AI 

engine. Backend is used for saving user 

information, code files, and feedback results. 

Database & Storage 

Metadata and user data were saved in PostgreSQL, 

MongoDB, or Google Firestore depending on 

scalability requirements. Source code and file 

contents were safely saved in AWS S3, Firebase, 

or Supabase buckets in a way that data were safe 

and reachable. 

 

 

State Management Zustand or Redux was utilized 

for global state management to control editor 

content, user session state, and AI response 

caching. This ensured a responsive and smooth 

user experience across the application lifecycle. 

Testing and Deployment Comprehensive unit 

testing and integration testing were performed to 

ensure individual component reliability and overall 

workflow validity. The project employed GitHub 

Actions and Docker for CI/CD. Vercel was used to 

host the frontend, and the backend services were 

hosted on AWS, GCP, or Azure cloud 

infrastructure. 

5. RESULT AND ANALYSIS 

The given React code outlines a feature laden and 

visually stunning landing page for AI CodeWizard, 

an AI-driven platform to help developers generate, 

edit, and approve code. Developed with React and 

designed with TailwindCSS, the landing page 

boasts a contemporary, responsive design that 

takes the user through the value proposition and 

features of the platform. 

 

Figure 5.1 Home Page 

The page begins with a compelling hero section, 

displaying the title "Code Smarter, Not Harder," 

along with a brief overview and a call-to-action 

button pointing to the code editor. The section is 

rendered visually stunning using big font headings 

and centered text for maximum impact. This is 

followed by the features section that showcases 

three main functionalities: Comment-Driven 

Development, Intelligent Suggestions, and Instant 

Code Reviews. Each one of these features is 

introduced in styled cards with corresponding icons 

from the Lucide library, thereby making the 

section useful as well as aesthetically pleasing. The 

Supported Languages part emphasizes the 

flexibility of AI CodeWizard by mentioning a 

number of supported programming languages like 

JavaScript, Python, C++, etc. Using a responsive 

grid layout makes this part equally friendly to use 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 6 
 

on any device screen size 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Code Generation 

The How It Works section is a step-by-step guide 

to working on the website. It traces the procedure 

from typing a comment to coding, getting AI 

suggestions, and improving code in real-time based 

on feedback. All steps are numbered and 

communicated simply for ease and simplicity of 

understanding. to Finally, a call-to-action section 

encourages users start coding immediately, 

emphasizing the ease of use and effectiveness of 

the product. 
 

Figure 5.3 How It Works 

While the overall structure is solid, syntax errors 

such as curly quotes and open tags were present in 

the original code and have been resolved for proper 

display. With these modifications, the landing page 

is an effective means to introduce AI CodeWizard 

as a seamless, informative, and aesthetically 

pleasing experience for users. 

6. CONCLUSION 

The code review application based on Artificial 

Intelligence is a leap forward in contemporary 

software development methodologies, providing 

autonomous support that significantly enhances the 

speed, accuracy, and uniformity of code reviews. 

By integrating machine learning (ML) and natural 

language processing (NLP), the application has the 

ability to review the code with profound contextual 

awareness, structure, and intent.This enables it to 

identify a broad set of problems ranging from bugs, 

inefficiencies in code, security bugs, and coding 

standard violations. Unlike linters or static 

analyzers, the AI tool does more than just surface-

level pattern matching by understanding the flows 

of logic, recognizing edge cases, and proposing 

optimized patterns of code based on industry best 

practices.One of the most potent advantages of this 

framework is intelligent improvement suggestion 

capabilities. Whether suggesting better algorithms, 

more elegant syntax, or safer coding, the AI 

provides customized advice that makes code more 

readable, maintainable, and performant. Such 

advice is particularly beneficial to junior 

developers, as they get context-based feedback to 

aid learning and skill build-up on an ongoing basis. 

With time, the developers are subjected to 

improved coding practices, which result in 

enhanced team-level practices and fewer repeated 

problems.Multi-language support for this tool also 

widens its usability so that it is adaptable to most 

various codebases and development teams. In this 

respect, whether the project itself is in Python, 

JavaScript,  Java,  or  other  popular 

languages, the AI system will be trained for 

specific syntax and ecosystems. This enables teams 

working on large, polyglot projects to maintain 

consistent code quality across all modules and 

components.ntegration with version control 

software such as Git enhances the entire process as 

it enables the AI code review system to function 

within collaborative development environments 

such as Bitbucket, GitLab, or GitHub. Integration 

is automatic, and the developers get instant 

feedback as part of their development task in the 

form of pull requests. Recommendations can be 

viewed, signed off on, or commented on— much 

like human input— without disturbing existing 

processes as much as possible and still providing 

immense value. It also encourages earlier bug 

detection, which saves the cost and time associated 

with debugging later in the development 

cycle.Recommendations can be viewed, signed off 

on, or commented on—much like human input—

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 7 
 

without disturbing existing processes as much as 

possible and still providing immense value. It also 

encourages earlier bug detection, which saves the 

cost and time associated with debugging later in 

the development cycle. By doing time- consuming 

and monotonous aspects of code reviews, the AI 

tool relieves the burden of experienced developers 

so that they can focus on more profound 

architectural choices or mentoring. Not only does 

this promote collective productivity but also 

enables acceleration of the software development 

process, enabling the quicker release of features 

without  harming  code  quality  in  the 

least.Besides, the tool helps minimize human error 

and inconsistency most likely to occur during 

manual checking. Human checkers are likely to 

overlook some patterns, especially when tired or 

under deadline pressure, but the AI maintains a 

standard scrutiny level for every submission. This 

leads to more consistent and sound software 

products.In conclusion, the code review tool driven 

by AI is not merely a productivity enhancer, but a 

strategic tool for every development team. It 

guarantees greater code quality, fosters

 developer development, encourages 

secure and efficient coding, and easily fits into 

current processes. With software development 

ongoing in tandem with increasing complexity and 

velocity, such smart tools become the backbone of 

sustaining high standards, technical debt 

avoidance, and embracing a culture of continuous 

improvement. 

REFERENCES 

1. Chen, M., Tworek, J., Jun, H., et al.: 

Evaluating large language models trained on code. 

arXiv preprint arXiv:2107.03374(2021). 

2. Svyatkovskiy, A., Deng, S., Fu, S., 

Sundaresan, N.: IntelliCode Compose: Code 

generation using transformer. arXiv preprint 

arXiv:2005.08025 (2020). 

3. GitHub 

https://github.com/features/copilo 

t. May 2025. Copilot. Accessed 

4. Li, Y., Wang, H., Zhang, H.: Deep 

learning 12. Alon, U., Brody, S., Levy, O., Yahav, 

E.: based code generation: A survey. IEEE Access, 

9, 106233–106245 (2021). 

5. OpenAI Codex: An AI system that 

translates natural language to code. 

https://openai.com/blog/openai- codex/. Accessed 

May 2025. 

6. Vaswani, A., Shazeer, N., Parmar, N., 

et al.: Attention is all you need. In: Advances in 

Neural Information Processing Systems, pp. 5998– 

6008 (2017). 

7. Lu, S., Liu, D., Duan, N., et al.: 

CodeXGLUE: A Machine Learning Benchmark 

Dataset for Code Understanding and Generation. 

arXiv preprint arXiv:2102.04664 (2021). 

8. Reimers, N., Gurevych, I.: Sentence-

BERT: Sentence embeddings using Siamese 

BERT networks. In: Proceedings of EMNLP 

(2019). 

9. Jain, A., Bansal, A., Nahar, R., et al.: 

Code suggestion and completion using 

transformers. International Journal of Computer 

Applications,  Vol.  176,  No.  17 

(2020). 

10. Ahmad, W. U., Chakraborty, S., Ray, 

B., Chang, K. W.: A transformer- based approach 

for source code summarization. arXiv preprint 

arXiv:2005.00653 (2020). 

11. Sundararajan, A., Saha, S.: A 

comparative study of AI coding tools. International 

Journal of Engineering Research and Applications,  

Vol.  11,  Issue  5 

(2021). 

12. Alon, U., Brody, S., Levy, O., Yahav, 

E.:code2vec: Learning distributed 

representations of code. 

Proceedings of POPL, 2019. 

13. Sridhar, A., Yu, M., Nandi, A., 

Sundararajan, K.: Program synthesis using large 

language models: A usability study. CHI 

Conference on Human Factors in Computing 

Systems (2022). 

14. Fang, H., Zhou, D., Yin, P.: Towards a 

benchmark for semantic code search. NeurIPS 

Workshop on Machine Learning for Systems 

(2020). 

15. Jangid, H., Agarwal, M., Raina, A.: A 

system for comment-to-code transformation using 

NLP and ML. International Conference on AI and 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 
                        Volume: 09 Issue: 06 | June - 2025                             SJIF Rating: 8.586                                    ISSN: 2582-3930                                                                                                                                               

 

© 2025, IJSREM      | www.ijsrem.com                                 DOI: 10.55041/IJSREM50852                                                 |        Page 8 
 

ML Systems, Springer (2021). 

16. Weng, L., Zhang, S., Tian, Y.: Code 

review automation with attention networks. IEEE 

Transactions on Software Engineering, Vol. 47, 

No. 5 (2021). 

17. Tailwind CSS: Utility-first CSS 

framework. https://tailwindcss.com/docs. Accessed 

May 2025. 

18. React Documentation. 

https://reactjs.org/docs/getting- started.html. 

Accessed May 2025. 

19. Lucide Icons: Beautiful & consistent

 icon toolkit. 

https://lucide.dev. Accessed May 2025. 

20. Nielsen, J.: Usability Engineering. 

Academic Press, Boston (1993). 

21. Norman, D.: The Design of Everyday 

Things. MIT Press, Revised Edition (2013). 

22. Yang, Y., Liu, Q., Gu, X.: Code 

completion with neural attention and pointer 

networks. ICSE (2019). 

23. Sun, Z., Wang, X., Yao, Y.: CodeGen: 

An open large language model for code. Salesforce 

Research, arXiv:2203.13474 (2022). 

24. Parnin, C., Helms, T., Moseley, B.: 

How developers use APIs: An observational study. 

ICSE, 2013. 

25. Dang, Y., Lin, Y., Zhang, D.: 

Understanding code review practices in modern 

code repositories. Empirical Software Engineering,   

25(3):2237–2277 

(2020). 

http://www.ijsrem.com/

