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Abstract - The integration of artificial intelligence (Al) is fundamentally transforming the landscape of
drug discovery, offering a powerful new paradigm that significantly accelerates and optimizes every
stage of the process. This paper presents a comprehensive review of recent advancements in Al-driven
drug discovery, with a specific focus on the application of deep learning and machine learning to
critical tasks like antibiotic discovery and large-scale virtual screening. We analyse key breakthroughs
and methodologies, including the use of generative models to design novel molecules and the application
of graph attention networks for predicting drug interactions. Case studies from recent research, such as
the work of Liu et al. (2023) and Zhou et al. (2024), demonstrate the remarkable efficiency and success
of Al in identifying potent new drug candidates. Beyond a review of current capabilities, this work also
critically examines the significant challenges faced by the field, including issues related to data quality,
model interpretability, and ethical considerations in AI-powered research. We discuss the limitations of
current approaches and identify crucial areas for future development. Looking forward, we highlight
promising new directions, such as the integration of quantum computing to handle massive data sets
and the use of multimodal AI to combine genomic, clinical, and molecular data. This paper aims to
provide a clear and insightful overview of the current state of Al in pharmacology and its immense
potential to usher in a new era of faster, more precise, and more effective drug development.
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L. INTRODUCTION

Drug discovery has long been a notoriously costly and time-consuming endeavor, with the development of a
single new drug often spanning over a decade and requiring billions of dollars in investment. This traditional
paradigm, heavily reliant on a painstaking process of trial and error, has been revolutionized by the recent
advancements in artificial intelligence (AI). Al, and specifically machine learning (ML), has introduced
sophisticated computational methods that significantly accelerate candidate screening, optimize lead
compound identification, and enhance the overall efficiency of the pharmaceutical pipeline. From target
identification to clinical validation, Al is fundamentally reshaping how new medicines are brought to life. [3,
15]

The shift from a manual, hypothesis-driven approach to a data-driven, predictive one has been a game-changer.
Al models can now analyze vast, multi-modal datasets—including genomic sequences, proteomic analyses,
and patient clinical data—to uncover hidden connections between biological entities and disease states at a
scale far beyond human capability [2, 10, 16]. This new "Al-in-the-loop" strategy, where laboratory data is
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used to iteratively train and refine Al models, is streamlining the traditional trial-and-error approach for novel
therapies and improving the overall success rate of research and development [8, 19]. Our paper provides a
comprehensive review of this transformative shift by highlighting two significant case studies that exemplify
AT’s potential.

First, we examine the groundbreaking discovery of abaucin, a novel antibiotic identified using a deep learning
model for antibacterial prediction [4]. This achievement showcases how Al can rapidly sift through vast
chemical libraries to find potent new compounds, addressing the urgent need for new antimicrobial therapies.
Second, we explore the use of Al-augmented docking for large-scale virtual screening to identify hits against
human protein targets [16]. This application demonstrates how Al can drastically reduce the time and
resources required for finding promising molecules, moving beyond traditional methods.
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Fig. 1. Applications of attention-based models in drug discovery.

In addition to these specific examples, this paper delves into the technical foundations underpinning these
successes, offering insights into the various Al-driven solutions that are redefining pharmaceutical research [5,
6, 17]. We also provide a critical analysis of the significant challenges in the field, such as ensuring data
quality, the need for enhanced model interpretability, and the ethical implications of using Al in drug
development [11, 13, 14]. Finally, we offer a forward-looking perspective on emerging research trends,
including the use of generative Al for creating novel molecular structures and the integration of big data
analytics for precision medicine [1, 2, 8, 9, 19]. Through this focused review, we aim to demonstrate that Al is
not merely an auxiliary tool but a central driver in the future of personalized medicine and efficient drug
development [5].

IIL. LITERATURE REVIEW

A. Deep Learning for Antibiotic Discovery

Early groundbreaking research demonstrated that deep learning can uncover fundamentally new types of
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antibacterial molecules at an unprecedented scale [17]. A pivotal study by Stokes et al. trained a model on
growth-inhibition data and then used it to screen over 100 million molecules. This process led to the discovery
of halicin, an antibiotic that showed broad-spectrum antibacterial activity in both laboratory tests and in living
organisms. What's particularly significant is that many of the molecules predicted by this AI model were
structurally distinct from any known antibiotics, highlighting Al's ability to explore vast chemical spaces
beyond the boundaries of traditional human intuition [3].

Building on this success, Liu et al. applied a similar approach to a high- priority Gram-negative pathogen,
Acinetobacter baumannii. By generating a dedicated dataset of approximately 7,500 experimental data points,
they were able to train a neural network to identify promising candidates. Their efforts culminated in the
discovery of abaucin, a narrow-spectrum agent with a precisely defined mechanism of action—it disrupts a
specific process called LolE-mediated lipoprotein trafficking. This finding underscores the fact that Al is not
limited to discovering broad-spectrum drugs; it can also be a powerful tool for finding highly selective
compounds with actionable mechanisms [4]. These studies collectively established a powerful blueprint for
Al-guided drug discovery: first, create a high-quality, targeted dataset, then use machine learning to uncover
the relationship between a molecule's structure and its activity, and finally, use the AI model to screen
massive libraries before moving to experimental validation [15, 16].

B. Generative Models and De Novo Design

In parallel with these screening-focused methods, generative Al approaches have matured significantly. Early
models based on Recurrent Neural Networks (RNNs) used reinforcement learning to optimize for specific
molecular properties. Modern tools like REINVENT, which now incorporates transformer backbones and
transfer learning, provide powerful frameworks for generating molecules from scratch with multiple desired
properties. These platforms are used in practical projects to design new molecules with specific constraints and
explore new chemical scaffolds [1, 8]. While not always directly tied to immediate lab validation, these
systems have become essential tools for medicinal chemists. They can systematically balance the need for
molecular diversity and novelty with the requirement to have specific, desired properties, helping to create
more efficient and intelligent "design-make- test-analyze" workflows [5].

C. Diffusion Models for Structure-Aware Design and Docking

A major innovation has been to reframe the problem of molecular docking as a generative task. DiffDock, a
model based on diffusion principles, directly models the spatial and rotational poses of a ligand binding to a
protein. This approach has led to dramatic improvements in docking accuracy compared to traditional
methods and even earlier deep learning models. Notably, DiffDock performs exceptionally well when docking
to computationally predicted protein structures (like those from AlphaFold), providing a calibrated confidence
score for each predicted pose. This advance is critical because it bridges the gap between Al-driven ligand
design and structural biology, allowing researchers to more accurately predict how a new molecule will
interact with its biological target [12].

D. Al-Accelerated Ultra-Large Virtual Screening

To make screening at the scale of billions of molecules a practical reality, researchers have developed advanced
systems that combine Al with traditional methods. Zhou et al. created RosettaVS, an improved docking
protocol, and integrated it into OpenV'S, an active-learning platform [4]. This system intelligently guides the
computational search, focusing resources on the most promising compounds. Using this approach, they
successfully identified potent drug candidates against two important therapeutic targets, achieving single digit
micromolar potency and confirming their findings with X-ray crystallography [10, 16]. This work serves as a
powerful testament that combining robust, physics-based scoring with Al-based prioritization and active
feedback loops is a highly effective strategy for scaling up early-stage drug discovery campaigns [1, 19].

E.  Comparative Synthesis: Capabilities and Gaps
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The literature survey reveals a converging and powerful set of Al tools. Phenotypic machine learning (as seen
with halicin and abaucin) has proven its ability to find novel compounds with a proven effect in living
systems. At the same time, structure-aware methods (like DiffDock and RosettaVS) are significantly
improving the accuracy of predicting how a molecule will bind to its target [12, 14]. However, the success of all
these methods remains heavily dependent on the quality and reliability of the data used for training the
models. The best outcomes are consistently linked to high-quality, curated datasets, whether they are focused
on specific biological assays or structural information [10, 16].

While generative models are excellent at creating optimized molecular designs, a significant bottleneck
remains the translation from a designed molecule to a physical compound that can be tested in the lab. This
highlights the urgent need for a fully automated, closed-loop system where a robot handles the "design-make-
test-analyze" cycle [1]. Finally, Al offers the flexibility to pursue drugs with either a narrow-spectrum (like
abaucin) or a broad-spectrum (like halicin) activity, underscoring the importance of designing Al systems with
multiple objectives in mind, such as efficacy, safety (ADMET), and selectivity, to meet specific clinical needs
[2, 11]. The field is now centered on solving key open problems like improving data quality, enabling models
to generalize to new chemical spaces, and developing interpretable Al systems, with the ultimate goal of
creating fully automated and integrated drug discovery platforms [5, 10, 19].

I11. RECENT ADVANCEMENTS IN AI-DRIVEN DRUG DISCOVERY

Recent years have seen Al move from a theoretical tool to a core component of the drug discovery pipeline.
This shift is best illustrated by landmark studies that demonstrate Al's practical ability to find novel drug
candidates with unprecedented speed and efficiency. [3, 9, 15]

A.  Deep Learning for Antibiotic Discovery

One of the most compelling examples of Al's power in a clinical context is the discovery of new antibiotics.
Researchers have shown that deep learning models can be trained to recognize the structural features of
molecules that make them effective against specific bacteria. In a notable study, Liu et al. [16] trained a neural
network on a dataset of approximately 7,500 molecules tested against the problematic pathogen,
Acinetobacter baumannii. By learning from this data, the model was able to predict which new molecules
would have antibacterial properties. This led to the identification of abaucin, a narrow-spectrum antibiotic that
works through a unique mechanism and was successfully validated in animal models. This breakthrough
demonstrates that Al can rapidly navigate vast chemical spaces to discover new antibacterial agents, offering a
promising path forward in the face of growing antibiotic resistance [4, 17].

B.  Al-Augmented Virtual Screening

Al is also revolutionizing the process of virtual screening, where millions or even billions of compounds are
computationally evaluated for their potential to bind to a specific protein target. Zhou et al. [4] developed an
advanced platform called RosettaVS and integrated it with OpenVS, an active learning system that iteratively
improves its search strategy. This powerful combination allowed them to efficiently screen a massive library
of 4.5 billion compounds, a feat that would be impossible with traditional methods. The system successfully
identified multiple promising hits against two important therapeutic targets, KLHDC2 and NaV1.7. The
potency of these hits was confirmed to be in the micromolar range, and their binding poses were verified
through X-ray crystallography. This work is a testament to the high efficiency of Al- augmented virtual
screening, as it enabled the discovery of multiple drug candidates in a matter of days, drastically shortening the
initial hit-finding phase of drug development [1, 19].
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IV. METHODOLOGY

The methodology for Al-driven drug discovery is a sophisticated, multi- stage computational pipeline that
integrates several critical steps: data preparation, model development, large-scale molecule screening, and
rigorous experimental validation. The success of this process hinges on a seamless flow between these stages,
creating a closed-loop feedback system that continuously refines the search for new drug candidates [1, 5, 13].

A. Data Collection and Preprocessing

The foundation of any AI model is a high-quality dataset. For this research, molecular structures and their
corresponding bioactivity data were collected from a variety of sources. This includes well-established public
repositories like ChEMBL and PubChem, as well as data from specialized antimicrobial screening studies
[10]. To make this data understandable to a machine, molecules were represented using standard formats like
SMILES strings (a linear notation for chemical structures) and more complex graph-based structures, which
capture the intricate connectivity of atoms and bonds [5, 17]. To ensure the data was clean and robust for model
training, we performed key preprocessing steps, including removing duplicates, standardizing molecular
formats, and balancing the dataset to prevent model bias [6].

B.  Model Development

A diverse set of deep learning models was employed to tackle different aspects of the drug discovery problem.
Graph Neural Networks (GNNs) were a primary choice for learning directly from molecular graphs, allowing
the model to predict a molecule's bioactivity by understanding its intricate structural relationships [4]. For
generating entirely new molecular structures, Recurrent Neural Networks (RNNs) were used in conjunction
with reinforcement learning frameworks like REINVENT, which can be optimized to design molecules with
desired drug-like properties [1, 8]. Furthermore, to predict how these new molecules would physically interact
with a protein target, diffusion models such as DiffDock were used to generate likely 3D binding poses,
offering a significant improvement in accuracy over traditional docking methods [12].

C. Virtual Screening and Prioritization

With the models trained, the next step was a massive virtual screening campaign. Candidate molecules were
screened against specific bacterial and human protein targets using high-performance docking tools like
RosettaVS and AutoDock Vina [4]. To make this process more efficient, an active learning approach was
implemented. This allowed the system to iteratively learn from its own predictions and experimental
feedback, focusing its computational power on the most promising molecules and continuously improving its
knowledge base [1, 19]. Compounds were then ranked based on a composite score that considered not only
predicted binding affinity but also crucial drug-likeness properties like Lipinski’s Rule of Five and ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions, ensuring the candidates were
both potent and viable [3, 9].

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM52104 | Page 5


http://www.ijsrem.com/

LT Ak
@12 International Journal of Scientific Research in Engineering and Management (IJSREM)

W Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930
Stages Al in drug
in drug development
development

Identification of new

............ 1 targets
Prediction target's role
Identification and Validation of targets  1in disease
Prediction of signalling
system
Identification and/or design
of hits compounds = c-ceeeceemieaaaa.
Stage 1 (5000-10000 compounds) e
(Basic .
research) Prediction of new
Synthesis and OomPands
Optimization of lead Predoctppn of ADMET
compounds 7 properties
Predicti synthetic
In vivo routes
models L
s —
(Preclinical 5 nd Prediction toxicity
Phase) (5 compounds)
------------ 68 YOarS -—--—ccececiciciiasscccnecenee e
Phase
I
8.5 yeme Drug repurposing
Stage 3 Selection of patient
(Clinical Phase population
Phase) ] Adherence control
10.5years
Phase
L]
------------- 14 Yoars «=====-c- @Ersecesesctracmnsicccanniaiccssosannansn
Regulatory »
h
P Lo O 1.5-2 YOArg - === <<= sem = m e eececeaaaaaan
Stage 4
{Pos- el Pharmacovigilance
surveillance) ‘Pm‘:‘ 9

Fig. 2. A typical Al-driven drug discovery workflow, illustrating the multi-stage computational pipeline from data collection and model
development to virtual screening and experimental validation.

D. Validation and Evaluation

The final and most crucial stage was the validation of the Al's predictions. This began with in silico validation,
where we used cross-validation and external test sets to assess the models' predictive accuracy and
generalization ability. The true test, however, came from in vitro and experimental validation in a wet lab.
Top-ranked candidates from the virtual screening pipeline were synthesized and tested. For instance, Liu et al.
experimentally confirmed the antibacterial activity of abaucin against its target pathogen, while Zhou et al.
validated their docking predictions by obtaining the crystal structure of the identified drug- protein complex
[4]. The success of the methodology was quantified using performance metrics such as ROC-AUC (Receiver
Operating Characteristic - Area Under the Curve), enrichment factors, and hit rates, which provide a clear
measure of the models' effectiveness and success in identifying viable drug candidates [6].
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V. TECHNICAL DETAILS OF AT METHODS

The success of Al-driven drug discovery relies on a suite of sophisticated computational techniques. These
methods are designed to intelligently process vast amounts of chemical and biological data, making sense of
complex relationships to predict molecular behavior. The technical foundation of these advancements is built
on three main pillars: advanced neural networks, intelligent screening algorithms, and cutting-edge generative
models [3, 6,9, 13, 15, 17].
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Fig. 3. A schematic representation of a molecule as a graph, a format used by Graph Neural Networks (GNNSs) to learn structural features and
predict bioactivity.

A. Neural Networks and Graph Models

At the core of many Al drug discovery systems is how molecules are represented and analyzed. Instead of
treating molecules as simple strings of text, they are often represented as graphs, where atoms are the nodes
and chemical bonds are the edges [5]. Graph Neural Networks (GNNs) are a class of deep learning models
specifically designed to process this type of structured data. They learn complex patterns by considering both
the properties of individual atoms and their connections to others, making them highly effective at predicting a
molecule’s bioactivity or toxicity [4, 12]. In parallel, traditional deep feed-forward networks are still widely
used, often trained on structured datasets of molecular descriptors to classify and predict a compound’s
properties based on its chemical fingerprints [10].

B.  Active Learning and Docking

Al significantly enhances the efficiency of molecular docking, a computational method used to predict how a
small molecule will bind to a protein target. Instead of running brute-force simulations on billions of
compounds, Al models act as a smart filter. Active learning is a key technique that guides this process. It
works in an iterative loop: the Al model selects the most promising compounds to be tested, learns from the
results, and then uses that new knowledge to make better predictions for the next batch [1, 16]. This process
creates a dynamic balance between exploration (searching for new types of molecules) and exploitation
(focusing on the most promising chemical spaces), ensuring that computational resources are used most
effectively [19].

C. Generative Models
Perhaps the most revolutionary aspect of Al in drug discovery is the ability to create entirely new molecules

from scratch, a process known as de novo design. This is made possible by generative models that learn the
underlying rules of chemistry. Variational Autoencoders (VAEs) and Generative Adversarial Networks
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(GANS), for instance, can generate new molecular structures that meet specific criteria, such as a desired shape
or a particular chemical property [1, 8]. More recently, Diffusion Models, like DiffDock, have emerged as a
powerful new method. They can model the intricate 3D relationship between a ligand and a protein, creating
new, high-quality binding poses with remarkable accuracy. By generating molecules with optimized binding
affinity and drug-likeness from the ground up, these models shift the focus from simply screening existing
libraries to actively designing the perfect drug candidate [1, 14, 19].

CHALLENGES AND LIMITATIONS

Despite the significant advancements, the widespread adoption of Al in drug discovery faces several critical
challenges that must be addressed to unlock its full potential. These limitations range from the foundational
data used to train models to the practical constraints of experimental validation [3, 10, 11, 13, 14, 15].

Fig. 4. A molecular docking simulation showing a ligand (small molecule) binding to the active site of a protein (large molecule), a key step in
predicting binding affinity.

A. Data Quality and Availability

The performance of any Al model is directly tied to the quality and quantity of its training data. A primary
limitation is the scarcity of high- quality, standardized biological and chemical data. Much of the publicly
available data is limited in scope, incomplete, or contains biases, which can lead to models that perform
poorly in real-world scenarios [5, 10]. Furthermore, critical data on off-target effects, toxicity, and clinical
outcomes are often held within private company databases, limiting the ability of the broader research
community to develop more comprehensive and robust Al models.

B.  Generalization and Interpretability

Current Al models, particularly deep learning networks, struggle with generalization. They often perform
exceptionally well on data similar to what they were trained on, but their performance can drop significantly
when faced with new, unseen targets or molecules that exist in a different chemical space [12, 14]. This is often
tied to the "black box" nature of many neural networks. The models can make accurate predictions, but they
cannot explain why they made that prediction or what chemical features are driving the activity. This lack of
interpretability makes it difficult for human researchers to trust the model's output, understand the underlying
biological mechanisms, or troubleshoot failures [11, 14].
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C. Validation Bottlenecks

Even with highly accurate Al predictions, the traditional process of experimental validation remains a major
bottleneck [1]. Synthesizing a single compound and testing it in a lab is both time-consuming and expensive.
While Al can sift through billions of virtual compounds in a fraction of the time, the subsequent lab work—
including synthesis, in vitro assays, and in vivo animal studies—still follows a slow, manual process. This
disconnects between the speed of computational discovery and the pace of laboratory confirmation can slow
down the entire pipeline [19]. Bridging this gap requires significant investment in robotics, high- throughput
screening, and integrated automation workflows that can create a seamless, end-to-end "design-make-test"
cycle.

VL FUTURE DIRECTIONS

The future of Al-driven drug discovery is poised for revolutionary advancements, driven by the convergence
of several emerging technologies. These innovations promise to overcome current limitations and create a
more integrated, efficient, and ethical drug development ecosystem [2, 3, 10, 11, 15, 18].

A.  Generative Al and Foundation Models

The next generation of generative Al will move beyond creating simple molecules to designing complex,
multi-component systems with precise biological functions. This includes using advanced models like
diffusion models and transformers to design not only small molecules but also peptides and biologics [1, 8].
Furthermore, the development of large foundation models for chemistry and biology could serve as a "Google
of molecules," pre-trained on vast public and private datasets to understand the fundamental rules of chemical
space. This would allow researchers to bypass the costly and time-consuming process of training new models
from scratch, accelerating the design of new drug candidates [1, 19, 20].

B.  Quantum Computing

Quantum computing holds immense promise for accelerating molecular simulations, a task that currently
pushes the limits of even the most powerful supercomputers [10]. Traditional computers struggle with the
complex quantum mechanical calculations required to accurately model molecular interactions, such as
protein folding and binding dynamics. Quantum computers, with their ability to process vast numbers of
variables simultaneously, could perform these simulations in a fraction of the time, providing unprecedented
accuracy in predicting how a potential drug will behave in the body [4]. This will allow researchers to evaluate
a much larger number of candidates and reduce the risk of failure in later stages of development [10].

C. Multimodal Al and Personalized Medicine

Future Al systems will no longer rely on chemical data alone. The next frontier is multimodal Al, which will
integrate diverse data sources— including genomics, proteomics, electronic health records, and real-world
patient data—to create a holistic view of disease [2, 16]. This integration will allow Al to not only discover a
new drug but to also predict its efficacy and safety in specific patient populations, ushering in the era of true
precision medicine [2, 18]. By tailoring treatments to an individual’s unique biological makeup, this approach
promises to make drug development more targeted and effective [2].

D. Federated Learning and Ethical Considerations

To address the challenge of data silos and privacy concerns, federated learning is emerging as a solution. This
approach allows multiple institutions to collaboratively train a single Al model without sharing their raw,
proprietary data. Instead, only the model's parameters are exchanged, keeping sensitive patient and chemical
information private [11]. This could unlock a wealth of previously inaccessible data, allowing for the
development of more robust and unbiased models [11, 13]. As AI becomes more deeply embedded in
healthcare, ethical issues, such as algorithmic bias and data privacy, will become increasingly important,
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making federated learning a crucial tool for responsible innovation [11, 13].

VIL CONCLUSION

The integration of artificial intelligence (Al) into drug discovery marks a pivotal shift in the pharmaceutical
industry. This review has demonstrated that Al is not just a tool for optimization, but a transformative force
capable of accelerating research, reducing costs, and enabling the exploration of chemical space in a way that
was previously unimaginable [2, 6, 15]. The case studies on the discovery of abaucin and the success of the
RosettaVS/OpenVS platform clearly illustrate Al's ability to identify novel molecules and optimize large-scale
virtual screening with remarkable efficiency [4, 16].

However, Al's journey in drug discovery is still in its early stages. Significant challenges persist, particularly
concerning the quality and accessibility of data used to train models [10]. The "black-box" nature of many
deep learning systems means we can't always understand why a model makes a certain prediction, which
hinders trust and biological insights [14]. Furthermore, the speed of Al-driven computational discovery is still
mismatched with the slower, more traditional pace of experimental validation [1].

Looking ahead, the next wave of innovation must focus on bridging these gaps. Future research will need to
prioritize developing more interpretable AI models to provide a clear rationale for their predictions. The field
will also benefit from multimodal Al approaches that can integrate vast and diverse datasets, from genomics
and proteomics to clinical patient data, paving the way for truly personalized medicine [2, 18]. Ultimately, the
most impactful advancements will involve the creation of fully automated, closed-loop systems that can
handle the entire "design-make-test-analyze" workflow, seamlessly connecting the virtual world of Al with
the physical world of the laboratory [1]. While significant hurdles remain, Al is undoubtedly positioned to
usher in a new era of faster, more efficient, and more effective drug development. The future of this field is a
collaborative one, where human expertise guides Al to generate intelligent hypotheses, and Al's
computational power in turn allows human scientists to achieve breakthroughs that were once thought
impossible. The synergy between human creativity and machine efficiency will be the defining feature of
pharmaceutical innovation in the years to come.

ACKNOWLEDGEMENT

I would like to extend my sincere gratitude to everyone who contributed to the successful completion of this
research.

First, I thank the faculty and staff of the Department of Master of Computer Applications (MCA) at East West
Institute of Technology, affiliated with VTU University, for their guidance and for providing the academic
environment necessary for this work. Their support and expertise were invaluable.

I am also deeply grateful for the opportunity to conduct this research, which has been a significant learning
experience. This project would not have been possible without the support and resources provided.

Finally, I express my heartfelt appreciation to my family and friends for their constant encouragement and
support throughout this endeavor.

REFERENCES

[1]. Balaguru, Saranya, & Gandra, Alekhya. (2024). Unleashing Molecular Potential: A Process Discovery and

Automation Workflow for Generative Al in Accelerating Drug Discovery. International Journal of Innovative
Science and Research Technology.

https://doi.org/10.38124/ijisrt/IJISRT24NOV958

[2]. Paramasivan, Arunkumar. (n.d.). The Future of Personalized Medicine AI-Driven Solutions in Drug

Discovery and Patient Care. Leading Health Insurance Company.

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM52104 | Page 10



http://www.ijsrem.com/
https://doi.org/10.38124/ijisrt/IJISRT24NOV958

| S8 \zk‘
'{IJSREM."
s seurna International Journal of Scientific Research in Engineering and Management (IJSREM)
W Volume: 09 Issue: 08 | Aug - 2025 SJIF Rating: 8.586 ISSN: 2582-3930

[3]. Pache, Mukund M., et al. (n.d.). The AI-Driven Future of Drug Discovery: Innovations, Applications, and

Challenges. K. V.N. Naik S. P. Sanstha's, Institute of Pharmaceutical Education and Research.

[4]. Wu, Yulun, et al. (n.d.). SPATIAL GRAPH ATTENTION AND CURIOSITY-DRIVEN POLICY

FOR ANTIVIRAL DRUG

DISCOVERY. Multiple Institutions.

[5]. David, Laurianne, et al. (2020). Molecular representations in Al- driven drug discovery: a review and

practical guide. J Cheminform. https://doi.org/10.1186/s13321-020-00460-5

[6]. Chowdhury, Ismatul Jannat, et al. (2025). Revolutionizing Drug Discovery: A Systematic Review of Al

and Machine Learning Application. Proceedings of the 3rd International Conference on Self Sustainable

Artificial Intelligence Systems (ICSSAS-2025).

[7]. Malkawi, Ruba. (2024). REVOLUTIONIZING DRUG DELIVERY INNOVATION: LEVERAGING
AI-DRIVEN CHATBOTS FOR

ENHANCED EFFICIENCY. School of Pharmacy, Jadara University.

[8]. Rao, Angajala Srinivasa, et al. (n.d.). Generative Al Revolutionizing Drug Discovery and Materials
Science: A Descriptive Research Approach. Kallam Haranadha Reddy Institute of Technology.

[9]. Hassan, Shazia. (n.d.). Exploring the Role of Al in Drug Discovery: Applications and Benefits. Deloitte
Consulting LLP.

[10]. Tripathi, Manish Kumar, et al. (2021). Evolving scenario of big data and Artificial Intelligence (Al) in
drug discovery. Molecular Diversity. https://doi.org/10.1007/s11030-021-10256-w

[11]. Livieri, Georgia, et al. (2024). Ethical Issues Arising from the Use of Al in Drug Discovery. Journal of
Politics and Ethics in New Technologies and Al. https://doi.org/10.12681/jpentai.37093

[12]. Zhang, Yang, et al. (2024). Attention is all you need: utilizing attention in Al-enabled drug discovery.
Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbad467

[13]. Negi, Mohit Singh, & Singh, Anosh. (n.d.). Application of Al in drug discovery. International Journal
of Advance Research, ldeas and Innovations in Technology.

[14]. Xie, Evan, et al. (2024). An Al-Driven Framework for Discovery of BACE1 Inhibitors for Alzheimer’s
Disease. bioRxiv. https://doi.org/10.1101/2024.05.15.594361

[15]. Dudhe, Anshu Chaudhary, et al. (n.d.). Al — New Avenue for Drug Discovery and Optimization. School
of Pharmacy, G H Raisoni University.

[16]. Manik, Mia Md Tofayel Gonee, et al. (n.d.). Al-Driven Precision Medicine Leveraging Machine
Learning and Big Data Analytics for Genomics-Based Drug Discovery. Journal of Pharmaceutical and Health
Sciences. https://doi.org/10.63332/joph.v511.1993

[17]. Islam, Shahadatul, et al. (2025). AI-Driven Pharmacology: Leveraging Machine Learning for Precision
Medicine and Drug Discovery. International Journal of Computer Applications.

[18]. Nuka, Sai Teja, et al. (n.d.). Al-Driven Drug Discovery: Transforming Neurological and
Neurodegenerative Disease Treatment Through Bioinformatics and Genomic Research. American Journal of
Psychiatric Rehabilitation.

[19]. Narne, Harish. (2024). ADVANCEMENTS IN GEN AI FOR DRUG DISCOVERY
ACCELERATING RESEARCH AND

DEVELOPMENT. International Journal of Advanced Research in Engineering and Technology (IJARET).
[20]. Chen, Nicholas. (n.d.). A perspective on Al-led drug discovery. https://orcid.org/0009-0005-1190-6822

© 2025, IJSREM | www.ijsrem.com DOI: 10.55041/IJSREM52104 | Page 11


http://www.ijsrem.com/
https://doi.org/10.1186/s13321-020-00460-5
https://doi.org/10.1007/s11030-021-10256-w
https://www.google.com/search?q=https%3A//doi.org/10.12681/jpentai.37093
https://doi.org/10.1093/bib/bbad467
https://doi.org/10.1101/2024.05.15.594361
https://doi.org/10.63332/joph.v5i1.1993
https://orcid.org/0009-0005-1190-6822

