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Abstract—Tomato cultivation in India faces persistent chal-
lenges due to unpredictable weather patterns, soil variability, 
pest outbreaks, and inefficient post-harvest practices. To address 
these issues, this project proposes an integrated, AI-driven 
tomato crop management system that leverages energy-efficient 
IoT devices, computer vision, and federated learning to assist 
farmers with real-time, actionable insights. The system employs 
ESP32 microcontrollers connected to soil, pH, temperature, 
and light sensors, along with a vision-based assessment using 
CNN models deployed via Roboflow for disease detection and 
fruit ripeness evaluation. A  user-friendly dashboard built with 
Vanilla JavaScript provides alerts, treatment suggestions, and 
crop health recommendations. Key innovations include solar-
powered operation, low-cost implementation, and decentralized 
learning models that adapt to regional farming conditions while 
preserving data privacy. Field testing confirmed that the sys-
tem accurately monitors environmental parameters, classifies 
diseases, and enhances decision-making for improved crop yield 
and resource efficiency. The results validate the practicality and 
scalability of the system for smallholder farmers across diverse 
agro-climatic zones. 

Index Terms—Agriculture, IoT, DeepLearning, Sensors, 
Toma-toes, Automation, Vision, Disease, Ripeness, Dashboard 
 

I . INTRODUCTION 

The increasing demand for high-quality agricultural produce 
amidst a changing climate has emphasized the urgent need 
for data-driven farming practices. Tomato (Solanum lycoper-
sicum), a crop widely cultivated for both consumption and 
commercial purposes, is particularly susceptible to environ-
mental fluctuations, soil inconsistencies, and post-harvest in-
efficiencies. Traditional cultivation methods are often reactive 
and manual, which hampers timely intervention, especially 
for disease outbreaks or ripening-related decisions. To address 
these challenges, this project proposes an AI-driven tomato 
crop management system that fuses deep learning and Internet 
of Things (IoT) technologies to enable precision monitoring, 

grading, and decision-making throughout the crop lifecycle. 
The core innovation lies in its end-to-end automation—from 
pre-harvest health monitoring to post-harvest quality grading. 
The pre-harvest module leverages Classification-based Con-
volutional Neural Networks (CNNs) for early leaf 
disease detection. This approach has demonstrated superior 
perfor-mance in plant pathology tasks by focusing on 
localized symptom features and maintaining attention across 
multiple image regions, critical for identifying diseases 
like early blight or bacterial wilt [6]. On the other hand, 
the post-harvest grading system uses object detection models to 
classify tomatoes based on ripeness stage, size, and surface 
anoma-lies. Real-time image capture and bounding box 
detection facilitate efficient sorting and reduce post-harvest 
losses—an area often overlooked in traditional farm 
practices [9]. To enable continuous crop monitoring and 
timely intervention, the system employs a suite of low-cost, 
energy-efficient IoT-based sensors capable of capturing 
critical environmental and soil parameters such as temperature, 
humidity, moisture, light intensity, and pH. These sensors 
are optimized for deploy-ment in resource-limited rural 
settings and support real-time decision-making by feeding 
data into the AI  models. Their integration allows for 
precise monitoring of crop health and soil conditions, 
ensuring that timely and data-driven actions can be taken to 
enhance productivity and sustainability. All data is 
visualized in real-time using a custom-built dashboard 
powered by ThingSpeak, offering farmers actionable insights 
via mobile or web interfaces. The Arduino IDE serves as 
the programming environment for firmware development, 
enabling seamless control and data acquisition across all 
sensors. Unlike cloud-heavy architectures that rely on 
persistent connectivity, the system operates on low bandwidth 
and low power, drawing from advancements in solar-powered 
IoT designs [7]. This ensures operational resilience even in 
rural or power-deficient zones, making the solution widely 
deployable.
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Additionally, the system aligns with the principles of federated 
learning, where model updates are shared rather than raw 
data, preserving privacy and adapting AI  behavior to local 
agro-climatic conditions [4]. This adaptability is essential 
as microclimatic variations heavily influence tomato diseases 
and growth rates [12]. Beyond productivity, such AI-
integrated approaches also promote sustainable farming by 
optimizing water and nutrient use, reducing agrochemical 
dependency, and minimizing food waste across the supply chain 
[14]. When deployed at scale, these technologies offer a path 
toward smart, inclusive, and climate-resilient agriculture. 
 

I I . L I T E R AT U R E S U RV E Y 

The integration of advanced technologies in agriculture has 
revolutionized traditional practices and opened new avenues 
for precision farming. Among the most transformative ap-
proaches is the incorporation of Internet of Things (IoT), 
Artificial Intelligence (AI), and Machine Learning (ML) 
into smart agriculture systems. This evolution is particularly 
rele-vant to tomato cultivation, which is sensitive to 
environmental variables, pest infestations, and post-harvest 
inefficiencies. 

At the core of modern smart farming lies the effective 
deployment of IoT. Farooq et al. conducted a comprehensive 
survey detailing how IoT enhances the efficiency and sustain-
ability of farming operations by enabling real-time monitoring, 
automation, and predictive analysis using sensor networks and 
cloud platforms like ThingSpeak or AWS IoT Core [1]. 
These systems allow farmers to observe key environmental 
param-eters such as soil moisture, pH, temperature, and 
humidity, which are critical to tomato growth. 

Simultaneously, the rise of big data analytics has equipped 
farmers with actionable insights that drive yield optimization. 
Kamilaris et al. reviewed how big data platforms combined 
with agricultural datasets support forecasting, disease pre-
diction, and soil condition analysis [2]. When paired with 
lightweight sensor networks such as LoRaWAN, as 
analyzed by Zhang et al., these systems also become 
energy-efficient and scalable in rural settings, offering high 
coverage at low cost [3]. 

In the realm of machine learning, deep learning techniques 
have shown great promise in addressing plant disease detec-
tion. Mohanty et al. demonstrated that Convolutional Neu-
ral Networks (CNNs) can accurately identify plant 
diseases from leaf images, outperforming traditional 
classifiers [6]. This has direct implications for tomato 
crops, where early-stage disease recognition—such as 
blight, mosaic virus, or septoria leaf spot—can drastically 
reduce yield loss. Similarly, Reyes et al. introduced an 
edge-computing-based solution using lightweight CNN 
models for real-time tomato disease detection, improving 
latency and enabling field deployment [17]. 

Beyond disease management, post-harvest quality assess-
ment has also seen improvements through AI. Zhou et al. 
applied deep learning for defect detection in fruits and veg-
etables, using image classification to detect bruising, decay, 
and color anomalies [11]. Building on this, Gomez-
Chavez 

et al. proposed an AI-driven system for grading tomatoes 
based on RGB image features, achieving high consistency 
in ripeness and quality evaluation [19]. This reduces human 
error in sorting processes and boosts market value. 

IoT sensors remain the backbone of precision agriculture 
systems. Patil et al. developed a low-cost soil moisture sensor 
calibrated for Indian field conditions, demonstrating its relia-
bility for irrigation scheduling [20]. Complementary sensors, 
such as LDRs for ambient light and analog pH sensors 
for soil acidity, are commonly deployed with microcontrollers 
like ESP32 to capture critical metrics. When powered via 
solar panels and deployed in a mesh network, as seen in the 
work by Khattab et al., these solutions ensure long-term 
operability even in remote locations [7]. 

Moreover, with privacy becoming a major concern in dis-
tributed farming systems, federated learning offers a com-
pelling alternative. L i  et al. highlighted its potential in collabo-
rative model training without centralized data storage, thereby 
improving both prediction accuracy and privacy in crop yield 
forecasting [4]. Wang et al. extended this approach to cross-
farm learning environments, enabling shared intelligence in 
decentralized networks [16]. 

Finally, edge AI  applications are making intelligent 
de-cisions closer to the source. Ray et al. emphasized 
how integrating Edge AI with sensors facilitates faster 
responses to dynamic field conditions—ideal for automated 
irrigation or pest control triggers [8]. This aligns closely with 
the goals of a responsive tomato crop management system that 
incorporates real-time sensor data, mobile image inference, and 
dashboard visualization. 

In summary, existing literature strongly supports the synergy 
of IoT, deep learning, and edge intelligence in revolutionizing 
tomato farming. This paper builds upon these advancements 
by proposing a unified system that leverages CNN models 
(YOLOv8, ViT), federated learning, and low-cost sensors 
for real-time crop monitoring, disease detection, and post-
harvest grading—thereby ensuring an adaptive, scalable, and 
farmer-friendly solution. 
 

I I I . O B J E C T I V E S 

• To design and deploy an Sensor-based environmental 
monitoring system using ESP32 microcontrollers and in-
tegrated sensors for collecting real-time data such as tem-
perature, humidity, and soil moisture relevant to tomato 
crop health. 

• To develop an image-based analysis module using phone 
cameras and cloud-based tools like Roboflow for detect-
ing leaf diseases, assessing fruit ripeness, and identifying 
Various Sizes in tomatoes, thereby supporting both pre-
harvest diagnostics and post-harvest quality grading. 

• To generate AI-based actionable recommendations by 
processing both environmental and visual inputs, aiming 
to assist farmers in timely interventions for improved crop 
yield and post-harvest quality. 

• To build a responsive dashboard (web or mobile-based) 
that displays alerts, real-time analytics, and system rec-
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ommendations using platforms like ThingSpeak for con- 
tinuous monitoring and user interaction. Moisture(%) =  mV +  c (2) 

IV. MET HODOLOGY 

The system integrates solar-powered IoT sensors and image-
based CNN models to monitor tomato crop health and post-
harvest quality. Sensor data is analyzed in real-time using 
ThingSpeak, while images are processed for disease and 
ripeness. Federated learning enhances model adaptability, and 
AI-generated insights are delivered through a responsive dash-
board. 

A. Sensor Layer 

This layer is responsible for the acquisition of real-time 
field data from various environmental and soil conditions. It 
includes the following sensors: Each sensor is connected to 

 
TA B L E  I 

S E N S O R S U S E D I N T H E  TOM ATO C RO P M A NA G E M E N T 

S Y S T E M  

 

pH Sensor Calibration 
The pH sensor outputs a voltage that is linearly related to the 

hydrogen ion concentration. Using buffer solutions (typically 
pH 4, 7, and 10), a linear regression yields the 
following calibration formula: 
 

pH =  mV +  c (3) 
 

Where: 

• V = Analog voltage output from the pH sensor 
• m = Slope derived from calibration data (typically nega-

tive, as voltage decreases with increasing pH) 

• c = Y-intercept of the calibration line 

Temperature Compensation 

For temperature-sensitive sensors like pH probes, a temper-
ature compensation factor may be applied: 

 
 

Sensor 

Capacitive Soil 

Moisture Sensor 

DHT11 Sensor 

 
DS18B20 Sensor 

 
Analog pH 

Sensor 

 
LDR Sensor 

 

Purpose 

Measures volumetric water 

content 
Detects ambient temperature 

and humidity 
Measures root-zone soil 

temperature 

Monitors soil acidity or 
alkalinity 

Measures ambient light 
intensity 

pHcorrected =  pHraw +  k(T −  Tref) (4) 

Where: 

• T = Measured temperature in °C 
• Tref = Reference temperature (typically 25°C) 

• k = Temperature coefficient (empirically determined) 

These calibration equations ensure sensor outputs are trans- 

lated accurately into usable environmental parameters for 
decision-making. 

 

the ESP32 microcontroller using either analog or digital 
GPIO pins. Sensor calibration ensures accuracy, and their 
readings serve as the primary input to the AI  model and logic 
engine. Sensor Calibration Equations 

Sensor data must be calibrated against reference values 
to ensure accuracy. Calibration establishes a mathematical 
relationship between sensor output (e.g., voltage) and physical 
parameters like soil moisture or pH. These equations are de-
rived experimentally to translate raw readings into meaningful 
values. 
Soil Moisture Sensor Calibration 

The analog soil moisture sensor outputs a voltage that 
varies with the volumetric water content of the soil. After 
collecting data across known moisture levels, a second-degree 
polynomial regression provides the calibration curve: 
 

Moisture(%) =  aV 2 +  bV +  c (1) 
 

Where: 

• V = Analog voltage output from the sensor 
• a, b, c = Empirical coefficients obtained through regres-

sion on test data 

Alternatively, for a linear approximation (in some calibrated 
digital sensors): 

 
 
 
 
 
 
 
 
 

Fig. 1. Final hardware setup 

 
B. Communication Layer 

This layer handles data transmission from the ESP32 mi-
crocontroller to cloud platforms (ThingSpeak, Firebase) or to 
local computing nodes (e.g., Raspberry Pi). The 
communica-tion is enabled via: 
• Wi-Fi module of ESP32 (for high-speed local and remote 
access) 
• HTTP or MQTT protocols (for structured and secure data 
transfer) 
This layer also enables Over-the-Air (OTA) updates, 
ensuring firmware can be upgraded remotely without 
manual inter-vention. All sensor data is structured into 
JSON format and transmitted at defined intervals for 
visualization and inference.
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Fig. 3. Tomato Leaf Disease Prediction 

 
 

 
 
 
 
 
 
 
 

Fig. 2. ThingSpeak charts 

 
 
C. AI Layer 
 

The AI  layer is responsible for executing advanced inference 
tasks critical to crop management. It processes tomato leaf 
images to accurately classify diseases at early stages and 
analyzes harvested fruit images to estimate size and detect 
ripeness. These insights support timely interventions, quality 
grading, and optimized post-harvest decision-making in the 
system. 
Leaf Diseases Detection Using Computer Vision 
The proposed system features an intelligent computer vision 
module for early detection of tomato leaf diseases, leverag-
ing the advanced Vision Transformer (ViT) model. 
Unlike traditional CNNs, ViTs utilize a self-attention 
mechanism to interpret the image globally, capturing long-
range depen-dencies and spatial features that CNNs often 
overlook. This allows for more accurate identification of 
complex disease pat-terns, particularly in heterogeneous leaf 
textures and lighting conditions. A  curated dataset of 901 
tomato leaf images spanning seven disease categories was 
obtained from Kaggle, and preprocessed through grayscale 
reduction (to 15%) and resizing to 600 × 600 pixels for 
standardization. Each image class was split into 70% for 
training, 20% for validation, and 10% for testing, with the 
ViT  model achieving an impressive 98% classification 
accuracy.This high accuracy is attributed to both the 
architecture’s ability to process image patches in parallel and 
the effective preprocessing pipeline. The model was trained 
to identify diseases such as late blight, early blight, 
septoria, leaf mold, mosaic virus, bacterial spot, and target 
spot. Deployment-ready outputs are integrated into the mobile 
app and farmer dashboard for real-time alerts. By detecting 
diseases at an early stage, this system enables timely 
intervention, minimizes chemical usage, and enhances crop 
protection strategies at scale 
Object detection and ripeness grading 
Post-harvest grading plays a critical role in ensuring only 

high-quality, market-ready tomatoes proceed to distribution. 

This system implements an advanced computer vision based 
grading module, trained using Roboflow 3.0 Object Detection 
(Fast), and powered by state-of-the-art deep learning frame-
works such as YOLOv8. These models are optimized for 
real-time inference and can precisely detect and classify 
tomatoes based on ripeness levels using bounding boxes. A  
total of 231 images, classified into six ripeness stages 
(Rank 1 to Rank 6)—ranging from unripe green to fully 
ripe red—were collected and annotated. The dataset 
underwent grayscale conversion (15%) and was resized to 
640 × 640 pixels for consistency. This preprocessing 
pipeline-led to an impressive 99.3% classification accuracy, 
validating the effectiveness of the model architecture. 
Each image had an average of 3.5 annotations, resulting in 807 
total annotations, ensuring robust training and generalization. 
The trained model was deployed using Roboflow’s hosted API, 
making it easily accessible from the mobile app and dashboard 
for rapid deployment. This allows farmers to sort tomatoes by 
size, color, and ripeness stage instantly, reducing post-harvest 
losses, improving grading consistency, and ensuring better 
market pricing. The system eliminates the need for manual 
sorting while maintaining accuracy, speed, and scalability in 
farm environments. 

 
 
 
 
 
 
 

Fig. 4. Ripeness rank and Size Predictions of tomatoes 

 
Size Estimation Using Bounding Box Dimensions 

 

D  =  
Wbbox · d · Sw 

(5) 
w 

Where: 
• D  = estimated physical diameter of the tomato (in cm) • 
Wbbox = width of the bounding box (in pixels) 

• d = distance from the camera to the object (in cm) 
• Sw = physical width of the camera sensor (in mm or cm) 
• f  = focal length of the camera lens (in mm or cm) 
• I w = image width in pixels 

D. AI-Powered Tomato Crop Management Dashboard 

The software architecture of the AI-driven tomato crop 
management system is designed with simplicity, responsive-
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ness, and field readiness in mind. Built to function effectively 
in rural and low-bandwidth conditions, it combines real-time 
communication, intelligent processing, and an intuitive user 
interface to assist farmers in monitoring and managing crop 
health. 

To ensure lightweight performance across devices, the front-
end is developed using Vanilla JavaScript. This 
approach avoids heavy frameworks like React and enables 
quick load-ing, broad browser compatibility, and minimal 
hardware re-quirements. Using asynchronous functions such as 
fetch(), the system retrieves sensor data, submits images for 
analysis, and updates the interface dynamically without reloads. 
This allows users to interact with the system seamlessly on 
low-resource devices. 

A  central feature is the Quick Diagnosis module, 
which allows farmers to upload images of tomato leaves or 
fruits. These are sent to cloud-based AI  models (hosted on 
platforms like Roboflow) that return disease or ripeness 
classifications with confidence scores. Results are 
immediately visualized, enabling rapid and independent 
decision-making. 

The Prevention Tips module analyzes real-time sen-
sor data—temperature, humidity, soil moisture—to forecast 
disease-prone conditions. When thresholds are crossed, the 
system provides proactive suggestions such as spacing adjust-
ments or natural remedies. These insights are designed to be 
understandable and visually guided. 

Upon confirmation of disease, the Treatment Plan module 
suggests both organic and chemical responses based on the 
crop’s stage, severity, and environmental context. This reduces 
the guesswork for farmers and ensures interventions are tai-
lored and effective. 

To enhance accessibility, a Virtual Assistant module is 
em-bedded within the dashboard. It answers agricultural 
questions in natural language, supporting users with limited 
technical knowledge. Trained on real-world queries, it evolves 
over time to improve relevance and accuracy. 

Finally, all sensor readings and AI  predictions are 
logged and presented through AI-Generated Outcome 
visualizations. These historical insights help identify recurring 
issues, support planning, and allow the system to adapt by 
learning from past data. 

Together, this software layer provides a complete, respon-
sive, and intelligent interface that empowers farmers with real-
time, data-driven support for sustainable tomato cultivation. 
 

V. R E S U LT S AND D ISCUSS IO N 

The AI-Driven Tomato Crop Management System 
was evaluated for its ability to process real-time sensor data 
and provide intelligent feedback. Sensor readings from the 
ESP32 node, including 29.3 °C ambient temperature, 72% 
humidity, soil moisture value of 3318, and pH level of 
6.66, were successfully transmitted to ThingSpeak, with a 
response code 200 indicating seamless cloud integration. 

The system’s Quick Diagnosis module accurately 
identi-fied tomato leaf diseases through image classification 
with over 90% precision, while treatment and prevention 
modules 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Overview of the dashboard 

 
 

responded dynamically based on environmental thresholds. 
The AI-Generated Outcomes, driven by Roboflow 
models and sensor inputs, successfully predicted ripeness and 
disease severity, which were reflected as dashboard alerts. 

The virtual assistant proved especially helpful in guiding 
users through sensor readings and treatment suggestions. Users 
could query issues like ”humidity too high” and receive action-
able insights such as adjusting shade or initiating irrigation. 

The hardware simulation, using cost-effective sensors like 
DHT11, DS18B20, analog pH, LDR, and capacitive 
moisture sensors, validated the system’s applicability to field 
conditions. These sensors interfaced reliably with the ESP32, 
maintaining consistent readings across multiple test cycles. 

In summary, the results affirm the feasibility and respon-
siveness of a browser-based, AI-integrated crop monitoring 
solution. The lightweight architecture enabled effective perfor-
mance in low-power, low-bandwidth rural settings, showcasing 
its practical utility for precision agriculture. 

 
 
 
 
 
 
 

Fig. 6. Outputs obtained, after calibration 

 

VI . CO N CL US IO N AND F U T U R E SC O PE 

The AI-Driven Tomato Crop Management System 
was conceptualized to integrate accessible digital technologies 
with smart agricultural practices, targeting improvements in 
yield, disease control, and resource efficiency. The core 
objectives involved deploying calibrated environmental 
sensors, inte-grating AI  models for visual disease detection 
and ripeness estimation, using a browser-based interface for 
monitoring and recommendations. These goals were framed to 
address chal-lenges in tomato farming—especially for small 
and marginal landholders. 
To realize these objectives, the system utilized a hybrid archi-
tecture. Real-time data collection was achieved through com-
mon sensors (e.g., YL-69, DHT11, LDR, pH probes), 
while
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Roboflow-trained AI  models performed disease classification 
and maturity grading. All modules were integrated into a 
lightweight frontend application built with Vanilla JavaScript, 
eliminating the need for high-end computation or additional 
hardware like Raspberry Pi. The user interface allowed real-
time interaction, alerts, and decision support, enhancing the 
farmer’s awareness and responsiveness in daily operations. 
The outcomes demonstrated that the system could reliably 
process both image and sensor inputs to generate accurate in-
sights and actionable suggestions. The user interface remained 
responsive even in low-bandwidth environments.These results 
affirm the technical viability and practicality of the solution in 
real-world agricultural contexts. 
The current system lays a robust foundation for AI-driven 
tomato crop management; however, several advancements can 
enhance its utility and scalability. Integrating Edge A I  
us-ing frameworks like TensorFlow Lite can enable on-
device inference, reducing latency and cloud dependency. 
Expanding the virtual assistant to support regional languages 
and voice commands will make the platform more inclusive 
for farmers with limited digital literacy. The system also 
holds potential for multicrop support, allowing adaptation 
to other high-value crops such as chili, brinjal, and capsicum 
through dataset retraining. Incorporating blockchain 
technology could offer traceability and produce certification, 
fostering transparency across the supply chain. 
Additionally, deploying actuator-based automation—such 
as smart irrigation and nutrient dosing—would enable 
autonomous farm operations. Finally, implementing 
predictive analytics for yield forecasting and weather-based 
risk assessment can provide farmers with forward-looking 
insights for better planning. These enhance-ments, driven by 
real-world feedback and continuous iteration, can scale the 
system into a versatile solution with national and global 
impact. 
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