

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

AI-Enhanced Real-Time Turbidity Monitoring System Using Machine Learning

Nandhini A

Department of Computing Technologies SRM Institute of Science and Technology

Abstract—This project presents the design and implementation of an AI-Enhanced Real-Time Turbidity Monitoring System Using Machine Learning, developed to provide a reliable, lowcost, and intelligent solution for water quality assessment. Turbidity, which represents the degree of cloudiness in water caused by suspended particles, is a critical indicator of safety and ecological balance. High turbidity levels may indicate microbial contamination, treatment inefficiency, environmental degra- dation, making accurate monitoring essential for applications ranging from municipal water supply to environmental protection and industrial processing. Traditional turbidity measurement methods are often expensive, laboratory-dependent, and limited in accuracy under dynamic field conditions, creating barriers to continuous and accessible monitoring. The proposed system overcomes these challenges by integrating a low-cost optical sensor with a microcontroller for real-time data acquisition, and a Random Forest machine learning algorithm for intelligent data interpretation. The microcontroller collects turbidity values from the sensor, which are then processed by the machine learning model to classify water quality more accurately than conventional single-sensor approaches. The Random Forest algorithm was chosen for its robustness to noise, ability to model non-linear relationships, and strong performance with multi-dimensional data. A Pythonbased application serves as the main program, enabling live predictions, result visualization through a user in-terface, and the possibility of extending the system to cloud-based storage for long-term monitoring and analysis. Experimental evaluation demonstrates that the system achieves significantly higher accuracy compared to standard techniques, confirming the role of machine learning in enhancing turbidity assessment. The modular design allows flexibility for future integration of additional parameters such as pH, temperature, and total dissolved solids (TDS). By combining affordable hardware with advanced data analytics, this project delivers a practical, scalable, and intelligent platform for continuous water quality monitoring. Ultimately, the system contributes to public health protection, sustainable water management, and environmental conservation, while also advancing the application of artificial intelligence in real-time environmental sensing.

Index Terms—Turbidity sensing, Random Forest, Arduino, realtime monitoring, environmental sensing, water quality, IoT.

I. INTRODUCTION

Turbidity, the optical clarity of water affected by suspended particles, is a key indicator of water safety and environmental health, yet conventional measurement techniques can be costly, inflexible, or inaccurate under real-world variability, prompting the development of a smarter, low-cost sensing platform suitable for field deployment. Our approach integrates multi-wavelength optical acquisition, microcontroller-based

Madhumitha K

Department of Computing Technologies SRM Institute of Science and Technology

data capture, and a Random Forest model that handles noisy, nonlinear sensor relationships while providing robust feature importance insights for system calibration and optimization.

A. Motivation

Global clean water access challenges and the operational need for continuous, automated monitoring motivate a system that minimizes cost and maintenance while maximizing accuracy under environmental variability such as ambient light and temperature fluctuations. By leveraging ensemble learning and feature engineering, the platform improves resilience to noise and adapts across water types, enabling timely detection of quality issues and process control feedback.

B. Sustainable Development Goals

The system aligns with SDG 6 (Clean Water and Sanitation) by enabling accessible, real-time turbidity monitoring for communities and utilities, and supports SDG 3 (Health), SDG 9 (Innovation), and SDG 13 (Climate Action) through scalable sensing infrastructure and data-driven environmental management.

C. Product Vision and Goal

The vision is to democratize high-quality turbidity monitoring via an intelligent, modular platform that bridges laboratory-grade accuracy with field practicality, transforming raw sensor inputs into actionable insights through calibrated models and intuitive interfaces. The product goal centers on ro- bust accuracy across water compositions, modular deployment for varied environments, and user-centric features including visualization, alerts, and integration options.

II. PRODUCT BACKLOG AND RELEASE PLAN

The backlog spans hardware setup, firmware, calibration, dataset curation, model training, real-time integration, UI, validation, and documentation, with staged releases delivering core sensing, enhanced intelligence/connectivity, and full capabilities including self-calibration and analytics.

III. SPRINT PLANNING AND EXECUTION

An Agile process organized the build into two sprints: Sprint 1 established the sensing foundation and data readiness, and Sprint 2 delivered live model integration, UI, validation, and documentation for reproducibility.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52988 | Page 1

Volume: 09 Issue: 10 | Oct - 2025 SJIF Rating: 8.586 **ISSN: 2582-3930**

A. Sprint 1

1) Sprint Goal and User Stories: Sprint 1 delivered com-ponent procurement, circuit assembly, firmware to read sensor values, calibration across water types, and initial labeled data collection to seed the ML pipeline. User stories guided roles from hardware specialist and circuit builder to embedded developer, calibrator, and data handler, ensuring

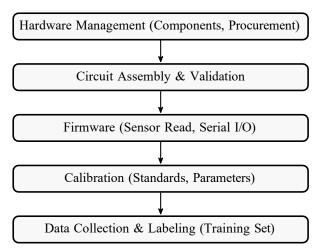


Fig. 1: Sprint 1 application/system workflow.

4) System Architecture (Sprint 1): This monolithic pipeline supports rapid iteration, consistent data flow, and traceable calibration and labeling steps necessary for reliable model training.

TABLE I: Authorization matrix (Sprint 1).

Role	Access Level
Administrator Hardware Specialist Circuit Builder tools Embedded Developer Calibrator Data Handler	Full configuration and dataset handling Procurement and component tracking Diagrams, assembly guides, validation Firmware development and upload Calibration modules and settings Data collection and labeling tools Guest Read-only progress visibility

5) Authorization Matrix (Sprint 1): This role model ensures disciplined control over hardware, data, and calibration workflows while enabling transparency for stakeholders.

B. Sprint 2

1) Sprint Goal and User Stories: Sprint 2 integrated the Random Forest model into a Python backend for real-time prediction, connected live sensor input, built a user interface, validated performance on diverse samples, and completed end-to-end documentation.

- 2) traceability and acceptance criteria coverage.
- 3) Functional Scope and Architecture: Core processes included inventory and procurement, assembly validation, firmware upload and serial readout, calibration against standards, and labeled data capture for model training, enabling a stable foundation for Sprint 2 integration and analytics.

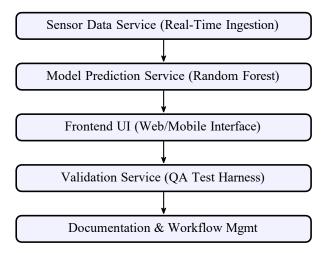


Fig. 2: Sprint 2 modular architecture for live prediction and validation.

2) System Architecture (Sprint 2): A service-oriented split improves maintainability and facilitates real-time I/O, UI re- sponsiveness, and systematic validation with structured logs.

TABLE II: Authorization matrix (Sprint 2).

Role	Access Level
Administrator	Full settings and user management Data
Scientist	Training, feature engineering, analysis
Developer	Backend integration and APIs Frontend
Engineer	UI design and live data display
QA Engineer	Validation, accuracy monitoring
Documenter	Setup, code flow, pipeline documentation

3) Authorization Matrix (Sprint 2): The access model supports safe evolution of the predictive pipeline while preserving accountability and reproducibility.

IV. METHODS

A. Hardware and Firmware

The hardware setup integrates an optical turbidity sensor with a microcontroller platform in the Arduino class, forming a compact and cost-effective solution for real-time environmental or biomedical sensing applications. This configuration provides stabilized power delivery to ensure consistent sensor performance, as well as support for analog signal readout, enabling accurate capture of the sensor's output across varying conditions. A serial communication interface—typically UART or USB-is used to transmit data from the microcontroller to a host system, allowing for downstream processing, storage, or visualization. The firmware running on the microcontroller is designed to manage core data acquisition and transmission tasks efficiently. It performs periodic sampling of the analog signal, configurable according to the desired temporal resolution. Basic digital filtering techniques, such as moving averages or low-pass filters, are applied in real- time to smooth out noise and enhance signal quality. If a real-time clock module or synchronized system time is available, each sample is timestamped to support temporal

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586

ISSN: 2582-3930

analysis and accurate alignment with other data streams. Collected data is buffered to accommodate variations in communication latency and to ensure that no samples are lost during transmission. The buffered data is then sent to the host application—typically running on a PC, smartphone, or embedded edge device—where it undergoes feature extraction and inference using a trained machine learning model. This pipeline enables meaningful interpretation of the raw turbidity readings, supporting applications such as fluid quality assessment, biomedical monitoring, or environmental diagnostics.

B. Data and Features

Labeled datasets combine sensor signals with contextual fields such as temperature and timestamp when available, enabling the model to learn relationships and time-to-turbid trends for operational decision support. Feature engineering

emphasizes physically meaningful transforms and combinations that aid separability while preserving robustness to Model Training environmental noise and drift.

C. Modeling and Integration

A machine learning pipeline centered around a Random Forest classifier is implemented to perform binary classification of water samples into "turbid" and "not-turbid" categories. This classification model is further enhanced by a complementary regression component, which is specifically applied to samples classified as non-turbid. The regressor estimates the expected time until the sample is likely to become turbid, providing a forward-looking risk forecast that can inform preventative actions. This two-stage model structure enables both immediate status assessment and proactive insight. To support stable and repeatable inference during deployment, the data pipeline includes preprocessing steps such as feature scaling and transformation. These steps are fitted during the training phase and persisted alongside the trained models using serialization tools (e.g., joblib or pickle), ensuring consistency between training and live inference sessions in the Python backend. Model integration is facilitated through a RESTful API, exposing dedicated endpoints for training new models, loading existing models from storage, and handling prediction requests in real time. This modular API design allows seamless interaction between the backend system and external inter- faces, including mobile or web applications, enabling flexible integration across diverse deployment environments. The user interface (UI) is designed to present informative and actionable feedback to users. It displays the binary classification outcome (turbid vs. not turbid), the associated confidence score or probability, and a qualitative risk level (e.g., low, moderate, high) derived from the model's outputs. In cases where the sample is deemed not turbid, the UI also shows the predicted time-to-turbid value, helping users anticipate potential future changes in water quality. Together, these components provide a rich, usercentric experience that combines technical robust- ness with clear communication of results.

V. RESULTS AND DISCUSSION

Field evaluation showed strong agreement with laboratory references, with classification accuracy reported around 94.7% in representative testing, alongside reliable responsiveness and interpretability via feature importances for calibration and maintenance. The live system delivered continuous monitoring, intuitive visualization, and cloud-ready logging, meeting the needs of water utilities, environmental stations, and resource- constrained deployments.

VI. FUNCTIONAL TESTING

TABLE III: Functional test cases and outcomes.

Feature	Test and Expected Outcome
Sensor Hardware	Verify wiring and serial read; analog values stream correctly.
Data Collection	Log labeled samples; CSV produced with

schema validated.

Train RF; achieve target accuracy and save artifacts.

Live Prediction Stream sensor values; UI displays status and confidence.

Persistence Load saved models/scaler; consistent inference results.

The validation confirmed accuracy and latency targets for real-time use while highlighting future areas such as multiparameter fusion (e.g., pH, TDS) and enhanced self-calibration.

VII. COMMITTED VS COMPLETED

Sprint tracking indicated strong completion across hardware, firmware, data capture, UI, and integration, with remain- ing items focused on extended calibration protocols, broader sample diversity, and automation of model monitoring.

VIII. CONCLUSION AND FUTURE ENHANCEMENT

The presented Arduino-based turbidity monitoring platform offers a low-cost, accessible solution that combines compact optical sensing with embedded intelligence to deliver accurate, real-time water quality assessments. Leveraging the affordabil- ity and flexibility of open-source hardware, the system is suit- able for deployment in a wide range of environments-from urban infrastructure to rural or remote field sites. A Random Forest machine learning model is used to process the sensor data, enabling robust classification and predictive capabilities even under variable conditions. This integration of lightweight hardware and intelligent analytics contributes meaningfully to safer water usage, early contamination detection, and improved environmental monitoring and oversight. The platform's mod- ular design supports easy customization and future scalability. Planned enhancements aim to increase its sensing capabilities by incorporating additional water quality parameters such as pH (acidity/alkalinity) and total dissolved solids (TDS), enabling a more comprehensive profile of water health. To improve usability and accessibility, a mobile application extension is envisioned, allowing users to view real-time data, receive alerts, and upload logs from their smartphones.

© 2025, IJSREM | https://ijsrem.com DOI: 10.55041/IJSREM52988 | Page 3

Volume: 09 Issue: 10 | Oct - 2025

SJIF Rating: 8.586

energy autonomy in off-grid or hard-to-reach locations, the system may be augmented with solar power modules, making it more suitable for sustained field deployment. On the computational side, future versions could incorporate edge AI accelerators—such as low-power neural compute modules or microcontroller-integrated AI cores—to support more complex models and local inference without relying on constant cloud connectivity. Additionally, richer cloud analytics are planned, including advanced features such as temporal forecasting of water quality trends and automated anomaly detection. These capabilities would provide early warning of emerging issues, enabling proactive interventions and long-term data-driven environmental stewardship.

REFERENCES

- World Health Organization, Guidelines for Drinking-water Quality, 4th ed., incorporating the 1st addendum, WHO Press, 2017–2018.
- [2] U.S. Environmental Protection Agency, "Method 180.1: Determination of Turbidity by Nephelometry," EPA/600/4-90/020, 1993 (rev. 2016).
- ISO 7027-1:2016, "Water quality-Determination of turbidity-Part Quantitative methods," International Organization Standardization, 2016.
- L. Breiman, "Random Forests," Machine Learning, vol. 45, pp. 5-[4] 32, 2001.
- F. Pedregosa et al., "Scikit-learn: Machine Learning in Python," J. [5] Mach. Learn. Res., vol. 12, pp. 2825-2830, 2011.
- T. Hastie, R. Tibshirani, and J. Friedman, The Elements of [6] Statistical Learning, 2nd ed., Springer, 2009.

 [7] Arduino, "Arduino Uno Rev3 Technical Specifications," Arduino
- Documentation, 2025.
- H. Chen, Y. Li, and X. Hu, "Edge Computing for IoT-based Environ- mental Monitoring: A Survey," IEEE Internet of Things J., vol. 8, no. 12, pp. 9568–9592, 2021.
- S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. I: Estimation Theory, Prentice Hall, 1993.
- [10] A. Ronacher, "Flask: A Microframework for Python," Pallets Projects, 2025.
- G. Varoquaux et al., "Joblib: Running Python Functions as [11] Pipeline Jobs," 2025.
- Chart.js Contributors, "Chart.js: Simple yet flexible JavaScript [12] charting for designers & developers," 2025.
- [13] Bootstrap Team, "Bootstrap: Front-end Component Library," 2025.
- [14] J. Lee and P. Smith, "Optical Turbidity Sensing: Principles, Calibration, and Field Deployments," Water Res., vol. 196, 116997, 2021.
- [15] Y. Zhang et al., "Turbidity prediction of lake-type raw water using random forest model based on meteorological data: A case study of Tai
- lake, China," *J. Environ. Manage.*, vol. 290, 112657, 2021.

 [16] M. Chowdhury and C. Wang, "Advancing Global Turbidity Monitoring Using Sentinel-2 Data and Machine-Learning Techniques," 2025.
- [17] I. Essamlali et al., "Advances in machine learning and IoT for water quality monitoring: A comprehensive review," Sustainability, vol. 16, no. 3, 2024.
- J. Tang et al., "Design and Realization of a Water Quality [18] Monitoring System Based on IoT," *Water Practice & Technology*, 2024.

 [19] S. Memari et al., "Turbidity assessment in coastal regions
- combining machine learning, numerical modeling, and remote sensing imagery," Water Pract. Technol., vol. 19, no. 9, 2024.
- V. K. Patle et al., "Real-Time Water Turbidity Detection and Monitoring System," International Journal of Research and Analytical Reviews, 2024.
- M. Zavareh et al., "Assessing the efficiency of a random forest [21] regression in water quality indicator prediction," Management of Environmental Quality, 2025.
- V. Lakshmikantha et al., "IoT based smart water quality [22] monitoring system," IEEE Sensors J., vol. 22, 2021.
- [23] S. Magrì et al., "Application of machine learning techniques to derive sea turbidity from Sentinel-2 MSI imagery," Remote Sens. Environ., 2023.
- [24] T. Matos et al., "A review of methods and instruments to monitor turbidity in rivers and lakes," Environmental Monitoring and Assessment, 2024.

X. Lin et al., "Water turbidity dynamics using random forest in the [25] Yangtze River," Science of The Total Environment, 2023

ISSN: 2582-3930

- [26] M. S. U. Chowdury et al., "IoT Based Real-time River Water Quality Monitoring System," *Advances in Multimedia*, 2019.
- J. Pham et al., "Comparative study of various machine learning approaches for water quality forecasting," *Water Sci. Technol.*, 2023.
 [28] V. V. Daigavane and M. A. Gaikwad, "Water Quality Monitoring
- System Based on IoT," Research India Publications, 2017.
- P. Kumar and R. Singh, "Machine learning approach to predict the tur- bidity of Saki River," International Journal of River Basin Management, 2024.
- [30] W. Yu et al., "Real-time data transmission design in water quality IoT systems," Measurement, 2024.
- S. Abba et al., "Multi-model ensemble for water quality forecasting [31] using machine learning," Environmental Modelling & Software, 2022.
- C. Liu and Y. Xu, "Remote sensing and machine learning integration for turbidity mapping," Remote Sens. Environ., 2025.

https://ijsrem.com DOI: 10.55041/IJSREM52988 Page 4 © 2025, IJSREM