gt 2y
¢ IISRE Mx'

w Volume: 09 Issue: 10 | Oct - 2025

% ..ma g7 INternational Journal of Scientific Research in Engineering and Management (IJSREM)
SJIF Rating: 8.586

ISSN: 2582-3930

Al-Enhanced Real-Time Turbidity Monitoring System Using Machine
Learning

Nandhini A
Department of Computing Technologies SRM Institute of
Science and Technology

Abstract—This project presents the design and implementation
of an Al-Enhanced Real-Time Turbidity Monitoring System
Using Machine Learning, developed to provide a reliable, low-
cost, and intelligent solution for water quality assessment. Tur-
bidity, which represents the degree of cloudiness in water
caused by suspended particles, is a critical indicator of safety
and ecological balance. High turbidity levels may indicate
microbial contamination, treatment  inefficiency, or
environmental degra- dation, making accurate monitoring
essential for applications ranging from municipal water supply
to environmental protection and industrial processing.
Traditional turbidity measurement methods are often expensive,
laboratory-dependent, and limited in accuracy under dynamic
field conditions, creating barriers to continuous and accessible
monitoring. The proposed system overcomes these challenges by
integrating a low-cost optical sensor with a microcontroller for
real-time data acquisition, and a Random Forest machine
learning algorithm for intelligent data interpretation. The
microcontroller collects turbidity values from the sensor, which
are then processed by the machine learning model to classify
water quality more accurately than conventional single-sensor
approaches. The Random Forest algorithm was chosen for its
robustness to noise, ability to model non-linear relationships,
and strong performance with multi-dimensional data. A Python-
based application serves as the main program, enabling live
predictions, result visualization through a user in- terface, and
the possibility of extending the system to cloud-based storage for
long-term monitoring and analysis. Experimental evaluation
demonstrates that the system achieves significantly higher
accuracy compared to standard techniques, confirming the role
of machine learning in enhancing turbidity assessment. The
modular design allows flexibility for future integration of
additional parameters such as pH, temperature, and total
dissolved solids (TDS). By combining affordable hardware with
advanced data analytics, this project delivers a practical,
scalable, and intelligent platform for continuous water quality
monitoring. Ultimately, the system contributes to public health
protection, sustainable water management, and environmental
conservation, while also advancing the application of artificial
intelligence in real-time environmental sensing.

Index Terms—Turbidity sensing, Random Forest, Arduino, real-
time monitoring, environmental sensing, water quality, IoT.

L. INTRODUCTION

Turbidity, the optical clarity of water affected by suspended
particles, is a key indicator of water safety and environmen-
tal health, yet conventional measurement techniques can be
costly, inflexible, or inaccurate under real-world variability,
prompting the development of a smarter, low-cost sensing
platform suitable for field deployment.Our approach
integrates multi-wavelength optical acquisition,
microcontroller-based
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data capture, and a Random Forest model that handles noisy,
nonlinear sensor relationships while providing robust feature
importance insights for system calibration and optimization.

A.  Motivation

Global clean water access challenges and the operational
need for continuous, automated monitoring motivate a system
that minimizes cost and maintenance while maximizing accu-
racy under environmental variability such as ambient light
and temperature fluctuations.By leveraging ensemble
learning and feature engineering, the platform improves
resilience to noise and adapts across water types, enabling
timely detection of quality issues and process control
feedback.

B.  Sustainable Development Goals

The system aligns with SDG 6 (Clean Water and Sanita- tion)
by enabling accessible, real-time turbidity monitoring for
communities and utilities, and supports SDG 3 (Health), SDG
9 (Innovation), and SDG 13 (Climate Action) through
scalable sensing infrastructure and data-driven environmental
management.

C.  Product Vision and Goal

The vision is to democratize high-quality turbidity mon-
itoring via an intelligent, modular platform that bridges
laboratory-grade  accuracy  with  field practicality,
transforming raw sensor inputs into actionable insights
through calibrated models and intuitive interfaces.The
product goal centers on ro- bust accuracy across water
compositions, modular deployment for varied environments,
and user-centric features including visualization, alerts, and
integration options.

1L PRODUCT BACKLOG AND RELEASE PLAN

The backlog spans hardware setup, firmware, calibration,
dataset curation, model training, real-time integration, UI,
validation, and documentation, with staged releases deliver-
ing core sensing, enhanced intelligence/connectivity, and full
capabilities including self-calibration and analytics.

I1I. SPRINT PLANNING AND EXECUTION

An Agile process organized the build into two sprints: Sprint
1 established the sensing foundation and data readiness, and
Sprint 2 delivered live model integration, Ul, validation, and
documentation for reproducibility.
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A. Sprint 1

1) Sprint Goal and User Stories: Sprint 1 delivered
com- ponent procurement, circuit assembly, firmware to read
sensor values, calibration across water types, and initial
labeled data collection to seed the ML pipeline.User stories
guided roles from hardware specialist and circuit builder to
embedded developer, calibrator, and data handler, ensuring

[Hardware Management (Components, Procurement)

v

[ Circuit Assembly & Validation }
\ 4

[ Firmware (Sensor Read, Serial I/O) )
v

[ Calibration (Standards, Parameters) )
\ 4

[ Data Collection & Labeling (Training Set)

Fig. 1: Sprint 1 application/system workflow.

4) System Architecture (Sprint 1): This monolithic
pipeline supports rapid iteration, consistent data flow, and
traceable calibration and labeling steps necessary for reliable
model training.

TABLE I: Authorization matrix (Sprint 1).

Role Access Level

Administrator
Hardware Specialist

Full configuration and dataset handling
Procurement and component tracking
Circuit Builder Diagrams, assembly guides, validation
tools Embedded Developer Firmware development and upload
Calibrator Calibration modules and settings

Data Handler Data collection and labeling tools Guest
Read-only progress visibility
5) Authorization Matrix (Sprint 1): This role model en-

sures disciplined control over hardware, data, and calibration
workflows while enabling transparency for stakeholders.

B. Sprint 2

1) Sprint Goal and User Stories: Sprint 2 integrated the
Random Forest model into a Python backend for real-time
prediction, connected live sensor input, built a user interface,
validated performance on diverse samples, and completed
end- to-end documentation.

2) traceability and acceptance criteria coverage.

3) Functional Scope and Architecture: Core processes
included inventory and procurement, assembly validation,
firmware upload and serial readout, calibration against stan-
dards, and labeled data capture for model training, enabling a
stable foundation for Sprint 2 integration and analytics.

[ Sensor Data Service (Real-Time Ingestion) )
\ 4

( Model Prediction Service (Random Forest) )
v

[ Frontend UI (Web/Mobile Interface) )
\ 4

( Validation Service (QA Test Harness) ]
\ 4

[ Documentation & Workflow Mgmt J

Fig. 2: Sprint 2 modular architecture for live prediction
and validation.

2) System Architecture (Sprint 2): A service-oriented
split improves maintainability and facilitates real-time I/O,
Ul re- sponsiveness, and systematic validation with
structured logs.

TABLE II: Authorization matrix (Sprint 2).

Role Access Level

Administrator Full settings and user management Data

Scientist Training, feature engineering, analysis
Developer Backend integration and APIs Frontend
Engineer Ul design and live data display

QA Engineer Validation, accuracy monitoring
Documenter Setup, code flow, pipeline documentation

3) Authorization Matrix (Sprint 2): The access model

sup- ports safe evolution of the predictive pipeline while
preserving accountability and reproducibility.

IV. METHODS
A.  Hardware and Firmware

The hardware setup integrates an optical turbidity sensor with
a microcontroller platform in the Arduino class, forming a
compact and cost-effective solution for real-time environ-
mental or biomedical sensing applications. This configuration
provides stabilized power delivery to ensure consistent sensor
performance, as well as support for analog signal readout,
enabling accurate capture of the sensor’s output across vary-
ing conditions. A serial communication interface—typically
UART or USB—is used to transmit data from the microcon-
troller to a host system, allowing for downstream processing,
storage, or visualization. The firmware running on the micro-
controller is designed to manage core data acquisition and
transmission tasks efficiently. It performs periodic sampling
of the analog signal, configurable according to the desired
temporal resolution. Basic digital filtering techniques,
such as moving averages or low-pass filters, are applied in
real- time to smooth out noise and enhance signal
quality. If a real-time clock module or synchronized system
time is available, each sample is timestamped to support
temporal
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analysis and accurate alignment with other data streams.
Collected data is buffered to accommodate variations in com-
munication latency and to ensure that no samples are lost
during transmission. The buffered data is then sent to the
host application—typically running on a PC, smartphone, or
embedded edge device—where it undergoes feature
extraction and inference using a trained machine learning
model. This pipeline enables meaningful interpretation of the
raw turbidity readings, supporting applications such as fluid
quality assess- ment, biomedical monitoring, or
environmental diagnostics.

B. Data and Features

Labeled datasets combine sensor signals with contextual
fields such as temperature and timestamp when available,
enabling the model to learn relationships and time-to-turbid
trends for  operational  decision support.Feature
engineering

emphasizes physically meaningful transforms and
combina- tions that aid separability while preserving
robustness to Model Training

environmental noise and drift.

C. Modeling and Integration

A machine learning pipeline centered around a Random For-
est classifier is implemented to perform binary classification
of water samples into "turbid" and "not-turbid" categories.
This classification model is further enhanced by a comple-
mentary regression component, which is specifically applied
to samples classified as non-turbid. The regressor estimates
the expected time until the sample is likely to become turbid,
providing a forward-looking risk forecast that can inform
preventative actions. This two-stage model structure enables
both immediate status assessment and proactive insight. To
support stable and repeatable inference during deployment,
the data pipeline includes preprocessing steps such as feature
scaling and transformation. These steps are fitted during the
training phase and persisted alongside the trained models
using serialization tools (e.g., joblib or pickle), ensuring
consistency between training and live inference sessions in
the Python backend. Model integration is facilitated through
a RESTful API, exposing dedicated endpoints for training
new models, loading existing models from storage, and
handling prediction requests in real time. This modular API
design allows seamless interaction between the backend
system and external inter- faces, including mobile or web
applications, enabling flexible integration across diverse
deployment environments. The user interface (UI) is designed
to present informative and actionable feedback to users. It
displays the binary classification outcome (turbid vs. not
turbid), the associated confidence score or probability, and a
qualitative risk level (e.g., low, moderate, high) derived from
the model’s outputs. In cases where the sample is deemed not
turbid, the UI also shows the predicted time-to-turbid value,
helping users anticipate potential future changes in water
quality. Together, these components provide a rich, user-
centric experience that combines technical robust- ness with
clear communication of results.

V. RESULTS AND DISCUSSION

Field evaluation showed strong agreement with laboratory
references, with classification accuracy reported around
94.7% in representative testing, alongside reliable
responsiveness and interpretability via feature importances
for calibration and maintenance.The live system delivered
continuous monitoring, intuitive visualization, and cloud-
ready logging, meeting the needs of water utilities,
environmental  stations, and resource- constrained
deployments.

VL FUNCTIONAL TESTING

TABLE III: Functional test cases and outcomes.

Feature Test and Expected Outcome

Sensor Hardware Verify wiring and serial read; analog val-
ues stream correctly.

Data Collection Log labeled samples; CSV produced with

schema validated.
Train RF; achieve target accuracy and save artifacts.

Live Prediction
and confidence.
Persistence Load saved models/scaler; consistent in-
ference results.

Stream sensor values; UI displays status

The validation confirmed accuracy and latency targets for
real-time use while highlighting future areas such as multi-
parameter fusion (e.g., pH, TDS) and enhanced self-
calibration.

VII. COMMITTED VS COMPLETED

Sprint tracking indicated strong completion across hard-
ware, firmware, data capture, Ul, and integration, with
remain- ing items focused on extended calibration protocols,
broader sample diversity, and automation of model
monitoring.

VIII. CONCLUSION AND FUTURE ENHANCEMENT

The presented Arduino-based turbidity monitoring platform
offers a low-cost, accessible solution that combines compact
optical sensing with embedded intelligence to deliver
accurate, real-time water quality assessments. Leveraging the
affordabil- ity and flexibility of open-source hardware, the
system is suit- able for deployment in a wide range of
environments—from urban infrastructure to rural or remote
field sites. A Random Forest machine learning model is used
to process the sensor data, enabling robust classification and
predictive capabilities even under variable conditions. This
integration of lightweight hardware and intelligent analytics
contributes meaningfully to safer water usage, early
contamination detection, and improved environmental
monitoring and oversight. The platform’s mod- ular design
supports easy customization and future scalability. Planned
enhancements aim to increase its sensing capabilities by
incorporating additional water quality parameters such as
pH (acidity/alkalinity) and total dissolved solids (TDS),
enabling a more comprehensive profile of water health. To
improve usability and accessibility, a mobile application ex-
tension is envisioned, allowing users to view real-time data,
receive alerts, and upload logs from their smartphones.
For
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energy autonomy in off-grid or hard-to-reach locations, the
system may be augmented with solar power modules, mak-
ing it more suitable for sustained field deployment. On the
computational side, future versions could incorporate edge Al
accelerators—such as low-power neural compute modules or
microcontroller-integrated Al cores—to support more
complex models and local inference without relying on
constant cloud connectivity. Additionally, richer cloud
analytics are planned, including advanced features such as
temporal forecasting of water quality trends and automated
anomaly detection. These capabilities would provide early
warning of emerging issues, enabling proactive interventions
and long-term data-driven environmental stewardship.
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